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The investigation into the past behavior of the East Asian summer monsoon (EASM) and Australian summer
monsoon (ASM) is potentially helpful for advancing our knowledge of projected future changes. Geological evi-
dence supports an in-phase change of the two monsoon systems over the last millennium, but the dynamic
mechanisms and timescale-dependence are not fully understood. Using model outputs from the Paleoclimate
Modelling Intercomparison Project Phase III, we investigated EASM and ASM variations, their phase relationship
during the last millennium, and their dynamic mechanisms. According to selected “best-performance” models
capable of reproducing reconstructed Asian–Australian monsoon changes, EASM and ASM showed significant
in-phase changes only on centennial timescales, with intensified EASM/ASMduring theMedieval Climate Anom-
aly (MCA) and weakened monsoons during the Little Ice Age (LIA). Moreover, the synchronous variation was
more robust during the LIA relative to theMCA. The strengthened (weakened) EASMduring theMCA (LIA) is at-
tributed to an enhanced (reduced) land–sea temperature contrast and a northward (southward) shift of the sub-
tropical westerly jet stream during boreal summer. During the same period, the ASM was reinforced
(suppressed) due to the enhanced (reduced) lower-level easterly from the western Pacific and southward
(northward) shift of upper-level westerly during austral summer. Meanwhile, the stronger (weaker) EASM/
ASM during the MCA (LIA) was associated with expansion (retreat) of the local Intertropical Convergence
Zone and an enhanced (reduced) zonal temperature gradient over the equatorial Pacific. Our results imply that
the synchronous change in the Asian–Australian monsoon may be caused by inherent solar variations, further
strengthening previous findings.

© 2017 Elsevier B.V. All rights reserved.
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1. Introduction

The Asian–Australianmonsoon is one of themost important compo-
nents of the global monsoon system. It includes two sub-monsoon sys-
tems around the western Pacific: the East Asian monsoon and
Australianmonsoon, which exert great impacts on Asian and Australian
hydrological changes in local summer. When the Australian summer
monsoon (ASM) strengthens, precipitation is expected to increase
over northern Australia (e.g., Nicholls et al., 1982; Kajikawa et al.,
2010), namely, the Australian monsoon region. As the East Asian sum-
mer monsoon (EASM) gets stronger, precipitation is generally en-
hanced over North China and reduced over South China or the
Yangtze River valley (e.g., Tao, 1987; Ding et al., 2008). Additionally,
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the two monsoon systems interact with each other via cross-equatorial
flows in both the lower and upper troposphere (e.g., He et al., 2007); the
El Niño–Southern Oscillation modulates their interactions primarily on
interannual timescales (e.g., Meehl and Arblaster, 1998; Lau and Nath,
2000).

Observational-based studies indicate that the EASM experienced a
weakening trend during the last half century (e.g., Jiang and Wang,
2005; Song et al., 2014; Zhang and Zhou, 2015), and the ASM and asso-
ciated rainfall was enhanced slightly over the last half century, especial-
ly since the 1980s (Li et al., 2013; Zhang andMoise, 2016). These results
indicate that EASM and ASM variations are broadly anti-phase on de-
cadal timescales. However, due to the relatively short time span ofmod-
ern observations, it is unclear how the EASM and ASM behaved in the
past and whether their relationship varies on different timescales.

