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Abstract

Climate model projections have major environmental, social and economic ramifi-
cations, and, if taken seriously, could contribute to saving millions of species and
lives, or causing losses of billions of dollars. With so much at stake, it is vital that
these projections are as accurate as possible. Recent research has indicated that
the properties of the climate model ensembles used to make these projections are
not optimal. One of the major goals of the climate modelling community for the
foreseeable future must be to resolve these problems. We must better understand
what properties optimal ensembles need to have, and develop tools for analysing
these properties. We must understand the effect that different ensemble genera-
tion approaches have on these properties, and the effect that different weighting
methodologies have on ensemble projections. We must then use this knowledge to
help direct the creation of model ensembles, either by optimally combining existing
model simulations, or by actually designing ensembles with the properties we need.
This is a process that will take years at best, and can not be encompassed in a single
thesis. This thesis aims to be a stepping stone in this process.

We use a low-resolution general circulation model (GCM) to generate three
ensembles using different perturbation techniques: initial conditions perturbations,
physical parameter perturbations, and structural perturbations (representing a
multi-model ensemble). We compare the three ensembles using simple averaging,
performance based weighting, and dependence weighting to look at both ensemble
mean and spread. We find that the different techniques produce very different
ensembles. Initial conditions perturbations produce ensembles that are too nar-
row relative to variability in the observations, while perturbed parameters and
structural ensembles apparently exhibit too much spread. We then use the same
procedures to compare projections generated by the same ensembles. Projections
using unweighted averaging are likewise too narrow for initial conditions ensembles,
and too broad for structural ensembles. Performance weighting is shown to improve
the mean estimate, but may actually degrade the estimate of variance. We show
that Bishop and Abramowitz’s (2012) independence transformation can improve
ensemble mean and variance projections.

iii



iv



Acknowledgments

My thanks go first to Gab Abramowitz, who, despite having a fairly tumultuous
year, was the best supervisor a person could hope for, and an amazing editor.
To Andy Pitman, for acting as supervisor while Gab wasn’t available and making
sure I knew what happened to students who strayed from the path, as well as for
being an excellent editor. To Steve Phipps, for being incredibly patient and helpful,
and cutting months off the time I would have otherwise needed to get my models
running1. Thanks to Anni and Dad and Ollie for being supportive and for all the
editing and comments. And to Mum, for editing my thesis twice, and asking hard
questions.

Software used for this project and thesis included Mk3L Climate System Model
(Mk3L), the R statistical language, and ggplot2, LATEX and Vim. All code used
for model setup, data manipulation, and data analysis was stored in private Git
repositories on BitBucket.org. The LATEX code for this document was stored in a
similar fashion. The model runs were conducted on the University of New South
Wales (UNSW) Mathematics Department’s “Tensor” computing cluster. All data
was stored on the Climate Change Research Centre (CCRC)’s shared data facilities.

I would like to thank the ARC Centre of Excellence for Climate Systems Sci-
ence for providing a generous scholarship, without which this year would have been
much more difficult. And thanks to all the excellent crew at the UNSW Climate
Change Research Centre, for excellent discussions, feedback, support, and for being
so welcoming!

1Mum, these are the people who I’m referring to as “We” in the thesis

v



Contents

Declarations ii

Abstract iii

Acknowledgements v

Contents vi

List of Figures viii

List of Tables viii

1 Introduction 1

1.1 Modelling the climate system . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 How do we make use of multiple models? . . . . . . . . . . . . . 2

1.2 Paradigms for interpreting model ensembles . . . . . . . . . . . . . . . 4
1.2.1 Truth plus error paradigm . . . . . . . . . . . . . . . . . . . . . 4
1.2.2 Indistinguishable paradigm . . . . . . . . . . . . . . . . . . . . . 4
1.2.3 Replicate earth paradigm . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Methods of model combination . . . . . . . . . . . . . . . . . . . . . . 6
1.3.1 Unweighted averaging . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.2 Performance weighting . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Dealing with model dependence . . . . . . . . . . . . . . . . . . . . . 9
1.4.1 Types of dependence . . . . . . . . . . . . . . . . . . . . . . . . 10
1.4.2 Independence weighting . . . . . . . . . . . . . . . . . . . . . . . 11

1.5 The problem: how best to generate ensembles? . . . . . . . . . . . . . 12
1.5.1 Initial conditions ensembles . . . . . . . . . . . . . . . . . . . . . 12
1.5.2 Perturbed physical parameter ensembles . . . . . . . . . . . . . 12
1.5.3 Perturbed physical structure ensembles . . . . . . . . . . . . . . 13
1.5.4 Ensembles of opportunity . . . . . . . . . . . . . . . . . . . . . . 13

1.6 Aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2 Experimental Methodology 17

vi



CONTENTS vii

2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Observational Data sources . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Model data generation . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.1 Basic Model Set-up . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.2 Initial Conditions Group . . . . . . . . . . . . . . . . . . . . . . 20
2.3.3 Perturbed Parameters Group . . . . . . . . . . . . . . . . . . . . 20
2.3.4 Perturbed Structure Group . . . . . . . . . . . . . . . . . . . . . 21
2.3.5 Sampling strategy . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.3.6 Bias correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.4.1 Bishop and Abramowitz’s methodology . . . . . . . . . . . . . . 25
2.4.2 Other analysis tools . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 Results 29

3.1 Scope of model output . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Properties of the three ensembles . . . . . . . . . . . . . . . . . . . . . 29
3.2.1 Model ensemble spread . . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Pair-wise error correlation . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 Weighting for climate projections . . . . . . . . . . . . . . . . . . . . . 37
3.4.1 Performance of the projection mean . . . . . . . . . . . . . . . . 38
3.4.2 Performance of the projection variance . . . . . . . . . . . . . . 39

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4 Discussion and Conclusions 43

4.1 Properties of the ensembles . . . . . . . . . . . . . . . . . . . . . . . . 43
4.1.1 Are the ensembles representative of the climate probability density

function (CPDF)? . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.1.2 Can these results be generalised? . . . . . . . . . . . . . . . . . . 44
4.1.3 Ramifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 Impacts of weighting methodologies . . . . . . . . . . . . . . . . . . . 45
4.2.1 Problems with performance weighting . . . . . . . . . . . . . . . 46
4.2.2 Effect of the CPDF mean estimate on independence-transformed

projections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2.3 Comparison of paradigms . . . . . . . . . . . . . . . . . . . . . . 47

4.3 Tools used, and potential new directions . . . . . . . . . . . . . . . . . 48
4.3.1 Rank Histograms . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3.2 QQ-plots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3.3 Error correlation histograms . . . . . . . . . . . . . . . . . . . . 49
4.3.4 Comparison of observations to ensemble spread . . . . . . . . . . 49



4.4 Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . 50

Abbreviations 53

Bibliography 55

List of Figures

1.1 CIMP3 model ensemble . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Conceptual diagram of model weighting . . . . . . . . . . . . . . . . 9
1.3 Model conceptualisation . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 HadCRUT3 data availability 1971-2010 . . . . . . . . . . . . . . . . 18
2.2 CO2 and TSI values for the simulation period . . . . . . . . . . . . 19
2.3 Parameter sampling values . . . . . . . . . . . . . . . . . . . . . . . 24

3.1 Global mean temperatures of model runs . . . . . . . . . . . . . . . 31
3.2 Global mean temperatures of bias corrected model runs . . . . . . . 33
3.3 Rank histograms (global) . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4 Rank histograms (per-cell) . . . . . . . . . . . . . . . . . . . . . . . 35
3.5 QQ-plots of observations vs models . . . . . . . . . . . . . . . . . . 36
3.6 Density of pair-wise error correlations between runs . . . . . . . . . 36
3.7 Projections from different ensembles under different weightings . . . 38

List of Tables

3.1 Raw run statistics per ensemble. . . . . . . . . . . . . . . . . . . . . 30
3.2 Statistics for bias corrected data per ensemble . . . . . . . . . . . . 32
3.3 Performance of ensemble means . . . . . . . . . . . . . . . . . . . . 34
3.4 Performance of projection means . . . . . . . . . . . . . . . . . . . 39
3.5 Percentage of observations falling within projected variance . . . . . 40

viii



Chapter 1

Introduction

1.1 Modelling the climate system

To predict the effects of global warming, we must understand the Earth’s climate
and how it changes. The chaotic nature of the Earth’s climate makes prediction
difficult (Giorgi, 2005). While many of the mechanisms of the climate system are
reasonably simple, their effects can interact in complex ways, making the task of
understanding the whole system a demanding one. Because of this complexity scien-
tists create numerical models of the Earth’s climate. Such models, beginning with
simple energy balance models, have evolved over the last few decades to become
highly complex and much more comprehensive. Climate models attempt to repli-
cate the processes of the planet’s climatic systems (for example thermodynamics,
fluid dynamics, ecosystem processes) in a way that allows us to experiment with
the parameters of the system, and draw conclusions about how different forcings
create different behaviours. Modern general circulation models (GCMs) couple at-
mospheric models with cloud dynamics, eddy-resolving ocean models (Maltrud and
McClean, 2005), land surface models, and biochemical models (Pitman, 2003).

