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Abstract
Statistical properties of observed and CMIP5-simulated bivariate time series ‘annual global
surface temperature (AGST) – sea surface temperature in the Niño area 3.4 (SST3.4)’ are
analyzed in the time and frequency domains. Both observed and most simulated data show that
AGST is explicitly affected by SST3.4 but not vice versa. Though the AGST spectral density
is low at intermediate frequencies, most CMIP5 models reproduce its behavior and show the
high coherence observed in nature inside that frequency band. However, CMIP5 models show
a dependence between AGST and SST3.4 at frequencies below 0.1 year−1, which is not found
in nature.
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1. Introduction

The El Niño-Southern Oscillation (ENSO) system
presents a unique example of interannual variability
within the Earth’s climate system and is believed
to affect the global surface temperature (e.g. Jones,
1988; Privalsky and Jensen, 1995). As high coherence
between global and regional processes is a rare occur-
rence in the Earth’s climate, such phenomena present a
convenient tool for validation of climate models.

The important role of ENSO in climate modeling has
been recognized earlier, and climate models were val-
idated with regard to their ability to reproduce ENSO’s
behavior and its effects upon different elements of
climate over the globe. Thus, Bellenger et al. (2014)
studied many ENSO features, including its amplitudes,
seasonality, spectra, etc., and found ‘no quantum leap’
in the quality of 24 CMIP5 models as compared to the
previous CMIP3 versions. A mostly frequency domain
validation of CMIP5 models was presented in Privalsky
and Yushkov (2014) who found that the uniquely strong
teleconnection within ENSO between the annual sea
surface temperature in the El Niño area 3.4 and the
annual sea level pressure differences Tahiti–Darwin
(SOI) is properly reproduced by 44 out of the 46 models
within the CMIP5 historical experiment.

Several studies used ENSO as a litmus test for the
ability of CMIP5 models to reproduce ENSO’s influ-
ence upon precipitation over the Americas and over
Africa (Langenbrunner and Neelin, 2013), Indian Basin
Ocean Mode (Tao et al., 2014), and upon early sum-
mer climate of North Pacific and East Asia (Hu et al.,
2014). These studies do not use spatial averaging and
are based, to a large degree, upon thousands of correla-
tion and regression coefficient estimates. Their results

concerning the quality of CMIP5 models are rather
indefinite.

The approach used in the current study is based
upon spatial averaging of observation data – global for
AGST and regional for SST3.4. This operation allows
one to avoid comparisons of sequences of multidimen-
sional random fields by reducing them to time series
that depend on just one argument – time (see Prival-
sky and Croley, 1992). Comparing time series with
each other is, of course, much simpler than comparing
time-dependent sequences of random fields. By chang-
ing the scale of spatial averaging, one can validate cli-
mate models presented with sets of time series obtained
by spatial averaging, thus getting quantitative statistical
information about the models’ capabilities at different
spatial scales.

Another advantage of the time series approach is the
ability to predict natural variations of climate on the
basis of the Kolmogorov-Wiener theory of extrapola-
tion; such results can be used to improve climate projec-
tions due to the known external forcing by taking into
account the probable future behavior of natural climate
variations.

In this article, we will study connections between

• the observed annual global surface temperature
(AGST) and the oceanic component of the ENSO
system – the sea surface temperature in the Niño
area 3.4 (SST3.4),

• time series of AGST and SST3.4 generated within the
framework of the CMIP5 historical experiment.

The results obtained for the observed time series
are compared with respective results for the simulated
data in order to determine to what extent the CMIP5
models can reproduce time and frequency domain
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features of the observed teleconnection between the
global temperature and the ENSO oceanic component.
Specifically, we are interested in the contribution of
SST3.4 to the annual global surface temperature as seen
from respective stochastic difference equations, spectra,
coherence functions, and coherent spectra both in nature
and in CMIP5 simulations.

2. Data and method

2.1. Data

The time series used here to study connections that exist
in the actual climate system contains two components:
AGST and SST3.4 from 1876 through 2005 (time series
length N = 130). Both data sets were obtained from
the file HadCRUT4 published at the University of East
Anglia web site (Morice et al., 2012).