Geological evidence helps extend monsoon records to several
millennia and even longer. On millennial timescales, the EASM and
ASM generally show an anti-phase variation. Proxies reveal that the
EASM weakened during the whole Holocene (from ~9 kyr BP) (e.g.,
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Wang et al., 2005a, 2005b; Hu et al., 2008). In contrast, several ASM re-
cords consistently show an increasing ASM trend from the early Holo-
cene (e.g., Partin et al., 2007; Griffiths et al., 2009). Eroglu et al. (2016)
also suggested a see-saw relationship between the Asian–Australian
summer monsoon since the Holocene. On centennial timescales,
Zhang et al. (2008) indicated an intensified Asian summer monsoon
during theMedieval Climate Anomaly (MCA) and a reduced EASM dur-
ing the Little Ice Age (LIA) based on δ18O records from cave
speleothems. This result has been confirmed by other cave speleothems
δ18O records as well as through reconstructed precipitation patterns
(e.g., Tan, 2007; Chen et al., 2015). Multi-proxies in northern Australia
suggest that the ASM region was generally wetter (dryer) during the
MCA (LIA) (e.g., Burrows et al., 2014; Denniston et al., 2015, 2016;
Rouillard et al., 2016). By combining paleo-hydrology records over
EASM and ASM regions, Yan et al. (2015) suggested that there was a
synchronously weakened EASM and ASM during the LIA. The proposed
synchronous change is distinct from the anti-phasemonsoon variations
in different hemispheres on a millennial timescale. Given the sporadic
proxies and limited environmental variables derived from those prox-
ies, dynamic mechanisms driving EASM–ASM variations are not fully
understood.

Numericalmodeling allows us to investigate possiblemechanisms of
monsoon changes revealed by reconstructions. It has been widely ac-
knowledged that the out-of-phase variation of the EASM and ASM on
millennial timescales (i.e., from early to middle Holocene) was induced
by the northward shift of the Intertropical Convergence Zone (ITCZ) due
to a precession cycle (e.g., Wyrwoll et al., 2007; Kutzbach et al., 2008;
Mohtadi et al., 2016). On centennial timescales (i.e., last millennium),
their relationship and dynamic mechanisms have not yet been thor-
oughly studied. Most research concerning the EASM suggested that
solar irradiation and volcanic eruptions are primary drivers for
strengthened (weakened) EASM in the MCA (LIA) (e.g., Liu et al.,
2011;Man et al., 2012). However, ASM variations and their relationship
with EASM over the last millennium have received little attention. Re-
cently, Yan et al. (2015) interpreted the synchronous weakening of
the EASM and ASM during the LIA as the contraction of ITCZ over that
period caused by lower total solar irradiation (TSI). However, proposed
mechanisms were concluded from a single model and mainly focused
on the LIA. Is this hypothesis model-dependent and time interval-se-
lected, or do other factors play a role? These issues require further ex-
amination with multiple climate models.

The Paleoclimate Modelling Intercomparison Project (PMIP) pro-
vides a platform to explore possible dynamic mechanisms behind past
climate change (e.g., Braconnot et al., 2012; Bothe et al., 2013; Shi et
al., 2016). In this study, we investigated EASM and ASM variations
Table 1
PMIP3 model simulations information and their main forcings.

Model Model full name

Reso

Atmo

BCC-CSM-1.1 Beijing Climate Center Climate System Model (version 1.1) 128

CCSM4 Community Climate System Model (version 4.0) 288 ×
CSIRO-Mk3L-1.2 Commonwealth Scientific and Industrial Research Organization

(Mark 3 Low-resolution model version 1.2)
64 ×

FGOALS-s2 Flexible Global Ocean-Atmosphere-Land System Model (Spectral
Version 2)

128

GISS-E2-R E2 version of the Goddard Institute for Space Studies Climate
Model (Model E/Russell)

144

HadCM3 Hadley Climate Model (version 3) 96 ×

IPSL-CM5A-LR Earth System Model of the Institut Pierre Simon Laplace (low
resolution)

96 ×

MPI-ESM-P Earth System Model of Max-Planck-Institut für Meteorologie
(low resolution grid and paleo mode)

196

MRI-CGCM3 Meteorological Research Institute Coupled ocean-atmosphere
General Circulation Model (version 3)

320 ×
based on PMIP3 simulations of the last millennium and focused on
their phase relationship. Understanding these issues will deepen our
knowledge of global monsoon variations and monsoon interactions be-
tween two hemispheres, further promoting our understanding of mod-
ern climate change. The remainder of this paper is organized as follows:
in Section 2, we briefly introduce the PMIP3 models and methods used
in this study. In Section 3, the PMIP3model performance is evaluated in
reproducing observed precipitation climatology and reconstructed
EASM and ASM changes. In Section 4, we present the temporal evolu-
tion of the EASM and ASM and possible dynamic mechanisms. We dis-
cuss and summarize our results in Sections 5 and 6, respectively.