However, even the most high powered modern supercomputers have limited
power to process these models. GCMs must be run on quite coarse spatial and
temporal scales – the most advanced models use grids on the order of hundreds of
kilometers, and time steps of a few minutes (eg. the HadGEM3 model, Met Of-
fice, 2010). This is problematic, because the physical processes contributing to the
climate occur on much smaller scales: land surface change occurs on the order of
meters, while atmospheric turbulence, cloud physics, and biochemistry occur on mi-
croscopic scales (Sellers and Trenberth, 1992). Numerical models of the climate must
therefore approximate or parameterise processes to work on larger scales. Because
we are no longer dealing with the physics directly, but with a statistical represen-
tation of the physics, it is conceivable that multiple different models could provide
appropriate approximations.

Climate modelling is a unique field in that there is only one realisation of a
partially chaotic system, with no true replicates, and we are attempting to match

1



2 CHAPTER 1. INTRODUCTION

our models to that realisation. This makes it hard to draw inferences about the true
distribution of potential climate states at any one time, just as if you only had one
person’s height as data, you would have difficulty drawing any sensible conclusions
about the height of human beings in general. One possible solution to this problem
is to create lots of models of the Earth, and use them together in an ensemble to
draw information and projections about the climate.

1.1.1 How do we make use of multiple models?

A climate model ensemble is a set of climate models, run over the same period
and region, used to draw inferences about the present or future climate. One of
the most utilised and discussed examples of the climate model ensemble is World
Climate Research Programme (WCRP) Coupled Model Intercomparison Project
Phase 3 (CMIP3) 20th Century ensemble (Meehl et al., 2007), which formed the
basis for the projections used in the Intergovernmental Panel on Climate Change
(IPCC) 4th Assesment Report (AR4). This ensemble contains model runs submitted
by various institutions that cover the entire globe, and run mostly over the time
period 1850-2000 (see Figure 1.1).

Models
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Figure 1.1: CMIP3 model ensemble, after Hegerl et al. (2007). Models are shown
in green, the multi-model mean in red, and the observations in black. An arbitrary
single model is shown in blue to highlight the differences between variability seen in
the model runs and observations and in the multi model mean.

When attempting to predict the future based on models, we have two main
possibilities: choose the best model (based on our assumptions), or somehow take



1.1. MODELLING THE CLIMATE SYSTEM 3

information from an ensemble of models and combine it into a single estimate. In
some fields – especially those relying on empirical statistical models instead of nu-
merical models for time series projection – the emphasis has been on model selection
rather than model combination. Model selection generally works best when selec-
tion is stable. That is, when there are very small changes in the system being
modelled, model selection does not change, or only changes slightly (Zou and Yang,
2004). The possibility of choosing the best model is most useful for producing a
single prediction, but selection does not allow for uncertainty estimates as readily
as combination does.

While there may be some value in climate model selection on the basis of theo-
retical grounds, a single model will still produce significant variability due to slight
variations in initial conditions, or parameter values. Selection of a single climate
model run is not viable: initial conditions can never be known to a high enough
degree of accuracy, significant uncertainty exists in the values of various physical
parameters, and grid and time-scale limitations mean that a single run will never
adequately represent the true climate. In these situations, model selection becomes
highly unstable, and combination becomes more suitable (Zou and Yang, 2004). In
contrast, combination potentially allows us to explore the range of uncertainty in
the system, and present a probabilistic best estimate. Tebaldi and Knutti (2007)
argue that a “variety of applications, not only limited to the weather and climate
prediction problems, have demonstrated that combining models generally increases
the skill, reliability and consistency of model forecasts”.

It should be noted, however, that even when using model combination, “de-facto
model selection” still occurs: older versions of models and outliers (models that
perform oddly, or show extreme changes) are often discarded (Knutti et al., 2010b).
There are problems with both procedures. Knutti et al. (2010b) note that “If we
indeed do not clearly know how to evaluate and select models for improving the
reliability of projections, then discarding older results out of hand is a questionable
practice”. The question of how to deal with outliers is far broader, and is applicable
to most science. Chatfield (2004) states that “The ‘outlier’ may be a perfectly
valid but extreme observation which may for example indicate that the data are
not normally distributed.” It is possible that the distribution of possible climate
states is highly non-normal, and assuming normality could cause estimates based
on selected models to be overly optimistic (Tebaldi and Knutti, 2007). If we take
into consideration the political pressure surrounding climate science, it is clear that
decisions relating to model selection should not be taken lightly.

Once we have a selection of appropriate models – an ensemble – we must find
some way of combining the information it contains. How we do this depends on our
assumptions about the relationship between models and observations.
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1.2 Paradigms for interpreting model ensembles
The question of how to interpret a climate model ensemble remains an area of active
research. There are a number of different existing paradigms.

1.2.1 Truth plus error paradigm

This paradigm assumes “that the climate system and all the processes that affect
it are entirely (i.e. deterministically) predictable from climate forcing variables”
(Bishop and Abramowitz, 2012). Under this paradigm, we implicitly see model runs
from non-perfect climate models as centred around the observations, with pseudo-
random noise that represents flaws in the model, computational inadequacy, or
initial condition uncertainty. This paradigm has been called the “truth-centred
paradigm” (Annan and Hargreaves, 2010), or the “truth-plus-error” conception of
modelling (Knutti et al., 2010b). This is the prevailing approach to interpreting
model ensembles (Annan and Hargreaves, 2010).

The assumption of random distribution of error noise in the truth-plus-error
paradigm leads to the conclusion that, as an ensemble increases in size, the mean of
the sample should converge toward the observations, and uncertainty will converge
to zero as model errors are averaged out. Unfortunately, if we accept this paradigm
as reliable, we should immediately be worried about the state of current climate
models. If we examine Figure 1.1, we see that while the models do a reasonably good
job in many respects, there is significant difference between the multi-model mean
(red), and the observations. In particular, there are long periods where the multi-
model mean and the observations are quite distant, and, except where there are
strong volcanic forcings, the multi-model mean exhibits significantly less variability
than the observations.

This begs the question of whether the climate is purely deterministic or exhibits
chaotic behaviour. If we could re-run the Earth given the exact conditions from
some date in the past – with some arbitrarily small change – should we expect that
the historical patterns of climate and weather to be exactly the same?

1.2.2 Indistinguishable paradigm

Annan and Hargreaves (2010) provide the first paper to explicitly refute and provide
and alternative to the truth plus error paradigm. They assert that models and
observations should be treated the same, that is, as if they were indistinguishable
random draws from an underlying probability distribution. They term this the
“statistically indistinguishable paradigm”.

The indistinguishable paradigm addresses the assumption of convergence to the
mean: because the observations act like a model, and contain a certain amount of
error, as the model ensemble size increases the ensemble mean should not converge
to the observations, but to a statistical centre of the distribution, and uncertainty
will converge to a value relative to the width of the distribution. The multi-model
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mean does not have the same attributes as a true Earth-like climate, because the
combination process flattens out extremes. In particular, Gleckler et al. (2008)
show that the multi-model mean has smaller errors, and that the variance of the
mean is lower, than individual models. The multi-model mean does not represent
a potentially real climate. This paradigm anticipates that the mean of an ensemble
will have much lower variance than the observations (as is observed in Figure 1.1),
as the observations can be expected to contain some error relative to the underlying
distribution. The meaning of variability in ensembles is not explicitly described in
Annan and Hargreaves (2010), but is assigned in a later blog post to “collective
uncertainties about how best to represent the climate system” (Annan, 2010).

1.2.3 Replicate earth paradigm

Bishop and Abramowitz (2012) expand on this idea with their “replicate earth
paradigm”, arguing that it is not safe to assume, as the indistinguishable paradigm
does, that models represent independent draws from the underlying distribution.
They argue that if we assume that the Earth’s climate is, to some extent, chaotic,
and that no two Earth-runs are likely to be the same, then we must view the true
Earth observations as a sample picked from a climate probability density function
(CPDF). Under the replicate earth paradigm, variability in the CPDF is assigned
to the chaotic component of the climate system, while the CPDF mean represents
the deterministic component. The CPDF mean is much smoother than the obser-
vations (in the same way that the multi-model mean is smoother than the models
in an ensemble), and has an instantaneous variance that is close to the variance of
the observations around the CPDF mean, over time. If we re-ran the Earth from
some point in the past, assuming the same boundary conditions, the new “replicate
earth” would also be drawn from this distribution.

However, there is no guarantee that climate models adequately represent true
replicate earths:

“Climate models can be viewed as imperfect attempts to create replicate
earths. We suggest that a perfectly independent model’s predictions
should be a random draw from the time-evolving CPDF. In this case,
the mean of an ensemble of perfect models is simply an approximation
of the mean of the CPDF. Since the real Earth itself is also a random
draw from the CPDF, we should not expect observations of it to match
this mean, but rather be equivalent to a perfect model. (Bishop and
Abramowitz, 2012)

Bishop and Abramowitz (2012) set out two key properties that a model ensem-
ble must meet before it can considered an adequately representative sample of the
CPDF:

1. “The equally weighted mean of an ensemble of replicate earths is
the linear combination of replicate earths that minimizes the dis-
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tance from our Earth’s observations.” This implies that the models
representing replicate earths must be independent.