The ENSO system contains two components: sea
surface temperature in western equatorial Pacific and
Southern Oscillation index (SOI), which are closely
correlated with each other: the cross correlation coeffi-
cient −0.83 and the coherence function over 0.9 (Prival-
sky and Muzylev, 2013). This means that they contain
much information about each other and therefore we
selected only one time series, namely, the annual values
of SST3.4, to analyze observations and compare results
of analysis with simulation results. The initial year for
the time series was selected having in mind that the
Australian sea level pressure data for the second ENSO
component – Southern Oscillation Index – is available
from 1876. Besides, the SST3.4 data contain over 50%
of missing observations within the time interval from
1850 through 1875. The observed time series are shown
in Figure 1, and the list of CMIP5 models used in this
study is given in Table 1.

The simulated data are taken from the ESGF portal
(see Taylor et al., 2012) and include time series of
AGST and SST3.4 obtained under the CMIP5 historical
experiment for the models listed in Table 1 (one run per
model, mostly run 1). All simulation data were masked
in accordance with respective observations. The linear
trend was always removed from all time series prior to
further analysis.

2.2. Method

The method of time series analysis used in this study
is based upon the parametric (autoregressive) model-
ing of multivariate time series in the time and fre-
quency domains. Let x1,n and x2,n be the time series
of AGST and SST3.4, respectively. The time series
xn = [x1,n, x2,n]′, n= 1, 2,… , N, where N = 130 and the
strike means matrix transposition, is regarded as a sam-
ple of a bivariate linearly regular (specifically, autore-
gressive) random process, that is,

xn =
p∑

j=1

𝚽jxn−j + an (1)

Figure 1. Time series of AGST (black) and SST3.4 (blue).

Table 1. CMIP5 models used in this work.

Model Model Model

ACCESS1.0 (1)a CSIRO-Mk3.6.0 (1) INM-CM4 (1)
ACCESS1.3 (3) CSIRO-Mk3L-1-2 (10) IPSL-CM5A-LR (6)
BCC-CSM1.1 (3) EC-EARTH IPSL-CM5A-MR (3)
BCC-CSM1.1(m) (3) FGOALS-g2 (10) IPSL-CM5B-LR (1)
BNU-ESM (1) FIO-ESM (5) MIROC5 (3)
CanESM2 (5) GFDL-CM2.1 (12) MIROC-ESM (3)
CCSM4 (6) GFDL-CM3 (1) MIROC-ESM-CHEM
CESM1(BGC) (1) GFDL-ESM2G (3) MPI-ESM-LR (3)
CESM1(CAM5) (3) GFDL-ESM2M (1) MPI-ESM-MR (3)
CESM1(FASTCHEM) (4) GISS-E2-H (1) MPI-ESM-P (2)
CESM1(WCCM) (3) GISS-E2-H-CC (17) MRI-CGCM3 (5)
CMCC-CESM (4) GISS-E2-R (1) MRI-ESM1 (1)
CMCC-CM (1) GISS-E2-R-CC (24) NorESM1-M (3)
CMCC-CMS (1) HadCM3 (10) NorESM1-ME (1)
CNRM-CM5 (1) HadGEM2-CC (3)
CNRM-CM5-2 (10) HadGEM2-ES (5)

aNumbers in parentheses show the number of model runs.

Here p is the order of autoregression,

𝚽j =

[
𝜙
(j)
11 𝜙

(j)
12

𝜙
(j)
21 𝜙

(j)
22

]
(2)

are matrix autoregressive (AR) coefficients, and
an = [a1,n, a2,n]′ is a (zero mean) bivariate white noise
(the innovation sequence) with a covariance matrix

Ra =
[

R11 R12
R21 R22

]
(3)

The quantities R11 and R22 are the variances and
R12 =R21 covariances, of the innovation sequence com-
ponents a1,n and a2,n. The autoregressive approach is
both feasible and appropriate in time series analysis,
especially in situations when the time series is short, as
in our case (e.g. Jaynes, 1982).