2. Data and methods

The simulations for the lastmillenniumwere obtained fromnine cli-
matemodels in the PMIP3, excludingMIROC-ESM because of its climate
drift in long-term experiments (Sen Gupta et al., 2013). These simula-
tions roughly span 850–1850CE, forced by TSI, volcanic eruptions, orbit-
al parameters, land cover and greenhouse gases. Information
summarizing these PMIP3 models is given in Table 1, and details are
available online at https://pmip3.lsce.ipsl.fr/. Modeledmonthly outputs
of precipitation, air temperature, sea level pressure, wind fields, outgo-
ing longwave radiation (OLR) and sea surface temperature (SST) were
used for analysis. The MCA was selected as 950–1250 CE and the LIA
as 1500–1800 CE,with an identical time interval as theMCA.Model out-
puts and observations were interpolated to a mid-range horizontal grid
resolution of 2.0° × 2.0° by a bilinear interpolation before performing
the model–observation comparison and calculating the multi-model
ensemble mean (MEM).

Because long-term monsoon variations were usually derived from
precipitation-relevant proxies (e.g., Zhang et al., 2008; Denniston et
al., 2016), we define regionally averaged local summer precipitation in
North China (100°–120°E, 35°–45°N) and the northern edge of Australia
(120°–150°E, 10°–20°S) as the EASM and ASM intensity over the last
millennium, respectively. Local summer represents June–July–August
for the EASM and December–January–February for the ASM.

3. Model evaluation

We first used the Taylor diagram (Taylor, 2001) to evaluate the per-
formance of nine PMIP3models in simulating present-day precipitation
over the East Asia–western Pacific–Australia region (90°–160°E, 30°S–
60°N) (Fig. 1). The result shows that the PMIP3models have acceptable
performance in reproducing observed annual and seasonal precipita-
tion over this region, although the accuracy of individualmodels varied.
lution Forcing

sphere Ocean Solar Volcanic

× 64, L26 360 × 232, L40 Vieira et al. (2011), Wang et al.
(2005a, 2005b)

Gao et al. (2008)

192, L26 320 × 384, L60 Vieira et al. (2011) Gao et al. (2008)
56, L18 128 × 112, L21 Steinhilber et al. (2009) Crowley et al. (2008)

× 60, L26 360 × 180, L30 Vieira et al. (2011), Wang et al.
(2005a, 2005b)

Gao et al. (2008)

× 90, L40 288 × 180, L32 Vieira et al. (2011)
Wang et al. (2005a, 2005b)

Gao et al. (2008)

73, L19 288 × 144, L20 Steinhilber et al. (2009), Wang et
al. (2005a, 2005b)

Crowley et al. (2008)

95, L39 182 × 149, L31 Vieira et al. (2011), Wang et al.
(2005a, 2005b)

Gao et al. (2008)

× 98, L47 256 × 220, L40 Vieira et al. (2011), Wang et al.
(2005a, 2005b)

Crowley et al. (2008)

160, L48 364 × 368, L51 Delaygue and Bard (2009),
Wang et al. (2005a, 2005b)

Gao et al. (2008)

https://pmip3.lsce.ipsl.fr


Fig. 1. Taylor diagram displaying pattern statistics of climatological annual and local
summer precipitation over Asia-western Pacific-Australia region (30°S–60°N, 90°–
160°E) between the historical experiments and observation. The radial coordinate is the
standard deviation normalized by the observation, and the angular coordinate is the
correlation with observation. The normalized CRMSE between a model and observation
(marked as REF) is their distance apart. Note that pre-industrial experiment of CSIRO-
Mk3L-1-2 is calculated due to its lack of historical experiments. The Global Precipitation
Climatology Project monthly precipitation dataset V2.2 is taken as the target observed
precipitation (Adler et al., 2003).
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Spatial correlation coefficients between simulations and observation
ranged from 0.62 to 0.88, 0.66 to 0.87 and 0.72 to 0.91 for annual, boreal
summer and austral summer precipitation, respectively. All correlation
coefficients pass the 99% significance test. The corresponding centered
root-mean-square errors ranged from 0.48 to 1.00, 0.49 to 1.04 and
0.50 to 0.81. In general, the nine PMIP3 models reliably reproduced
the spatial pattern and precipitationmagnitude over the East Asia–Aus-
tralia region, with better performance in simulating austral summer
precipitation, providing confidence for applying them to study EASM
and ASM changes during the last millennium.