2. “The time average of the instantaneous CPDF variance should be
approximately equal to the variance of the real Earth about the
CPDF mean over time.” This essentially states that the variance
of replicate earth-like models must have a variance about the CPDF
mean similar to that of the observations.

Bishop and Abramowitz (2012) show that the CMIP3 ensemble does not fit these
criteria, and cannot be considered as an ensemble of true replicate earths. They
present a transformation methodology (described in Section 2.4.1) that brings an
ensemble of poorly performing models closer to approximating these criteria.

1.3 Methods of model combination
How then do we best take information from multiple models and combine it into a
single projection? Significant challenges face those wishing to decide on methods of
interpreting ensembles. “Among these challenges are that the number of models in
these ensembles is usually small, their distribution in the model or parameter space
is unclear, and that extreme behaviour is often not sampled” (Knutti et al., 2010a).
Even when we can overcome these problems, we also need to take into account the
fact that different models perform differently, and that ensembles do not always
behave like replicate earth ensembles.

1.3.1 Unweighted averaging

The simplest, most intuitive way is to take the arithmetic mean of the model outputs.
This methodology has been a commonly used in the past, for example in the IPCC’s
AR4 (Solomon et al., 2007). The method has a number of advantages: It is a simple
computation, and it provides a mean (although not necessarily the best performing
mean, see discussion of model dependence below), as well as estimates of uncertainty
(e.g. a confidence interval). However, for this process to be valid, two assumptions
must be met:

• That the underlying distribution is symmetrically centred about the true cli-
mate (e.g. a normal distribution), and

• That the ensemble distribution is representative of that underlying distribu-
tion (i.e. randomly drawn with no bias).

1.3.1.1 Assumption of underlying symmetrical distribution

It is not clear that this assumption is valid. Firstly, it is not known, and possibly
can not be known, whether a true climatological distribution exists. We have only a
single realisation of the Earth’s climate, which can give no indication of the breadth
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of an underlying distribution (or the total lack of breadth, if the climate is purely
deterministic). Bishop and Abramowitz (2012) argue that there is no evidence
indicating that it is better to assume an entirely deterministic system.

If we assume that there is a chaotic component, the next question is whether
the Earth’s CPDF is reliably symmetrically distributed at any point in time. If
the distribution is significantly skewed, the mean and variance will provide a biased
estimate of the distribution. Since we have only one sample, there is no way to
determine whether this distribution is skewed or not. If higher moments of the
distribution are also non-normal, we should also expect variance estimates to be
wrong. Whether current models appropriately represent this distribution is hard to
verify or falsify (Masson and Knutti, 2011).

1.3.1.2 Assumption of a representative sample

The assumption that an ensemble is a representative sample of the underlying dis-
tribution is only true if the models in the ensemble are independent. Under the
truth-plus-error paradigm, independence is required for the model ensemble average
to converge to the true climate (Tebaldi and Knutti, 2007). Under the indistinguish-
able paradigm and the replicate earth paradigm, independence is required for the
ensemble to accurately approximate the CPDF. If the models in the ensemble are
not independent, i.e. they are not truly randomly sampled from the CPDF, then
the ensemble mean will not converge to the true climate (under the truth-plus-error
paradigm), or to the CPDF mean (under the replicate earth paradigm).

Annan and Hargreaves’s indistinguishable paradigm assumes that the CMIP3
models are relatively independent. Bishop and Abramowitz (2012) show that this
is not the case, and strengthen the requirements of this convergence, by showing
that for the ensembles to converge to the true CPDF, the models must be “replicate
earths” – maximally independent models with statistically similar properties to the
observations.

Unfortunately, in large multi-group modelling ensembles, such as the CMIP3
ensembles, the assumption of model independence is unlikely to be met:

For the most recent coordinated modelling effort archived at Project
for Climate Model Diagnosis and Intercomparison (PCMDI) [CMIP3,
2005], several groups submitted more than one model or model version,
e.g. one model was run at two different resolutions but the same physics;
one ocean was coupled to two different atmospheres. In those cases, the
models are clearly not independent, and their biases against observations
are probably highly correlated. Sharing components and knowledge is
not bad a priori, but it will result in persistent biases in a multi-model
mean, whether weighted or not. (Tebaldi and Knutti, 2007)

This is likely to become even more of a problem in Coupled Model Intercomparison
Project Phase 5 (CMIP5), as some modelling groups submit hundreds of runs, while
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others submit only a handful (Taylor et al., 2012). A method allowing us to deal with
model dependence is urgently required, and is discussed further in Section 1.4.2.

1.3.2 Performance weighting

Some models perform better than others. This may be due to, for example, more
accurate algorithms and parametrisations; higher resolution, capturing more com-
plexity; or the inclusion of more physical components. It makes intuitive sense to
treat the output of such models with higher regard. We can adjust our predictions
by calculating the performance of each model, and weighting better performing
models more heavily.

Performance (or skill) is generally calculated by some measure of distance be-
tween a model run and observations. The difference from observations can be calcu-
lated in any number of ways, depending on the purpose of the experiment. Common
measures include root mean square error (RMSE), and covariance. These measures
may be calculated for any number of variables, regions, or time-spans. Specific
cost-functions used in this thesis are discussed in Section 2.4.

One way of dealing with performance differences is to remove from an ensemble
models that are below a specified performance threshold. This is a form of au-
tomated ensemble selection. Such a removal process can also be used to select a
subset of an ensemble for other practical reasons, such as computational limitations
for further processing. The use of performance measures can help to remove some
of the subjectivity from the decision to remove outliers, although subjectivity is still
required when deciding on a threshold.

Another way of dealing with the problem of model performance differences is to
weight the multi-model average based on performance. Tebaldi and Knutti (2007)
advocate this, arguing that “models with small bias and projections that agree with
the ensemble ‘consensus’ should be rewarded while models that perform poorly
in replicating observed climate and that appear as outliers should be discounted.”
A weighted average can be quite flexible, in that performance differences can be
mapped to large differences in weights (giving precedence to well-performing mod-
els), or to smaller differences (allowing the less well performing models to still impact
the results). This has the benefit of taking some information from all models, while
reducing the susceptibility of the mean to outlier-introduced bias.

Weigel et al. (2010) show that performance-weighting-based projections can re-
sult in significantly improved accuracy. However, they also show that if the perfor-
mance weighting is not related to the underlying uncertainty, performance weighting
can have a detrimental impact on projection accuracy.

Macadam et al. (2010) raise a critical question: “is the skill of an [coupled
atmosphere-ocean general circulation model (AOGCM)] in the past a useful guide
to the skill of the AOGCM in the future?”. Reifen and Toumi (2009) show that
performance ranking based on temperature anomalies is inconsistent over different
in-sample periods (different decades of the 20th century), suggesting that perfor-
mance over out-of-sample periods (i.e. projections) would similarly be inconsistent.
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Even if these problems are resolved, a key problem remains: dependence be-
tween models is not addressed by performance weighting. By reducing the impact
of unusual model runs, performance weighting may actually increase inter-model
dependence in an ensemble. We can imagine a small ensemble, where some models
perform better than others, and some pairs of models are more dependent other
pairs: in some situations it may make sense to weight based on performance, in
others based on independence (see Figure 1.2). There is a trade-off to be made here
in most cases, but before we can understand that trade-off, we must find ways of
dealing with dependence.

Model space Model space

Observations
Models
Mean
Performance mean
Independence mean

1 4

3

2

1 4

3

2

Figure 1.2: Conceptual diagram of two potential cases where performance weighting
must be traded-off against independence weighting, after Abramowitz (2010). In some
instances, dependence can skew an ensemble – in the left example, down weighting
models 1 and 4 might be beneficial. In other cases, performance weighting is more
important – models 1 and 4 are simply more accurate in the right diagram.

1.4 Dealing with model dependence
“Despite the ever-recurrent comment about the need of accounting for
model dependence, no formal approach at quantifying this dependence
has been worked out yet. A distance in model space is definitely a difficult
concept to formalize.” Tebaldi and Knutti (2007)

Independence is a difficult concept, but may be loosely defined as the ability for
new data to add new information to a dataset. Adding more dependent data to a
data set makes it more difficult to generalise about the data, since assumptions of
data distribution (e.g. normality) are broken.

A simple one dimensional example is instructive. Imagine you are measuring
the height of children of a given age bracket, using a single school class as your
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sample. This class happens to contain a set of identical twins, who are more or
less exactly the same height. These two individuals are dependent data points, in
so far as measuring one twin gives you the information about the second twin, and
measuring the second twin adds no new data to your data set. If these twins are of
average height, then you may not have any problems. But if they are exceptionally
short or tall, they may bias your average. Even if their heights are not extreme,
the dependence between data points may affect the data set variability, or higher
moments1.

A mathematical analogy is also useful. We can think of models as a vector
in model information vector space, where different orthogonal dimensions represent
different types of information. If we represent a new model vector as a combination
of information taken from other model vectors already in the ensemble, then this
model introduces no new information (i.e. no new dimensions that are not already
represented in the information space). Indeed, if we want the distribution of in-
formation in the information space to be distributed in a similar way to the true
climate system, adding a highly dependent model may simply skew our dataset, by
shifting the centre of our information set (the same way the twins might shift the
mean of the height data set).