Estimates of the AR order p, matrix AR coefficients
𝚽j, j= 1, 2, … , p, and the white noise covariance
matrix Ra are required in order to describe properties
of the time series xn in time and frequency domains.
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The scalar time series AGST x1,n and SST3.4 x2,n are
regarded as the output and input, respectively, of a linear
system, which is described in the time domain with the
stochastic difference Equation (1). The matrices (2) and
(3) are estimated here by using the multivariate version
of the Levinson’s algorithm while the optimal order p of
autoregression is selected on the basis of four criteria:
Akaike’s AIC, Schwarz-Rissanen’s BIC, Parzen’s CAT,
and Hennan-Quinn’s Ψ (e.g. Box et al., 2008).

It can be easily shown that the spectral matrix s(f ) that
corresponds to Equation (1) is

s (f ) =
2 ||Ra

||Δt||||||I −
p∑

j=1

𝚽j exp (−i2𝜋jfΔt)
||||||
2
, 0 ≤ f ≤ 1∕2Δt,

(4)
where I is the identity 2× 2 matrix, ∣Ra∣ the determinant
of the matrix Ra, Δt the unit time step (one year in our
case), f the cyclic frequency (year−1), and i=

√
−1.

The elements of the spectral matrix

s (f ) =
[

s11 (f ) s12 (f )
s21 (f ) s22 (f )

]
(5)

are the spectral densities s11(f ) and s22(f ) of the output
x1,n (AGST) and the input x2,n (SST3.4), respec-
tively, while s12 (f ) = s21 (f ) are the complex-valued
cross-spectra (the bar means complex conjugation).
These quantities are used to calculate other func-
tions which describe the response of the output
component x1,n to the input x2,n in the frequency
domain. Here, we will use only the coherence function
Co12(f )= ||s12(f )||[s11(f )s22(f )]− 1/2 and the coher-
ent spectrum Cs12 (f ) = Co2

12 (f ) s11 (f ). The former
quantity can be regarded as a frequency-dependent
sequence of ‘correlation coefficients’ while the latter
one describes the part of the spectrum s11(f ) generated
due to the linear dependence of x1,n upon x2,n.

The approximate confidence intervals for these spec-
tral characteristics can be calculated in accordance with
the number of degrees of freedom 𝜈 for the spectral esti-
mates (e.g. Bendat and Piersol, 1971); for the autore-
gressive analysis of bivariate time series, 𝜈 can be set
equal, as a first approximation, to N/2p (Privalsky et al.,
1987).

3. Results and discussion

3.1. Time and frequency domain properties
of global surface temperature and sea surface
temperature in the Niño area 3.4 in nature

Note first that the use of the linear correlation coeffi-
cient as a measure of dependence between time series
is generally improper because the spectra of time
series components x1,n and x2,n are not necessarily
identically shaped and relations between them are
frequency-dependent. This has been known since long
ago both in theory of random processes (Gelfand and

Yaglom, 1957) and in Earth sciences (e.g. Thompson
and Emory, 2004), including, in particular, the influence
of ENSO upon the annual global surface temperature
(Privalsky and Jensen, 1995).

If one were to use the correlation approach to study
relations between the AGST and SST3.4, the results
would have been discouraging. The correlation coeffi-
cient between the two time series equals 0.35. All one
would be able to say is that the connection between
the two scalar time series might be statistically sig-
nificant but definitely very weak. Yet, such conclusion
would have been wrong because the proper tool for
this purpose in time series analysis is the coherence
function. Its estimation within the parametric approach
that is used here requires a time domain model of the
time series (Equation (1)) and subsequent calculation
of the spectral matrix (5). With an autoregressive time
domain model, the spectral estimates obtained from
AR(p) models (1) with a properly selected order p sat-
isfy the requirements of the maximum entropy method.

The optimal time domain representation for the
AGST – SST3.4 system has proven to be an AR model
of the form given with Equations (1)–(3) with the order
p= 2:

x1,t ≈ 0.55x1,t−1 + 0.05x2,t−1 + 0.26x1,t−2

−0.09x1,t−2 + a1,t (6)

x2,t ≈ 0.30x2,t−1 − 0.33x2,t−2 + a2,t

with the innovation covariance matrix

Ra =
[

0.0084 0.0202
0.0202 0.3350

]
. (7)

This model has been selected by three out of the four
order selection criteria used here (all but CAT).