Nevertheless, PMIP3 models varied widely in reproducing recon-
structed EASM and ASM anomalies between the MCA and LIA (Fig.
2). Seven out of nine models (excepting BCC-CSM1-1 and FGOALS-
s2) indicated sufficient precipitation over North China during the
MCA relative to the LIA, which is roughly consistent with geological
evidence (e.g., Tan, 2007; Chen et al., 2015). Five out of the nine
models (i.e., CSIRO-Mk3L-1-2, GISS-E2-R, IPSL-CM5A-LR, MPI-ESM-
P, and MRI-CGCM3) broadly simulate increased precipitation in
northern Australia during the MCA, in agreement with the humidity
records over that region (e.g., Zhang et al., 2008; Denniston et al.,
2016). However, the remaining models indicated dry conditions or
slight changes in precipitation.

To quantitatively examine precipitation variations over the two
monsoon regions, Fig. 3 shows the regionally averaged EASM and ASM
precipitation anomaly (i.e., the monsoon intensity change) between
theMCA and LIA. The PMIP3models show a better consistency in simu-
lating the reconstructed EASM than the ASM during the past millenni-
um: seven (five) out of nine models indicated a stronger EASM (ASM)
during the MCA relative to the LIA. Overall, five out of the nine PMIP3
models (i.e., CSIRO-Mk3L-1-2, GISS-E2-R, IPSL-CM5A-LR, MPI-ESM-P,
and MRI-CGCM3) captured the in-phase relationship between the
EASM and ASM suggested bymultiple proxies (Yan et al., 2015). There-
fore, we used the MEM of these five models to further explore the pos-
sible mechanisms responsible for EASM and ASM variation during the
last millennium.
4. Results

4.1. The relationship between EASM and ASM during the last millennium

Although reconstructions have suggested a strengthened (weak-
ened) EASM and ASM during the MCA (LIA), it remains unclear over
what timescale they were in-phase due to the coarse time resolution
of proxies. To find their phase relationship on different timescales, a
moving average with a variable window size was calculated. Fig. 4
shows the correlation coefficient between the EASM and ASM increased
with a larger window length but decreased once the window size
exceeded ~130 a. Notably, their positive relationship was only signifi-
cant when the window size ranged from ~40 a to ~110 a (Fig. 4B),
which indicates that the in-phase exhibition of the EASM and ASM
mainly occurred on centennial timescales during the last millennium.

Fig. 5 shows the 71-a moving average of the EASM and ASM as their
positive correlation is relativelymore significant in thismovingwindow
width. The simulated EASM and ASMwere broadly synchronous during
the last millennium, consistent with reconstructions (e.g., Zhang et al.,
2008; Denniston et al., 2016); their in-phase relationship was more sig-
nificant during the LIA than the MCA. During the MCA, the EASM and
ASM were not exactly in-phase and were even out-of-phase around
1100 CE, primarily due to a weaker ASM at that time—a cause also indi-
cated by several proxy records. For instance, a stalagmite record in
northwestern Australia suggested that the ASM was relatively weak
around 1100 CE in contrast to its overall strengthening during the
MCA (Denniston et al., 2016). Generally, the MEM simulation exhibits
enhanced (suppressed) EASM and ASM during the MCA (LIA), which
is also suggested by proxies, making it reasonable to investigate dynam-
ic mechanisms driving the reconstructions.

4.2. Possible dynamic mechanisms

In this subsection, we investigate anomalous monsoon circulation
and associated dynamic mechanisms. The EASM increased in the MCA
relative to the climatological mean, illustrated by anomalous south-
westerly winds in the subtropical regions and southeasterly winds in
the extratropical East Asian regions in the lower troposphere (i.e.,
850 hPa) (Fig. 6A).