Masson and Knutti (2011) define dependence in the context of climate model
ensembles thus: an additional model is dependent “if it provides little insight into
why and how models differ from each other in the existing ensemble, and from
observations.” That is, if a new, dependent model run is added to an ensemble,
then it adds little or no new information to the ensemble, and probably skews the
data. The obvious question here is, can’t some information be more important than
other information? If the sample is producing a skewed probability density function
(PDF), how do we know that this is not representative of the underlying CPDF? It
is possible that this question is ultimately an unanswerable one.

1.4.1 Types of dependence

Dependence between climate models is not particularly well defined. Any number
of components of the modelling process can be considered for dependence. Since
a model is, in effect, a complex input-process-output (IPO) model, there are three
major groups of dependence: Input dependence, process dependence, and output
dependence (see Figure 1.3).

• Input dependence refers to dependence in the input data (e.g. initial conditions,
boundary conditions, forcings) for the models.

1These data-points are not entirely dependent, as the twins may have had different environ-
mental conditions during their growth (e.g. different nutritional input). Likewise, the heights of
all other children in the class are not entirely independent, as they have probably grown up in
a similar environment, and culture to each other (so the height result might only be applicable
within a local context).
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MODEL

Parameters

Inputs

States

Outputs

NOT a real number space: 
How do we define uncertainty in this 

space?

Real number spaces: We 
may be able to quantify and 

propagate these uncertainties into 
the (real number) output space.

Figure 1.3: Model conceptualisation after Abramowitz (2010)

• Process dependence refers to the dependence between numerical representa-
tions of physical processes in models, including equations, parameterisations,
and time step length and grid scale.

• Output dependence refers to statistical similarities between the patterns ob-
served in model outputs.

Both input and output dependence are real-valued spaces, and can, at least
to some extent, be compared objectively. Process dependence is decidedly not a
real-valued space: how can one accurately measure the distribution of uncertainty
between different modelling approaches? Should one attempt to quantify support
for various approaches among the scientific community? Even if that were possible,
should we expect the distribution of beliefs in the scientific community to usefully
represent reality?

Although process dependence may be impossible to quantify, in the real world
the structures of the models are usually somewhat dependent. Indeed, Masson and
Knutti (2011) showed that there exists a “genealogy” of climate models: “Strong
similarities are seen between models developed at the same institution, between
models sharing versions of the same atmospheric component, and between successive
versions of the same model.”

Even more difficult to elucidate is the relationship between input, process, and
output dependence. Mappings between the spaces may be possible, but due to the
complexity and non-linearity of the models, such mappings are unlikely to be simple.
As we are primarily interested in obtaining reliable projections from ensembles, we
focus solely on output dependence in this thesis, and leave the investigation of the
links between dependence types for later.

1.4.2 Independence weighting

Bishop and Abramowitz (2012) introduce the first methodology for explicitly weight-
ing model runs in an ensemble based on model dependence, by considering error
dependence with reference to an observations data set. Under the truth-plus-error
paradigm, the expected value of the correlation between model errors time series
is zero, as the “truth” component has been removed: the correlation is between
two series made entirely of noise. Under the indistinguishable and replicate earth
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paradigms, model errors should actually be considered a linear combination of two
time-series (model minus observations), and so expected correlation will be positive
(Bishop and Abramowitz, 2012).

The algorithm Bishop and Abramowitz (2012) have developed uses error covari-
ance as a measure of difference. This has the benefit that the error covariance of
one model run with itself acts as a measure of performance (i.e. the variance in the
error), allowing performance and independence weighting to be traded off against
each other. We discuss this approach in more detail in Section 2.4.1)

1.5 The problem: how best to generate ensembles?

Climate modelling is a computationally intensive task, requiring scarce and costly
resources to run even relatively small ensembles. How can we maximise the infor-
mation we get out of our models, while minimising computational resource usage?
Which ensemble generation methods provide the best performing, and most inde-
pendent ensembles? There are three main ensemble generation techniques we will
consider.

1.5.1 Initial conditions ensembles

Initial conditions ensembles (ICEs) consist of model runs from a single model with
fixed structure and parameterisations, but use variations in the initial state of some
or all model variables. These variations are usually constrained by the climatology
of the starting period. Initial conditions ensembles are generally used to explore the
internal variability of a model, which may be assumed to represent the variability
of the Earth’s climate, or uncertainty in true values of the system at the start of
the model run. ICEs are often small, 3-5 member ensembles, and are commonly
used for assessing the variability under certain conditions (Allen and Ingram, 2002).
Some of the submissions to the CMIP3 ensembles are ICEs themselves.

Because of the partially chaotic nature of most numerical models, “For time
horizons of several decades and longer, any detailed memory of the initial conditions
has probably been virtually lost, so that the simulated climate statistics during a
given period may be anywhere within the probability distribution determined by the
external forcing and the model’s internal variability” (Räisänen and Palmer, 2001).

1.5.2 Perturbed physical parameter ensembles

If we are to model the Earth’s climate, we must provide appropriate parameters
for model equations. Some parameters are directly measurable, and may be coded
directly into a model. Others, especially those that form part of heavily approx-
imated equations, must be estimated. For example, the diffusion of heat through
the oceans may be approximated as a single global parameter value, or different val-
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ues for different regions. This parameter may be used in different ways in different
models.

Perturbed physical parameters ensembles (PPEs) are sets of simulations from a
single model with fixed structure and initial state, and with one or more physical
parameters varied for each run. PPEs allow us to explore uncertainty in physical
parameters, and combinations of parameters, usually under the assumption that the
model structure and initial state are accurate representations of the Earth’s climate
system.

The ClimatePrediction.net ensembles, some of which have tens of thousands of
members, consist of a combined PPE and ICE: for each set of parameter values,
an initial conditions ensemble is run, and the results are combined into a “grand
ensemble” (Stainforth et al., 2005).

1.5.3 Perturbed physical structure ensembles

Because of the shared background of many climate models, structural uncertainty
“would be hard to capture by changing parameters within a single model, no matter
how wide the range of parameters is chosen” (Tebaldi and Knutti, 2007). So there
is value in comparing divergent theoretical understandings that describe different
mathematical models of real physical processes.

Perturbed structure ensembles (PSEs) consist of sets of model runs that come
from entirely different models, or from a single model with alternative structural
components. Initial conditions and parameters between different models are not
necessarily comparable.

1.5.4 Ensembles of opportunity

There is no limit to the possible values of initial conditions and parameters, or of
potentially viable component structures that could be used to represent aspects of
the true climate. Only a small subset of these values and structures will ever be
used, because of the constraints imposed by computing power and time. For this
reason we must make do with whatever model data are available. Because for such
ensembles, models are generally collected rather haphazardly, and as opportunity
presents them, they have been termed “ensembles of opportunity” (e.g. Tebaldi and
Knutti, 2007; Annan and Hargreaves, 2010).

Most large, international multi-group ensembles, such as the CMIP3 and CMIP5
ensembles, are part PSEs, in the sense that multiple research institutes submit runs
from their own models, but many of these submissions contain smaller PPEs and
ICEs. There is very little overarching design behind the choice of model components
represented in these ensembles: they fall firmly in the category of ensembles of
opportunity. This highlights how little thought has been directed to the question of
how best to generate model ensembles.
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1.6 Aims
Model ensembles such as CMIP3 and CMIP5 underpin our best estimates of future
climate. Such projections have major environmental, social and economic ramifi-
cations, and, if taken seriously, could alter the course of history, saving millions of
species and lives, or costing billions of dollars. It is vital that these projections are
as accurate as possible.

In order to achieve the best possible projections, ensembles used to make those
projections must be in some sense optimal. However, we know that this is not the
case for current projections, such as those based on CMIP3: Annan and Hargreaves
(2010) show that the ensemble is over-dispersive for both surface air temperature and
sea level pressure, and under-dispersive for precipitation. Bishop and Abramowitz
(2012) also show that the ensemble members are not totally independent. The effect
of these problems on projections is uncertain, but it is unlikely to be beneficial.

A major goals of the climate modelling community for the foreseeable future
must be to resolve these problems. That means finding ways to reliably generate
ensembles with the properties needed to make ensemble-based projections consistent
and accurate. There are a number of steps required to get to such a point:

• First, we must understand what properties optimal ensembles will have. This
process is underway (e.g. Tebaldi and Knutti, 2007; Annan and Hargreaves,
2010; Bishop and Abramowitz, 2012), but much more can still be learned.

• We need to find and develop tools for analysing these properties in ensembles
(some are used in Annan and Hargreaves, 2010; Bishop and Abramowitz,
2012).

• We must understand the effect that different ensemble generation approaches
have on these properties in the resultant ensembles. This area is particularly
unexplored to date.

• We need to develop a better understanding of the effect that different weight-
ing methodologies have on ensemble projections. Work on solving this part
of the puzzle is underway, although the focus has been on performance-based
weighting, and mostly only on mean estimates (e.g. Weigel et al., 2010; Gleck-
ler et al., 2008).

• We must then use this knowledge to help direct the creation of model ensem-
bles, either by optimally combining existing model simulations, or by actually
soliciting specific simulations to ensure that the ensembles have the properties
we need.