The coefficients 𝜙
(1)
21 and 𝜙

(2)
21 are not shown in

Equation (6) because their estimates are statistically
insignificant. This means that the linear stochastic
difference Equation (6) connecting AGST with SST3.4
describes a system without a closed feedback loop:
SST3.4 affects AGST but is not affected by it explicitly.

Equation (6) can be used to extrapolate AGST beyond
2005 within the Kolmogorov-Wiener theory to obtain
the most probable trajectory of natural climate varia-
tions and construct respective confidence bounds. The
following three points should be mentioned here:

(a) according to Equation (7), the error variance of
extrapolation at a 1 year lead time is 0.0084 ∘C2

so that the respective 90% confidence interval is
±1.64

√
0.0084 ≈ ±0.15 ∘C2;

(b) in our case, the lead time at which the error variance
becomes close to the AGST variance (the limit of
statistical predictability of AGST) is 5–6 years;

(c) as the variance of AGST (after the linear trend is
removed) is 0.021 ∘C2, the 90% confidence bound at
lead times more than 5–6 years is ±1.64

√
0.021 ≈

±0.24 ∘C2.

In other words, the contribution of internal variabil-
ity of climate to its model-based projections is quite
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Figure 2. (a) Maximum entropy estimate of coherence between AGST and SST3.4 with approximate 90% confidence bounds
(dashed lines); the horizontal line shows the approximate upper 90% confidence limit for the true zero coherence. (b) Maximum
entropy estimates of the AGST spectrum (black), and the AGST-SST3.4 coherent spectrum (blue) with approximate 90% confidence
limits (dashed lines).

Figure 3. (a) Maximum entropy estimates of the AGST spectrum: observed, with 90% confidence limits (black), simulated (thin
lines), and average simulated (red). (b) Maximum entropy estimates of coherence function between AGST and SST3.4 in nature
(blue lines, with approximate 90% confidence limits) and in CMIP5 models (thin black lines).

significant (this results disagrees with Yip et al., 2011).
A detailed analysis of statistical predictability of the
internal variability of climate lies beyond the scope of
this short communication.

As seen from Figure 2(a), the coherence function
estimate between AGST and SST3.4 grows from
practically zero at low frequencies to a maximum of
0.80 at about 0.25 year−1 and then decreases to almost
zero at higher frequencies. In other words, the annual
global surface temperature is closely connected to the
sea surface temperature SST3.4 in the Niño area 3.4

but the connection is statistically significant only at
intermediate frequencies. Note that the frequency of
about 0.24 year−1 was found to be the eigen frequency
of the damped harmonic oscillator existing, accord-
ing to analysis of observations from 1876 through
2011, within the ENSO bivariate system (Privalsky
and Muzylev, 2013). According to Figure 2(a), the
coherence estimate is statistically significant between
0.13 year−1 and 0.37 year−1.The linear contribution
of SST3.4 to the spectrum of the global surface
temperature determined by the square of the coherence
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function amounts to 50–60% within the frequency
band from 0.18 year−1 to 0.33 year−1.

The absolute contribution of SST3.4 to the AGST
spectrum shown in Figure 2(b) is statistically signifi-
cant only within the frequency band from 0.15 year−1

to 0.35 year−1, that is, within the band where the coher-
ence function is high but the spectral density of AGST
is much lower than at frequencies below 0.1 year−1.
This explains why the correlation coefficient between
AGST and SST3.4 that ‘integrates’ the coherence func-
tion over the entire frequency band from 0 to 0.5 year−1

is low while the coherence function is high. Estimates
of the coherent spectrum at low frequencies are statisti-
cally insignificant.

3.2. Time and frequency domain properties
of global surface temperature and sea surface
temperature in the Niño area 3.4 in CMIP5 models

The second goal of this study is to establish whether the
CMIP5 models are capable of reproducing the AGST
spectrum and the relationship between the annual global
surface temperature and ENSO that exists in the actual
climate.