The tropospheric mean temperature over the Asian continent rose
faster than themean temperature of the tropical ocean due to a different
thermal capacity between land and ocean, forming an anomalous low-
pressure systemover theAsian continent (Fig. 7A). Thus, themeridional
land–sea pressure gradient increased, which strengthened southerly
winds from tropical oceans. Similarly, the temperature gradient be-
tween the Asian continent and mid-latitude North Pacific was also am-
plified, resulting in an enhanced zonal land–sea pressure contrast,
strengthening southeasterly winds from the North Pacific. During the
LIA, the mean tropospheric temperature decreased over the Asian con-
tinent and increased over adjacent oceans (Fig. 7B), causing a reduced
land–sea thermal gradient, which weakened the EASM (Fig. 6B).

In the upper troposphere (i.e., 200 hPa), the East Asian subtropical
westerly jet is an important component of the EASM system (Tao,
1987) and is closely associated with lower-level circulation and precip-
itation over the EASM region (Zhang et al., 2006). Although zonal wind
was broadly weakened (strengthened) during the MCA (LIA) over the
mid-latitude Asian region, the magnitude of the wind anomaly was
larger south of its jet axis (approximately 37°N) than north (Fig. 8A
and B). This result corresponds to a northward (southward) shift of
the East Asian subtropical westerly jet and was favorable (unfavorable)
for a northward rain belt shift in East Asia and a stronger EASM (e.g.,
Zhou and Yu, 2005).

The ASM was strengthened during the MCA and characterized by
anomalous northeasterly winds from the tropical western Pacific (Fig.
6C), induced by a stronger warming over the western Pacific than the
central eastern Pacific (Fig. 7C). During the LIA, the decreased ASM



Fig. 2. Local summer precipitation differences between theMCAand LIA (units:mm/d). Valueswith ≥95% confidence level are dotted in red according to Student's t-test. Two regions used
for calculating the EASMandASM intensity aremarked by rectangles in (A): North China (105°–120°E, 35°–45°N) andnorthernAustralia (120°–150°E, 10°–20°S). Dash lines represent the
equator.
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consisted of two branches of anomalous southerlies from the tropical
IndianOcean and the tropical western Pacific Ocean (Fig. 6D). Thewest-
ern branchof theweakenedASM from the IndianOceanoriginated from
an anomalous anticyclone in the subtropical South IndianOcean, caused
by the anomalous cooling center (Fig. 7D). The eastern branch was in-
duced by an anomalous cyclone northwest of Australia that weakened
the lower-level Walker circulation (Fig. 6D), consistent with a de-
pressed temperature gradient between the tropical western Pacific
and central eastern Pacific Ocean (Fig. 7D). Notably, the magnitude of
the ASM anomaly in the MCA was slightly smaller relative to the LIA.
This is attributed to different zonal locations of the anomalous cy-
clone/anticyclone in the South Indian Ocean, which resulted in tropical
wind in the Indian and Pacific Oceans converging at approximately
110°E during the MCA but diverging at 130°E during the LIA, making
ASM changes more drastic than those during the LIA.

As shown in Fig. 8C and D, the austral summer mean upper-level
westerly jet was climatologically centered along 40°S. There was a
weakened (strengthened) westerly north of the jet axis and a strength-
ened (weakened)westerly south during theMCA (LIA). This southward
(northward) shift of the westerly jet is consistent with a southward

Image of Fig. 2


Fig. 3. Regionally averaged local summer precipitation differences of North China and northern Australia between theMCA and LIA. Units:mm/d. Qualitative values for reconstruction are
shown in the last column.
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(northward) shifted Hadley cell, conducive to an enhanced (decreased)
lower-level northerly in northern Australia. In addition, there was an
anomalous upper-levelwesterly (easterly) in the tropicalwestern Pacif-
ic during theMCA (LIA), together with an increased (decreased) easter-
ly at lower-level (Fig. 6C and D), implying an enhanced (weakened)
Walker circulation. Together, these features led to a strengthened
(weakened) ASM and ASM rainfall (Meehl and Arblaster, 1998) during
the MCA (LIA).