This is a process that will take years at best, and may potentially stretch into
decades. There is no way that even one of these points can be wholly encompassed
in a single paper. This thesis offers a stepping stone in this process. Our aims are:

1. To examine the effects of different ensemble generation techniques, using ex-
isting ensemble analysis techniques,
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2. To examine the effect of different weighting methodologies on the ensembles
produced in 1, and

3. To develop new ensemble analysis tools and methodologies, and use them to
compare different ensemble interpretation paradigms.

We make no attempt to delve into the creation of optimal ensembles, but hope that
the work presented here will provide a decent foundation for future progress in that
area.
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Chapter 2

Experimental Methodology

2.1 Overview

This chapter describes the experimental methodology used to obtain and analyse
the data for this thesis. The experiment involves generating and comparing multiple
ensembles of model runs, covering the period 1971-2010. This period was selected
to have a reliable high-coverage surface air temperature data set, the UK Met Of-
fice Hadley Centre/University of East Anglia Climate Research Unit observations
dataset (HadCRUT3), for comparison (described in Brohan et al., 2006).

Mk3L (Phipps, 2011) was chosen because it is a low resolution model, and so runs
quickly, which allowed the generation of many simulations within the available time.
Even though Mk3L is primarily designed for long time-span modelling, it performs
reasonably well even on short time scales, including the 20th Century (Phipps et al.,
2012a).

Section 2.2 describes the HadCRUT3 data set. Section 2.3 describes the model
setup, and the perturbations used for each of the three ensembles we generated:
an ICE, a PPE and a PSE (as described in Section 1.5). Section 2.4 describes the
methods used to analyse the individual model runs, and the ensembles as a whole.

2.2 Observational Data sources

HadCRUT3 consists of a combined land surface and sea surface temperature record,
from 1850-2012, on a 5 deg×5 deg grid (72× 36 grid points). It is a combination of
in-situ and satellite-based measurements. As depicted in Figure 2.1, of the 2592 grid
points, 820 (31.6%) have data for every month of the period 1971-2010. A further
677 grid points have >80% coverage (57.8% in total), and 608 (23.5%) have less
than 20% coverage in the same period. The coverage is better in the low latitudes
– most of the data from polar regions are missing, and there is also better coverage
in the northern hemisphere than the southern. To ensure reliability of data-model
comparisons, all analyses presented here are limited to those grid cells where >80%
of months have data coverage.

17
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Figure 2.1: HadCRUT3 data availability 1971-2010 (percentage of months that have
data per grid point). We used only the data in grid cells coloured red and dark red
(>80% data availability).

2.3 Model data generation

The experiment examines model ensembles generated by the Commonwealth Sci-
ence and Industrial Research Organisation (CSIRO)’s low resolution Mk3L Climate
System Model (Mk3L). Three ensembles were generated, each using a different per-
turbation methodology:

• A perturbed initial conditions ensemble (ICE).

• A perturbed physical parameter ensemble (PPE)

• A perturbed physical structure ensemble (PSE).

2.3.1 Basic Model Set-up

All run ensembles were based on the default Mk3L setup (Phipps, 2011) with each
run perturbed from that baseline. The full coupled ocean-atmosphere mode of Mk3L
was used. While the atmosphere-only mode of Mk3L would require less computing
time, the prescribed sea surface temperatures required for this model mode would
likely have significantly mitigated the effect of the model perturbations.

The time span on which to run the model (1851–2010) was based largely on
the requirement for a long period of reliable observational data for comparison
(1971–2010), plus the requirement of a spin-up period. Two key auxiliary files were
extended: atmospheric CO2-equivalent – a combination of all the major greenhouse
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gasses; and total solar irradiance (TSI) – solar irradiance combined with the changes
in insolation due to aerosols (based on Schmidt et al., 2012). The CO2−e file was
extended using data from the Goddard Institute for Space Studies (GISS), calculated
using the method described in Table 6.2 of the IPCC Third Assesment Report
(TAR) Working Group 1 report (Ramaswamy et al., 2001). The TSI file was simply
extended using the 2000 value for all following years, as there had been no major
volcanic activity over this period. Both of these files are annual inputs, and the
values are show in Figure 2.2.
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Figure 2.2: CO2 and TSI values for the simulation period. Note the large drops in
TSI in the early 1980s and 1990s, due to volcanic events (see Figure 1.1).

A number of variables were added to the Mk3L control file, as some of the
parameters we wanted to perturb were not easily modifiable in the standard model
code. These included soil moisture variables, surface roughness, and albedo. For
each, we created a scaling factor that was accessible from the model control file.
After the modification, the code was tested using various values. Outputs were
compared to ensure that they differed (if the variable was not acting, the output
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should not change). Some parameter values within the ranges we wished to use
caused model test runs to crash. In particular, the model would not run successfully
with significantly reduced soil moisture variables, forcing us to abandon running the
model at the lower end of our intended range (see Section 2.3.3.1).

The atmospheric component of Mk3L uses a 64×56 grid (∼ 3.2◦×5.625◦), while
the HadCRUT3 observational data set uses a 72×36 (5◦×5◦). The individual model
run variable files were re-gridded to match the HadCRUT3 grid, using area weighted
averaging.

2.3.2 Initial Conditions Group

For the initial conditions group, the default control file values were used for all
runs (Phipps, 2011). Restart files were generated by running the model under 1850
conditions for 10000 model years, and recording restart files every 50 years (Phipps
et al., 2012b). This process allows the model state to be recorded while in a climatic
equilibrium condition, while also capturing natural variability seen in the model.
Restart files with 100 year spacings, starting at year 100, were used as the initial
conditions for the group runs. This spacing is long enough to avoid short-term
autocorrelation of years close together.

2.3.3 Perturbed Parameters Group

The model parameters modified in this ensemble were chosen because they are
known to often significantly affect model output, and as such, should maximise be-
havioural diversity. Six parameters, or groups of related parameters, were perturbed;
including parameters from each of the land, atmosphere, and ocean components of
the model. They are:

• Ocean diffusivity.

• Soil field capacity/water holding capacity (varied together with wilting point
and saturation point).

• Land surface roughness length.

• Land surface albedo.

• Relative humidity threshold for cloud formation.

• Cloud albedo reduction factor.

2.3.3.1 Justification of parameters and values

Land surface albedo has a direct impact on how much incoming radiation is
absorbed by the land surface, resulting in a global land surface net radiation of
−2.0Wm−2 for a 20% increased albedo, and 2.4Wm−2 for a 20% reduction. This re-
sults in a ±0.16K global land surface temperature change, with significantly regional
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variation (Fischer et al., 2010). Fischer et al. (2010) used a albedo parameterisation
low-high range of α± 20%. We used a range of 0.5–1.5 for the scaling factor.

Roughness length is related to the height and variation in height of the canopy,
and corresponds to the height at which wind speed is theoretically reduced to zero,
due to friction. Roughness length affects surface wind speed, has a negligible effect
on surface temperatures, and a small impact on precipitation (Fischer et al., 2010).
Murphy et al. (2004) perturbed roughness length over forests only, and use ranges
of 0.5–2.0 and 1.05-2.9, depending on the forest type. We used a range of 0.5–1.5
for the scaling factor.

Soil field capacity is the ability of soils to hold water against gravity. It is re-
lated to the soil composition, and varies significantly globally (Dunne and Willmott,
1996). Field capacity is bounded above by soil saturation point, the point at which
water can no-longer enter the soil, and instead becomes run-off; and below by wilt-
ing point, the point at which moisture availability is too low to sustain plants. Soil
moisture affects evapotranspiration, which in turn affects cloud formation, latent
heat transport, and precipitation (Milly and Dunne, 1994), and has a significant
impact on global temperatures (Ducharne and Laval, 2000). We used a range of
0.9–1.5 for the scaling factor.

Ocean diffusivity is a measure of how fast heat diffuses though the oceans.
Washington and Meehl (1989) perturbed horizontal ocean diffusivity, using values
of 200m2s−1 and 400m2s−1. The Mk3L default value is 600m2s−1, and we perturbed
this parameter within a range of 400m2s−1–800m2s−1.

Critical relative humidity threshold for cloud formation (RHcrit) defines
the humidity level at which clouds appear in the model. It has been used in large
perturbed parameter ensembles, such as Murphy et al. (2004), where a range of
0.6-0.9 was used. We used a range of 0.65–0.75 for RHcrit over land, and 0.75–0.95
for RHcrit over sea, varied together. This is ±0.1 around the Mk3L defaults1.

Cloud albedo reduction factor accounts for the fluffiness of clouds at the sub-
grid level, and reduces the albedo of the model clouds, which are calculated as a
simple plane (Gordon et al., 2002). There are two variables: one for convective cloud,
and one for other clouds. We used values in the ranges [0.495, 0.695] for convective
cloud, and [0.765, 0.965] for other cloud – ±0.1 from the recommended values. This
range should be expected to produce changes of the order of ±10Wm−2 in incoming
surface radiation (Phipps, 2011), and have a large impact on global temperature.

