CLIM3001

Using the CSIRO Mk3L climate system model Part 2: Working with Mk3L

Steven J. Phipps

Climate Change Research Centre ARC Centre of Excellence for Climate System Science University of New South Wales

Overview

- Input files
- Output files
- Running Mk3L for one day
- Running Mk3L for 10 years
- Running Mk3L for 10,000 years

Input files

Input files

• The model requires three types of input files:

control file configures the model for a particular simulationrestart file(s) initialise(s) the model at the *start* of a simulationauxiliary files provide the boundary conditions *during* a simulation

- The model may be configured for a particular scenario by modifying one or more of these files
- See Chapters 4 and 5 of the Users Guide for further information

Boundary conditions: atmosphere model

- Bottom boundary conditions:
 - Sea surface temperatures
 - Ocean currents
 - Topography
 - Albedo
 - Vegetation and soil types
- Radiative boundary conditions:
 - CO₂ transmission coefficients
 - Ozone mixing ratios

Boundary conditions: ocean model

- Upper boundary conditions:
 - Sea surface temperatures
 - Sea surface salinities
 - Surface wind stresses
- Bottom boundary conditions:
 - Bathymetry

Boundary conditions: coupled model

- Bottom boundary conditions:
 - Topography
 - Bathymetry
 - Albedo
 - Vegetation and soil types
- Radiative boundary conditions:
 - CO₂ transmission coefficients
 - Ozone mixing ratios

Output files

Output files

• The model generates three types of output:

diagnostic information	written to standard output
output files	save the state of the model $during$ a simulation
restart file(s)	save(s) the state of the model at the end of a
	simulation

- The output files contain the simulated climate
- See Chapter 6 of the Users Guide for further information

Exercise 1: Diagnostic information

• Get the course material for today:

cd

tar zxvf /srv/scratch/z3210932/week2.tar.gz

- This contains typical output from a coupled model simulation
- The diagnostic information is saved in the file **out.00001**
- Using the less command, examine the contents of this file
- Table 4.4 of the Users Guide will be useful here

What is netCDF?

- network Common Data Form
- A self-describing, machine-independent data format
- Probably the most common data format in the climate sciences
- The names of netCDF files usually end with .nc
- The command ncdump can be used to examine the contents of netCDF files
- See http://www.unidata.ucar.edu/software/netcdf/

Exercise 2: netCDF

• Load netCDF by entering the command:

module load netcdf

• Use ncdump to examine the contents of the sample atmosphere model output file, stsc_spi62.nc. Try commands such as:

```
ncdump -h stsc_spi62.nc
ncdump -c stsc_spi62.nc
ncdump stsc_spi62.nc | less
```

Ferret

- A free visualisation and analysis package
- Specifically designed for visualising climatic data
- Makes it a breeze to visualise, analyse and manipulate the contents of netCDF files
- Very powerful and easy-to-use averaging, interpolation and re-gridding capabilities
- Your new best friend!
- See http://ferret.pmel.noaa.gov/Ferret/

Basic Ferret commands

use <file></file>	Load the netCDF file <file></file>
show data	List the data which is available
list <variable></variable>	List the values of <variable></variable>
plot <variable></variable>	Produce a line plot of <variable></variable>
<pre>shade <variable></variable></pre>	Produce a shade plot of <variable></variable>
fill <variable></variable>	Produce a filled plot of <variable></variable>
contour <variable></variable>	Produce a contour plot of <variable></variable>
exit or q	Exit

Basic Ferret transformations

• If the variable tsc contains surface air temperature as a function of longitude and latitude, then these expressions have the following meanings:

tsc[i=10,j=8]Temperature at gridpoint (10, 8)tsc[x=140e,y=35s]Temperature at 140°E, 35°Stsc[x=90e:180e,y=45s:0]Temperature over the region 90–180°E, 45-0°Stsc[i=@ave]Zonal-mean temperaturetsc[i=@ave,j=@ave]Global-mean temperaturetsc[i=@max,j=@max]Global-maximum temperaturetsc[i=@min,j=@min]Global-minimum temperature

Exercise 3: Ferret

• Load and run Ferret:

module load ferret
ferret

• Within Ferret, load the sample atmosphere model output:

yes? use stsc_spi62.nc

Exercise 3: Ferret

- Try commands such as:
 - show data
 - fill tsc[k=1,l=1]
 - fill tsc[k=@ave,l=@ave]
 - fill tsc[i=@ave,k=@ave]
 - fill tsc[k=@max,l=@max]
 - plot tsc[i=@ave,j=@ave,k=@ave]
 - plot tsc[i=@ave,k=@ave,l=@ave]
 - plot tsc[x=140e,y=35s,l=@ave]
 - list tsc[i=@ave,j=@ave,k=@ave,l=@ave]
 - show transform

Exercise 4: Ocean model output

- A sample ocean model output file, com.spi62.00001.nc, is provided
- Examine the contents of this file using ncdump and Ferret
- Within Ferret, try commands such as:

```
shade/lev=1d temp[k=1,l=1]
fill/lev=1d temp[i=@ave,l=@ave]
fill/lev=2dc motg[l=@ave]
plot mota[y=30n:60n@max,k=@max]
```

• Table 6.1 of the Users Guide will be useful here

Running Mk3L for one day

Running Mk3L for one day

- You did this last week!
- The steps involved in running the model were as follows:
 - Create a run directory
 - Copy the executable, control file, restart file and auxiliary files to this directory
 - Run the model

Exercise 5: Running Mk3L for one day

• Change back to the directory containing the test scripts:

cd ~/CSIR0_Mk3L/version-1.2/core/scripts/

- The script qsub_test_cpl runs the coupled model for one day
- Using the less command, examine this script carefully
- What would you change to run the model for one month, rather than one day?

Running Mk3L for 10 years

Running Mk3L for 10 years

- This involves the same steps as running the model for one day:
 - Create a run directory
 - Put everything there
 - Run the model
- For the ocean model, it's *exactly* the same
- However, the atmosphere model and coupled model can only be run for one year at a time
- So, in this case, we need to re-initialise the model at the start of each year

Exercise 6: Running Mk3L for 10 years

• Change back to the directory containing today's course material:

cd ~/week2/

- The script qsub_10years runs the coupled model for 10 years
- Using the less command, examine this script carefully
- How does it differ from the script which runs the model for one day?

Exercise 7: Time to do some real modelling!

- Choose one of the following experiments:
 - exp01 Control simulation
 - exp02 Mid-Holocene (6,000 years BP)
 - exp03 Last Glacial Maximum (21,000 years BP)
 - exp04 Snowball Earth
 - $exp05 \quad 2 \times CO_2$
 - exp06 Water hosing

Exercise 7: Time to do some real modelling!

• For your experiment, change to the appropriate directory e.g.

cd ~/week2/exp01/

• Now start your experiment e.g.

qsub qsub_exp01

- Look at the script which carries out each experiment
- How does it differ from the control simulation?

Running Mk3L for 10,000 years

Running Mk3L for 10,000 years

- This involves the same steps as running the model for 10 years:
 - Create a run directory
 - Put everything there
 - Run the model
- However, we can't run the model for 10,000 years in one go:
 - It could take more than a year to complete the job
 - The volume of data generated will be enormous
- The solution is to break the job down into manageable chunks
- We also need to archive the output of the model

Exercise 8: Running Mk3L for 10,000 years

• Change back to the directory containing today's course material:

cd ~/week2/

- RUN_spi62 is an actual script that was used to carry out a 10,000-year control simulation on the National Facility in Canberra
- Using the less command, examine this script carefully
- What does it do?