5. Discussion

Synchronous variations of the EASM and ASM are a relatively robust
observation amongmultiple model simulations (revealed by five out of
nine models). During the MCA (LIA), the strengthened (weakened)
EASM is attributed to enhanced (reduced) lower-level anomalous
winds from tropical oceans to land and the northward (southward)
shift of upper-level westerly jets at mid-latitude during boreal summer.
In addition, the ASM increased (decreased) during the same period. The
associated subtropical jet moved poleward (equatorward), which was
symmetrical to the East Asian subtropical westerly jet shift around the
equator.

The symmetrical atmospheric change in two summer hemispheres
was also detected in the ITCZ. The lowest simulated tropical OLR,
which represents the strongest convection, broadly reproduced the sea-
sonal position of the ITCZ (Fig. 9). During theMCA (LIA), the boreal sum-
mer OLR decreased (increased) north of the ITCZ and increased
(decreased) at the ITCZ region and further south, indicating a north-
ward (southward) shift of the ITCZ (Fig. 9A and B). During the MCA,
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Fig. 4. (A) Local summer precipitation (units: mm/d) representing the EASM and ASM inten
coefficient according to different width of moving average window (solid line) and the dash li
relative to the LIA, the northward ITCZ corresponded to an intensified
Asian summer monsoon (Fig. 6A and B). With respect to austral sum-
mer, the OLR increased over tropical western Pacific and Australia dur-
ing the MCA with a larger (smaller) increase in the north (south) (Fig.
9C), resulting in a southward shift of the local ITCZ, which is consistent
with an enhanced ASM (Fig. 6C). Similarly, the local ITCZ migrated
northward during the LIA (Fig. 9D), in agreement with a reduced ASM,
as shown in Fig. 6D. This result indicates an expansion (contraction) of
the ITCZ during the MCA (LIA) on centennial timescales, which led to
an in-phase change of the Asian–Australianmonsoon (Yan et al., 2015).

Additionally, we found the synchronous variation of the two mon-
soonswas also influenced by a zonal temperature gradient over tropical
Pacific region. During the MCA (LIA), the zonal SST gradient (Fig. 10C)
was enhanced (reduced), which led to a strengthened (weakened)
Walker circulation, and hence, a stronger (weaker) EASM and ASM
(e.g., Huang and Wu, 1989; Meehl and Arblaster, 1998). The strength-
ened (weakened) zonal SST gradient is consistent with the La Niña-
(El Niño-) like conditions according to proxies from the MCA (LIA)
(e.g., Cobb et al., 2003; Mann et al., 2008; Conroy et al., 2009), although
uncertainties exist (e.g., Yan et al., 2011; Rustic et al., 2015).

Summertime ITCZ migration and monsoon variation were affected
by inter-hemispheric insolation gradients (e.g., An et al., 2015). Fig. 10
shows that the EASMandASMvariations generally agreedwith changes
in TSI, although phase differences exist. Meanwhile, expanded
(retreated) ITCZ occurred during the MCA (LIA) with higher (lower)
TSI (Fig. 9) as well as an enhanced (reduced) zonal SST gradient over
the tropical Pacific (Fig. 10). These results imply that synchronousmon-
soon variations may be controlled by inherent solar variations during
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Fig. 5. Standard EASM and ASM intensity smoothed by 71-a moving average.
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the pastmillennium, in agreementwith thefindings of Yan et al. (2015).
This hypothesis is also supported by previousmodeling studies. Liu et al.
(2009) found that monsoon precipitation in both hemispheres in-
creased (decreased) during the MCA (LIA) based on the ECHO-G simu-
lation, which was in phase with changes in solar irradiation. Yan et al.
(2015) also indicated symmetrical dry conditions in both subtropical re-
gions near the western Pacific during the Maunder Minimum (~1690–
1740 CE) in a solar-only forcing experiment with MPI-ESM. Although
Denniston et al. (2016) suggested that the Indo–Pacific tropical rain
belt showed a remarkable contraction during the LIA using a volcanic-
only CESM simulation, our results show that volcanic eruptions have
no direct effect on centennial monsoon variations (Fig. 10B and E),
which may attributed to that the effects of volcanic eruptions on mon-
soons maintain on interannual timescales (e.g., Anchukaitis et al.,
2010; Man et al., 2014).