2.3.4 Perturbed Structure Group

Ideally, this experiment would involve the comparison of single-model initial con-
ditions and perturbed parameters ensembles with a true multi-model structural-
differences ensemble. However, such a process would have large set-up time, and
difficulty in comparison between the output of the various models. As a compromise,

1RHcrit over land was intended to be 0.65–0.85, but a coding mistake was made in the set-up
scripts
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we ran a structural perturbations ensemble using only Mk3L, but using a number
of control file switches to turn components of the model on and off. Although we
should clearly not expect as much structural independence between model simula-
tions produced this way as we might with a true multi-model ensemble, we should
still expect to see more behavioural diversity than in the perturbed parameters
ensemble.

2.3.4.1 Identification of key structural components

We identified a number of switchable Mk3L model components that would be ex-
pected to have significant impact on model output. The components are (Phipps,
2011):

• The sea ice model, which has four states: off (prescribed sea ice), basic Semtner
sea ice model, Semtner model with leads, and dynamical sea ice (this is actually
three separate but interdependent binary switches, each requiring the one
before to be on).

• The NCAR boundary layer scheme,

• The New SIB land surface scheme,

• The prognostic cloud scheme,

• The UK Met Office convection scheme,

• The McDougall equation of state, and

• The new gravity wave drag scheme.

The experiment used a number of combinations of each of these options, includ-
ing the default (all on), and default with each option changed individually (9 runs),
and a further 15 runs with pseudo-random sampling of model structure, described
in Section 2.3.5.

2.3.5 Sampling strategy

For parameter value selection a low-discrepancy sequence, the Sobol’ sequence (Re-
ichert et al., 2002), was used to sample both values from a uniform distribution over
the intervals described in Section 2.3.3.1, and combinations of discrete values for
the PSE.

Sobol’ sequence sampling involves calculating an m-dimensional (here m = 6 -
the number of parameters) Sobol’ sequence, of length n (the number of samples –
runs – we want to generate). The elements in the Sobol’ sequence arem-dimensional
vectors, sn, with each component a quasi-random value between 0 and 1. We can
then take each of these samples, and map each component to the interval required
for each model parameter – i.e. we take the first element to correspond to the ocean
diffusivity values, which we want to map to [400,800], and we use ocean diffusivity
= (800− 400)× sn,k + 400).
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The Sobol’ sequence is constructed in such a way that each dimension is relatively
evenly sampled, and that no two dimensions are highly correlated (see Figure 2.3).
Low-discrepancy sequence sampling has the advantage over processes such as Latin-
hypercube or orthogonal sampling that an arbitrary number of additional samples
can be taken without significantly changing the evenness of the sampling.

For the PSE, a discretised version of this process used: Real-valued samples were
generated using the Sobol’ sequence, in the space (0, 1)m, and then each interval was
split into pi intervals, where pi = number of states in dimension i. The 7-dimensional
Sobol’ sequences would then be mapped from (0, 1)7 → {0, 1, 2, 3}×{0, 1}6 (4 sea-ice
model switch states, 2 for each other structural switch). For example:

(0.826, 0.231, 0.345, 0.581, 0.918, 0.287, 0.614)→ (3, 0, 0, 1, 1, 0, 1)

Which is equivalent to (dynamical sea ice; NCAR boundary layer scheme off; New
SIB scheme off; prognostic clouds on; UK Met Office convection on; McDougal
equation of state off; new gravity wave drag scheme on).

As far as we are aware, no previous papers have been published using this
sampling strategy. There are a number of potential problems: in particular, the
discretisation may introduce some inter-dimension correlation in samples; the dis-
cretisation means that the sequence increases in length, some elements (vectors) will
be repeated; and the elements will eventually cover the entire sample space (in this
case 4× 26 = 256 elements), such that all subsequent vectors will be repetitions.

The first potential problem does not appear to exist; correlation is not appre-
ciably worse in the discretised version: all absolute pair-wise correlations remain
lower than 0.3, and correlations change by at most 0.17. The repetition problem
inevitably occurs, however this experiment (with sample size initially 25, unlikely
to increase above 50) is not affected: the first 127 samples are unique.

A nice property of this sampling method is that discrete and continuous sample
spaces can be sampled in the same process. For example, it would be possible to
perturb 3 real model parameters and 4 logical switches in the same experiment by
using a 7 dimensional Sobol’ sequence, and discretising only the last 4 dimensions.

2.3.6 Bias correction

Models run over a specified time frame (e.g. the 20th century) must go through a
“spin-up” phase, which means they are run for a period before the sample period, in
order to reach a climatological equilibrium. This spin-up can introduce a system-
atic bias in results, such that some models, while exhibiting high correlation with
observations, are 1-2 K lower than observations (see for example Macadam et al.,
2010).

To address this, models are commonly “bias-corrected”, which usually means
aligning them to a common baseline, such as the average temperature of the first
decade of output, or the average of the whole sample period. This kind of bias correc-
tion is standard practice (used, for example, in the projections shown in the AR4),
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Figure 2.3: Parameter values used for the 25 perturbed physics parameter model
runs. The distribution of the samples over the 6-dimensional sample space is rela-
tively even; and pair-wise correlations between variables are low. The units for ocean
diffusivity and cloud parameters, which are not important here, correspond to those
given in the Mk3L manual (Phipps, 2011).
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and consists of subtracting the global annual model mean for the relevant period
from the model data, then re-adding the observations mean for the same period. The
dependence weighting methodology introduced by Bishop and Abramowitz (2012)
relies on bias correction: if the model runs are not bias corrected, then model errors
are largely made up of bias, and independence weighting becomes more or less a
bias-weighting.

2.4 Analysis

The three ensembles were analysed, using raw output, then using bias corrected out-
put. We investigated ensemble spread by looking at the ensemble as a whole, and
by comparing runs within the ensemble. Accuracy of means and ensemble variances
were compared under three different weightings: unweighted averaging, performance
weighting, and independence weighting (see Section 2.4.1). Dependence within en-
sembles was investigated using pair-wise comparison of runs.

The three weighting procedures were also applied to the three ensembles using
the period 1971-2000, as an in-sample, or training period. The results were used to
make projections over the out-of-sample, or testing, period, 2001-2010. Results of
these 9 sets of projection approaches were compared.

Note that the experiment was originally designed so multiple variables could be
analysed (e.g. temperature, sea level pressure, precipitation), but that due to time
constraints, only surface air temperature was analysed.

For the purposes of this experiment, we used cost functions of surface tempera-
ture (screen temperature), over the entire globe (excluding areas with missing data
– see Section 2.2). The main cost functions we used were covariance, correlation,
and root mean square error (RMSE). We ran cost functions over two domains: per-
cell data (using all data at each time-step and grid point), and global data (using
globally averaged data at each time-step).

2.4.1 Bishop and Abramowitz’s methodology

Bishop and Abramowitz (2012) use error-covariance-based weights to weight ensem-
bles. Weights for each model are calculated as the inverse of the sum of the pair-wise
covariances between the model and each other model. They show that this creates
the optimal linear combination of models, that minimises the distance (mean square
error (MSE)) between the ensemble mean and the observations, for a given domain.
While this is just one way of defining independence, it is the only way we have
currently available of tying model independence to ensemble performance.

Covariance is calculated pair-wise between K model run errors (xk = model k -
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observations) to give the error covariance matrix (A):

A =


cov(x1,x1) cov(x1,x2) · · · cov(x1,xK)
cov(x2,x1) cov(x2,x2) · · · cov(x2,xK)

...
... . . . ...

cov(xK ,x1) cov(xK ,x2) · · · cov(xK ,xK)

 (2.1)

The matrix A is then inverted, and the column corresponding to model run xk is
summed, and normalised by dividing through by the sum of the components of the
inverted matrix, to give a value wk for each model:

w =
A−11

1TA−11
(2.2)

The elements of the vector w act as the coefficients of the linear combination of
model runs that minimises the MSE between the models and the observations (y),
i.e. for time step j ∈ {1 . . . J}:

µj = wTxj =
K∑
k=1

wkx
j
k such that

J∑
j=1

(µj − yj)2 is minimised.

The values wk are such that
∑K

k=1wk = 1, but can be larger than 1, or negative.
Unfortunately that means that these wk cannot be considered weights for taking an
ensemble average, and can not be used to calculate variance. Because the indepen-
dence coefficients are used to weight model errors, there is also no way to use them
to weight for projections using just the bias corrected model data. As projections
are made over a period for which the observations are unknown (or known, but only
used for validation), we cannot calculate model errors for this period.

To overcome this problem Bishop and Abramowitz use a transformation that
modifies the ensemble members themselves, such that their variance around the
CPDF mean (as estimated by the independence-coefficient based weighted mean)
is the same as the observations around the CPDF mean. The transformation is a
two-step process first that normalises the independence coefficients wk to weights
w̃k that are positive and sum to 1, and then inflates or deflates the variance of
each ensemble member about the CPDF mean estimate. The resultant elements
are linear combinations of the original model runs, rather than model runs. This
transformation process does not modify the CPDF mean estimate: the indepen-
dence coefficient-based linear combination of the original models is the same as the
independence-weighted mean of the transformed ensemble members. The new en-
semble elements retain high correlation with the original corresponding model runs
(∼0.95 with their toy model), but have different variability structures, and cannot
be considered as models. A projection variance can then be calculated from these
transformed ensemble members.