Note first that the optimal AR order of simulated bi-
variate time series was the same as for the observed
data (p= 2) in 32 cases, with 11 and 3 cases with
p= 1 and p= 3, respectively. The results of time domain
analysis were also satisfactory. Though the values of
AR coefficients for individual simulated data may differ
from respective results for the observed time series,
the major time domain conclusion still stands: the sea
surface temperature affects the global temperature but
is not explicitly affected by it (29 cases against 17).

Within the frequency domain, the estimates of
the AGST spectrum obtained from simulated data
(Figure 3(a)) show some sample variability but on the
whole they reproduce the spectrum of the observed
AGST time series quite correctly. The maximum
entropy estimates of coherence between simulated time
series of AGST and SST3.4 are shown in Figure 3(b).
Obviously, most models are capable of reproducing the
behavior of the coherence function that exists in nature
at the intermediate frequency band. (Unsatisfactory
estimates of coherence are given by 11 models.)

The average coherence in simulated data is close to
0.68 at 0.25 year−1. This is an achievement: though the
close connection occurs at frequencies where the spec-
tral density of AGST is low, most models discover it.

At the same time, the simulated data reveal a dis-
agreement with nature: most coherence estimates stay
statistically significant and keep growing at frequencies
below 0.10 year−1; the resulting average ‘simulated’
coherence (thick black line) differs quite considerably
from zero at lower frequencies where the ‘observed’
coherence is small.

According to Figure 4, the simulated SST3.4 varia-
tions more or less correctly describe the role of SST3.4
at frequencies above 0.1 year−1 but at lower frequen-
cies simulated data is responsible for 30–50% of the

Figure 4. Maximum entropy estimates of SST3.4 spectrum
(black lines) and coherent spectrum Cs12(f ) AGST-SST3.4 in
nature (blue lines), with approximate 90% confidence limits, and
the average spectrum and coherent spectrum AGST-SST3.4 in
CMIP5 models (red line and red line with symbols).

global temperature spectrum. As the spectral density
of AGST at low frequencies is high, this disagreement
with observation data means that SST3.4’s contribution
to the AGST spectrum is higher than it follows from
analysis of observations. In other words, the models fail
to describe the low-frequency relation between SST3.4
and the global surface temperature that exists in nature.

4. Conclusions

1. The observed bivariate time series ‘global sur-
face temperature (AGST)−ENSO’s oceanic com-
ponent (sea surface temperature SST3.4)’ presents
a linear system with no feedback loop: SST3.4
affects AGST but not vice versa. The simulated
time series have the same property in 29 out of the
46 cases. (Note, however, that SST3.4 is affected by
AGST indirectly, through the innovation sequence.)

2. The behavior of the annual global surface tem-
perature within the frequency band from about
0.13 year−1 to 0.37 year−1 is strongly affected by
the behavior of ENSO’s oceanic component in the
same band, with 50–60% of the spectral energy of
AGST variations at 0.18–0.33 year−1 determined by
linear contribution from SST3.4. However, the over-
all effect of ENSO upon the global temperature is
relatively minor because the spectral density of the
global surface temperature at those frequencies is
small.

3. Time series of AGST generated with CMIP5 models
have spectra that usually do not differ significantly
from the spectrum of the observed AGST.

4. Most CMIP5 models (35 of the 46) reproduce
the general behavior of the coherence function
between the observed time series of annual surface
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temperature and the oceanic component of ENSO at
frequencies higher than 0.15 year−1.

5. At lower frequencies, most estimates of the coher-
ence function between simulated time series grow as
frequency diminishes; this disagrees with the behav-
ior of the coherence function estimated on the basis
of observation data.

6. According to the simulations, the sea surface tem-
perature in the Niño area 3.4 contributes more
energy to the annual global surface temperature at
low frequencies than is observed in nature. The rel-
ative values of this spurious contribution amount to
30–50% of the AGST’s spectral density at frequen-
cies below 0.1 year−1.

On the whole, the ability of most CMIP5 models
to detect such a unique and delicate phenomenon in
the Earth’s climate as a no-feedback-loop connection
between the annual global surface temperature and the
oceanic component of the El Niño-Southern Oscillation
system at intermediate frequencies should be regarded
as an achievement. However, the dependence between
simulated global temperature and sea surface tempera-
ture in the Niño area 3.4 at low frequencies is not found
in nature.
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