Nevertheless, Eroglu et al. (2016) indicated a solar-induced see-saw
relationship between the EASM and ASM since the Holocene. This dis-
crepancy could be explained as follows. During thewhole Holocene, or-
bital parameters, such as precession, are the dominant factors to induce
an opposite summer insolation between two hemispheres (Laskar et al.,
2011). Under this background, solar activities further strength such op-
posite insolation changes, and lead to an anti-phase EASM-ASM varia-
tion (Eroglu et al., 2016). However, in the late Holocene (i.e., last
millennium), insolation variation induced by solar activities was much
larger than that arising from orbital change (Yan et al., 2015), and
thus formed an in-phase EASM-ASM variation.
Fig. 6. Anomalies in boreal summer 850 hPa wind in the (A) MCA and (B) LIA relative to the cl
summer. Units: m/s.
Overall, our results imply that synchronous variations of the EASM
and ASM may be dominated by changes in solar irradiation. However,
the response of climate changes to external forcing is weaker compared
to reconstructions. Considering the ITCZ, for example, reconstructions
imply a 5° southward migration of the ITCZ during the LIA (Sachs et al.,
2009). However, the simulated OLR changed b0.5% between the MCA
and LIA (Fig. 9A), which could not have induced such a large meridional
shift of the reconstructed ITCZ. These weak climate responses in the
PMIP3 last millennium experiments could be attributed to several rea-
sons. First, reconstructions may overestimate long-term climate changes.
The difference in TSI, the primary external forcing for climate change dur-
ing the lastmillennium, is too small between theMCA and LIA. Suggested
by reconstructions of the TSI (e.g., Steinhilber et al., 2009; Vieira et al.,
2011), the TSI increased by only approximately 0.2 W/m2 during the
MCA relative to the LIA, which is not remarkable, considering the average
TSI of 1365.3W/m2during 850–1850 CE.Moreover, the inter-hemispher-
ic temperature contrast was observed to be much smaller than that sug-
gested by a 5° southward shift of the ITCZ (Donohoe et al., 2013). Second,
although theMEMemphasizes common signals amongmodels, it usually
has a weaker internal variability than that of individual models, which is
another important contributor to climate change. Finally, models tend to
underestimate climate change in response to external forcings. For in-
stance, most models have underestimated temperature anomalies in
the Northern Hemisphere between the MCA and LIA (e.g., Phipps et al.,
2013; Landrum et al., 2013; Fernandez-Donado et al., 2013), particularly
for the warming during the MCA compared to the anomaly suggested
imatological mean (850–1850 CE). (C) and (D) are the same as (A) and (B) but for austral
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Fig. 7. Anomalies in boreal summer mean temperature of 500–200 hPa (color shading, units: °C) and sea level pressure (contours, unit: Pa) in the (A) MCA and (B) LIA relative to the
climatological mean (850–1850 CE). (C) and (D) are the same as (A) and (B) but for austral summer.
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by multiple reconstructions (e.g., Moberg et al., 2005; Mann et al., 2008).
Other factors underestimated by the PMIP3 models are regional precipi-
tation change and tropical cyclone genesis factors (e.g., Yan et al., 2016).
Fig. 8.Anomalies in boreal summer 200 hPawind (vectors) in the (A)MCA and (B) LIA relative t
(red contours). (C) and (D) are the same as (A) and (B) but for austral summer. Units: m/s.
It should be noted that EASM and ASM variations are nonsynchro-
nous during the MCA. Specifically, fluctuations of the EASM during the
MCA conformed well to the TSI, while the weaker ASM occurring
o the climatologicalmean (850–1850 CE), and the climatologicalmean 200 hPa zonalwind