Bishop and Abramowitz’s 2012 weighting can be applied in any number of ways,
using various cost functions. In particular, it can be applied on a per-cell basis –
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that is, each model run has one weight per grid cell, and the time series for each grid
cell from different models are combined using independent weights – or it can be
combined globally, using all data to calculate a single weight per simulation. Bishop
and Abramowitz used both global and per-cell weighting in their paper. For this
thesis we use only global weighting, based on per-cell data.

Weighting model runs for dependence is somewhat analogous to removing model
runs from the sample – if two models are dependent, they contain very similar
information. As such, one would expect the variance to increase correspondingly, if
the weighting is very uneven. There is a sample weighted variance formula:

s2 =
V1

V 2
1 − V2

N∑
i=1

wi (xi − µ∗)2 (2.3)

Where V1 =
∑n

i=1wi and V2 =
∑n

i=1w
2
i . If we use normalised weights, we get

V1 = 1, and so equation 2.3 becomes:

s2 =
1

1−
∑
w2

i

N∑
i=1

wi (xi − µ∗)2

For very homogeneous weights, with a large sample size, the denominator approaches
1 − 1/N , and the weighting has very little effect, but when weights are highly
heterogeneous, and the sample size is small, the difference between unweighted and
weighted variance becomes larger. We use the weighted variance formula for all
variance calculations on weighted ensembles.

2.4.2 Other analysis tools

We have used a number of analysis tools uncommon in or absent from the climate
literature. We describe two here, but the description of others (pair-wise error corre-
lation and variance validation) are left to Chapter 3, as they are closely intertwined
with the results.

Rank histograms compare the observations to the ensembles by calculating the
rank of the observations relative to the models at each data point (Hamill, 2001). For
example, if the observation value for a particular grid point and time-step is lower
than all the models, it will be ranked (n+1)th, where n is the number of models.
If the observations and ensemble data are drawn from the same distribution, the
distribution of ranks should be approximately uniform, as the observations have an
equally likely chance of any given rank, for a given data point. If the ensemble is
over-dispersive – meaning that the spread in the model ensemble is greater than that
in the observational data set – then the distribution will be higher in the middle,
as the observations are less likely to fall in the extreme high or low ranks. On the
other hand, if the models are under-dispersive, the distribution will be U-shaped,
as the observations fall outside the model range more often. Note that this would
not be true with strongly biased data: if the ensemble contained a significant bias,
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we would expect to see the observations rank consistently high or low. As we are
using bias corrected data, we should expect that the ranks are spread relatively
symmetrically over the interval – that is, the integral of the density function over
the lower half of the ranks should be approximately equal to that of the upper half.

Quantile-Quantile plots (QQ-plot) provide an alternative representation to the
rank histogram, but have not been used to examine climate model ensemble spread
before. The QQ-plot compares the distributions of the model and observational data
sets by point-plotting the quantiles of the two distributions, with model distribution
quantiles as y values, and observation distribution quantiles as x values. If the model
and observational datasets are drawn from the same distribution, the points should
align on the y = x line. If the model data set (on the y-axis) is over-dispersive
relative to the observational data (on the x-axis), the graph will plot a steeper line;
if the models are under-dispersive, the slope will be shallower. This analysis is
useful in comparison to the rank histogram approach as it uses real values rather
than ranks, which can help in the detection of outliers.

As there are more data in the model data set (because there are multiple model
runs, with the same spatial and temporal resolution as the observations), the model
data set must first be condensed into a single representative data set. This is done by
linear approximation over the sorted data set, which acts as a simple down-scaling,
giving us a derived data set the same size as the observational data set, but closely
approximating the model data set.

Because the data is sorted before the QQ-plot data is calculated, any correlated
trends in the data sets tend to over-ride the variability at each cell. There are
strong correlations between the model and observations data sets, due to the sea-
sonal temperature changes, the polar-tropics temperature gradient, and the over all
temporal model trend. To overcome this, the data is first detrended using the per-
cell monthly mean of the models (i.e. different detrending for each ensemble). This
removes seasonal, spatial, and annual trends, leaving only variability at each data
point, which is compared here. This is somewhat analogous, although not equiva-
lent, to ranking, which happens on a per-cell and time-step basis, thus removing any
spatial or temporal trends that might be present. Data points to the negative end
of the scale are points where the temperature is significantly lower than the average
for that grid point and time-step. Data are then sorted by value (regardless of time
step, longitude, or latitude), in each data set, and plotted against each other.



Chapter 3

Results

This chapter describes the results of the experiments outlined in Chapter 2. We
first analyse the results of the generation groups, and compare different methods
of averaging over the three ensembles. We then examine the spread within the en-
sembles, and look at basic measures of dependence. Finally, we use three weighting
methodologies – unweighted mean, performance weighted mean, and the transfor-
mation methodology from Bishop and Abramowitz (2012) – to compare projections
from the three ensembles.

3.1 Scope of model output
The experiment initially aimed to have 25 model runs for each of the three ensembles
(an ICE, a PPE, and aPSE). Of these runs, all of the initial conditions and perturbed
parameters runs completed successfully. 20 of the 25 structural perturbations runs
completed successfully – the other five all ran for 1-2 years and then failed, most
likely due to numerical errors, and could not be recovered using restart scripts.

Of the model simulations that ran successfully, all appeared to display broadly
acceptable behaviour: all appeared to track the last 4 decades of global surface air
temperature reasonably well, with some drift; none were more than 6K different from
the observations globally. All completed runs were therefore included in subsequent
analysis, as there was no objective reason to exclude them.

The data from model simulations have been interpolated to the HadCRUT3 grid
(5◦ × 5◦), using only grid cells for which at least 80% of the months in the sample
period have data (see Section 2.2). All statistics, weights, and graphs are calculated
using monthly, per-cell data (see Section 2.4.1).

3.2 Properties of the three ensembles
The models’ global annual average temperature is provided in Figure 3.1. Annual
means are plotted, because although all calculations are performed on monthly
data, the strong seasonal signal makes it difficult see the difference between runs

29
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and means. Each ensemble performs reasonably well, and the ensemble means
follow a fairly similar path, likely because they share the same input files, including
CO2 trajectory and TSI: The CO2 causes the upward trend, while the TSI (which
includes aerosol effects) causes the two large dips in the early 1980s and early 1990s,
associated with major volcanic events.

There are, however, major differences between the three model ensembles (see
Figure 3.1). The mean and standard deviation of the simulation global-time means
(taken over all grid cells and time steps) for each ensemble are shown in Table 3.1.
The standard deviation between the means in the initial conditions ensemble are
much lower than both the perturbed parameters and structural ensembles. The
structural ensemble variance is also much larger than that of the perturbed param-
eters ensemble. This shows that there is an increase in diversity of run behaviour
as the model is perturbed in increasingly complex ways – initial conditions provide
little diversity, while structural changes provide the most.

Figure 3.1 also highlights the ensemble biases. The initial conditions ensemble
mean shows a small positive bias from the observations, and all individual members
are warmer than the observations. The perturbed parameters ensemble mean has
a larger, negative bias, but it is still less that 1K below the observations, while
the structural ensemble mean is closer to the observations. In both of the latter
ensembles, the spread of the individual runs is large, and each includes runs that
are both positively and very negatively biased.

Table 3.1: Raw run statistics per ensemble.

Ensemble mean global global temp
temp (K) std. dev (K)

Observations 289.8 NA
Initial conditions 290.2 0.038

Perturbed parameters 288.8 2.29
Perturbed structure 288.6 2.74

The next step is to bias correct on the individual model runs by removing the
difference between the global time mean of the run and the observations. This
process is standard practice in climate change experiments (e.g. Macadam et al.,
2010; Solomon et al., 2007), and is explained and defended in Section 2.3.6.

After bias correction of each model run, the inter-model variance in the per-
turbed parameters and structure ensembles is greatly reduced (Figure 3.2). This
suggests that much of the variance in the un-bias corrected ensembles stems from
drift over the 120 years prior to the sample period (1851-1970). However, even after
bias correction, there is still more ensemble variance in the perturbed parameter
and structure ensembles. Because of the bias corrections, the values equivalent to
Table 3.1 would all be identical to the observations. The temporal mean of the
standard deviation of the models’ global temperature errors at each time step is
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given in Table 3.2. This is calculated by taking the global average temperature
error (the difference between the run and the observations) for each run at each
timestep, (giving a single global error time series per run), then taking the standard
deviation across the ensemble at each timestep, and then finally taking the mean
and standard deviation over the 480 months. This demonstrates that the structure
ensemble has by far the greatest diversity of run behaviour, followed by the per-
turbed parameters ensemble, with the initial conditions ensemble having very little
apparent behavioural diversity. The second column of Table 3.2 show that this vari-
ance is also fairly unchanging over time for the ICE and the PPE, but changes a lot
over time in the PSE.

Table 3.2: Statistics for the instantaneous standard deviation of global temp error
(K) of bias-corrected model data per ensemble (see explanation in text)

Ensemble Time-mean Standard deviation

Initial conditions 2.293 0.011
Perturbed parameters 2.815 0.347
Perturbed structure 4.275 1.872

With bias corrected data, we can implement Bishop and Abramowitz’s weighting
methodology. In the plots of bias corrected models (Figure 3.2), the three means
are displayed: the unweighted multi-model mean (red), the performance weighted
mean (purple), and the independence weighted mean (green). See Section 2.4.1
for how these are calculated. RMSE values are given in Table 3.3. Note that the
weights used here are designed to optimise the independence weighted mean over
per-cell monthly data – that is, to minimise the MSE between the model run and
the observations across all grid cells – while we are plotting global annual data. The
weights can be calculated over global annual data, however the resulting mean will
almost certainly suffer from over-fitting, as there are 20-25 free variables (weights
per model), and only 40 data points.