Image of Fig. 7
Image of Fig. 8


Fig. 9. Anomalies in boreal summer OLR field (color shading) in the (A) MCA and (B) LIA relative to the climatological mean (850–1850 CE), and the climatological mean OLR (black
contours). (C) and (D) are the same as (A) and (B) but for austral summer. Units: W/m2.
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around 1100 CE correlated with a lower SST gradient. Liu et al. (2011)
suggested that precipitation in extratropical regions is more sensitive
to TSI than in tropical regions, which could explain the different influ-
ence of TSI on the EASM and ASM. Furthermore, the relatively weaker
ASM around 1100 CE possibly resulted from the zonal position of an
anomalous cyclone in the South Indian Ocean (Fig. 6C and D). Fig. 10D
shows that when the South Indian Ocean warming (cooling) center
was located more eastward, the ASM was stronger (weaker) than nor-
mal due to an anomalous cyclone (anticyclone) to the east.

6. Conclusions

The long-term variations of the EASM and ASM and their phase rela-
tionship were analyzed in this study based on PMIP3 last millennium
experiments. Five models (CSIRO-Mk3L-1-2, GISS-E2-R, IPSL-CM5A-
LR, MPI-ESM-P, and MRI-CGCM3) were able to reproduce the strength-
ened EASM and ASM during the MCA relative to the LIA. Thus, we used
their ensemble mean to further explore possible dynamic mechanisms
driving the reconstructed monsoon changes.

The results indicate that in the MEM simulations, EASM and ASM
variations were significantly in-phase only on centennial timescales
and were more synchronous during the LIA than during the MCA. The
increased (decreased) EASM during the MCA (LIA) was caused by en-
hanced (lowered) temperature contrast between the Asian continent
and adjacent oceans. This variation was also affected by the northward
(southward) shift of the subtropical westerly jet and regional ITCZ over
thewestern Pacific region. The strengthened ASMduring theMCA (LIA)
was closely associated with anomalous easterly (westerly) winds from
the tropical Pacific and southward (northward) migration of the ITCZ.
Solar irradiation and a zonal SST gradient over the tropical Pacific region
are causes of the synchronous evolution of the EASM and ASM on cen-
tennial timescales. In addition,we suggest that anomalous cyclone/anti-
cyclone activity in the South Indian Ocean contributes to changes in the
ASM.

Our conclusions are based on simulations, and thus have inevita-
ble uncertainties. Firstly, climate models have limited skill in simu-
lating the modern Asian–Australian monsoonal precipitation
(Zhang and Moise, 2016). Secondly, whether the model sensitivity
to external forcings is right remains unclear. Uncertainties also orig-
inate from the complexities of monsoon records. For example, the
MCA trends of ASM were not identical even from stalagmites in the
same cave (Denniston et al., 2016). Therefore, mechanisms revealed
in this study require further investigation. In addition, we focus on
the centennial timescale monsoon variations, while the high fre-
quency monsoon variation is another important issue. Correlation
between high frequency EASM and ASM are broadly insignificant
(Fig. 4B). This result indicates that fast dynamic mechanisms for var-
iations of the two monsoons may be different. The internal variabil-
ity of climate system (e.g., ENSO) and other external forcing (e.g.,
volcanic eruptions) may be crucial. Thus, monsoon variations on dif-
ferent timescales are quite distinct and complicated, and should be
addressed in a future work.

Image of Fig. 9


Fig. 10. (A) Anomalies of three TSI reconstructions (Steinhilber et al., 2009; Vieira et al., 2011; Delaygue and Bard, 2009) and (B) two volcanic reconstructions (Crowley et al., 2008; Gao et
al., 2008) used in five ensemble models; (C) anomalies of annual SST gradient between the tropical western Pacific (110°–150°E, 5°S–5°N) and eastern Pacific (150°W–90°W, 5°S–5°N);
(D) anomalies of troposphere temperature (500–200 hPa) difference between southeastern Indian Ocean (90°–120°E, 0–40°S) and southwestern Indian Ocean (60°–90°E, 0–40°S) in
austral summer. This is an indicator of anomalous cyclone/anticyclone in the South Indian Ocean, and the cyclone (anticyclone) is located more east (west) when the index is larger;
(E) the standard EASM and ASM. Anomalies are relative to the mean of 850–1850 CE. All data have smoothed by 71-a moving average, except for the volcanic reconstructions.
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