For the perturbed parameter ensemble, the performance weighted mean shows
a slight improvement over the unweighted mean, while the independence weighted
mean shows a much larger improvement. For the perturbed structure ensemble, the
performance improvement of the two weighted means over the unweighted mean is
again large, although the improvement due to the performance weighting relative to
the independence weighting is larger than for the perturbed parameters ensemble.
For the initial conditions ensemble, all three means are almost identical, and there
is very little improvement due to either the performance or independence-weighting.

3.2.1 Model ensemble spread

Spread clearly varies widely across the three ensembles. We now compare ensemble
spread relative to the spread in the observations, using two methods: the rank
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Table 3.3: RMSE values for each mean per ensemble, relative to the observations.

Ensemble Unweighted Performance Independence
mean weighted mean weighted mean

Initial conditions 2.0503 2.0502 2.0469
Perturbed parameters 2.2015 2.1689 2.1212
Perturbed structure 2.5752 2.1546 2.0385

histogram; and the QQ-plot. First, we examine rank histograms for both the per-
cell data set (718560 data points), and the global data set (480 data points), then
we examine QQ-plots of the per-cell data.

Figure 3.3 shows the rankings of global monthly observations values compared
to the models. While there is some noise, it is clear that the initial conditions
ensemble is under-dispersive, underestimating the variance in the observations, as
indicated by the U-shaped histogram (see Section 2.4.2). The structural ensemble
clearly overestimates the variance in the observations, as indicated by the strong
bell-shape in the histogram. The perturbed parameter ensemble appears to have an
almost flat distribution, indicating that the ensemble is approximating the variance
in the observations reasonably well.

Initial Conditions Perturbed Parameters Structural Perturbations
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Figure 3.3: Rank of observations relative to bias-corrected model runs in each en-
semble, based on global monthly means. The black line is a Gaussian kernel density
approximation.

Examining the same graphs calculated per-cell (Figure 3.4), we see a similar,
and clearer, result for both the initial conditions and structure ensembles – they
are respectively underestimating and over estimating spread. The per-cell rank
histogram of the perturbed parameters ensemble tells quite a different story to
the global graph: it is now clear that the perturbed parameters ensemble is also
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overestimating variance. This highlights the non-transitivity of performance metrics
over different domains.

Initial Conditions Perturbed Parameters Structural Perturbations
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Figure 3.4: Rank of observations relative to bias-corrected model runs in each en-
semble, based on monthly per-cell data. The black line is the density approximation
as in Figure 3.3.

The large asymmetry in the perturbed parameters ensemble per-cell rank his-
togram indicates that the observations are ranking higher than the models more
often than should be expected, given bias corrected data. This may be because the
model means are based on a distribution that is highly skewed relative to the ob-
servations – e.g. the models are too hot in the tropics or polar regions. Because the
ranks are not dealing with real values, the bias correction does not guarantee a bal-
ance of high and low ranks. We now attempt to address the problem by examining
the same data using QQ-plots.

3.2.1.1 Quantile-Quantile plots

We can see that the QQ-plots (Figure 3.5) approximately reflect the per-cell rank
histogram (Figure 3.4), in particular showing a steep rise toward the centre of the
perturbed parameters data set, corresponding to the peak in the associated rank
histogram. These plots also clearly show that the initial conditions ensemble is
under-dispersive relative to the observations, while the other two ensembles, espe-
cially the structural ensemble, are over-dispersive.

3.3 Pair-wise error correlation
We now compare using pair-wise correlations between model run errors as a basic
measure of independence within ensembles. Note that we used error covariance
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Figure 3.5: QQ-plots of observations relative to bias-corrected model runs in each
ensemble, based on de-trended monthly per-cell data (mean of the ensemble removed
from both models and observations).

rather than correlation in the independence calculation in Bishop and Abramowitz’s
methodology. Error correlation is, however, more intuitive than covariance when
looking at the causes, and allows direct comparison between model ensembles.
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Figure 3.6: Density of pair-wise error correlations between runs in each ensemble.
There are 300 pairs in the first two ensembles, and 190 in the structural ensemble.

Figure 3.6 shows the histograms of pair-wise correlations between the runs in
each ensemble. There is a clear change in homogeneity between the ensembles, the
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initial conditions run pairs all have very similar correlations, while the perturbed
parameters ensemble pairs are much broader, and the structural ensemble pairs
broader again. The average pair-wise error correlation for the initial conditions en-
semble is 0.791, for the perturbed parameters ensemble 0.601, and for the structural
ensemble 0.354.

The narrowness of the initial conditions ensemble may be expected from Fig-
ure 3.2, where we see that the variance between the runs is small enough to allow
the observations to stick out. In particular, in the mid 1970s, the observations are
lower than all the models, while in the mid-late 1990s, the opposite is true. This
alone would add significantly to the correlations between run errors. There are likely
similar patterns in seasonal and spatial trends that we do not see in Figure 3.2. This
clearly points to strong dependence between the runs in the initial conditions runs.

Given those factors, the spread of the correlations between structural ensemble
runs is somewhat surprising – there are even run pairs with negative correlation.
This means that the patterns differ between the runs so much that the variance
introduced by the observations is outweighed by the variance between the runs.

3.4 Weighting for climate projections

We now examine the effect that different weighting methodologies have on the three
ensembles, considering both mean and variance of the projections. We use the var-
ious weighting methodologies, discussed in Chapter 1 and Chapter 2, to produce
projections over the final decade of the data (2001-2010), using bias correction and
weights based on the first 30 years (1971-2000). We use a simple unweighted mean
and unweighted standard deviation first. We then use error variance based perfor-
mance weighting (using the diagonal elements of the A matrix, after Bishop and
Abramowitz, 2012), and weighted standard deviation formula (see Section 2.4.1).
Lastly, we generate a projection using Bishop and Abramowitz’s (2012) indepen-
dence transformation methodology, described in Section 2.4.1. The result of these
three projections using the data from the three ensembles is shown in Figure 3.7,
and RMSE values of the means are shown in Table 3.4.

Because the independence coefficient-based averaging used earlier in this chap-
ter actually takes an average of model errors, there is no way to use the original
independence coefficients to weight for projection variance using just the bias cor-
rected model data. As we are making projections over 2001-2010, and only using
the observations over that period for comparison, we cannot calculate model errors
for this period. In order to calculate a variance for the independence projection,
Bishop and Abramowitz (2012) use an ensemble transformation, described in Sec-
tion 2.4.1. A projection variance can then be calculated from these transformed
ensemble members.
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Figure 3.7: Climate estimates based on model data bias corrected and weighted
over the period 1971-2000, and projected over 2001-2010. The three columns show
the three generation ensembles. The first row is the unweighted mean of the bias
corrected models, and their standard deviation. The middle row is the error variance
based performance weighted mean and weighted standard deviation. The bottom row
is the mean and standard deviation of the transformed ensemble members (not the
original models, see Section 2.4.1 for details). The observations are shown in black.

3.4.1 Performance of the projection mean

The unweighted projection in the top row of Figure 3.7 shows the baseline estimate
of climate projection, as is used in the IPCC AR4 (Solomon et al., 2007). Under
this projection, we see that the initial conditions ensemble mean performs best
compared to the other ensembles (see Table 3.4). The structural ensemble, which
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has the highest variance over the entire period, has the worst performing mean.

Table 3.4: RMSE values for each ensemble mean under each weighting method over
the out-of-sample projection period (2001-2010).

Ensemble Unweighted Performance Independence
mean weighted mean weighted mean

Initial Conditions 2.054 2.054 2.052
Perturbed Parameters 2.191 2.163 2.122
Perturbed Structure 2.575 2.157 2.039

Under error variance based performance weighting (in the second row of Fig-
ure 3.7), the performance of all three projected means improve somewhat, although
the improvement in the initial conditions ensemble is minimal. The RMSE of the
performance weighted mean projection for the perturbed parameters ensemble is
also small, although larger than the initial conditions estimate. The structural per-
turbations ensemble improvement under performance weighting is substantial – 16%
improvement over the unweighted mean.

Under the independence transformation, the structural perturbations ensemble
again improves significantly – this time by about 20%. The perturbed parame-
ters projection performance also improves, and is markedly better than under the
performance-weighted mean. The initial conditions ensemble projection only im-
proves marginally under the independence transformation.

3.4.2 Performance of the projection variance

We can also examine the spread of the projected ensembles by looking at the number
of observations that fall within the projected variance range about the mean, and
comparing that to the expected value. The percentage of observation data points
that fall within one standard deviation of the projected ensemble mean are given in
Table 3.5.

In a normal distribution, the value would be expected to approach 68.3%, but the
distribution of surface temperatures in the observations data set is far from normal –
the distribution has a long tail toward cooler temperatures. Over the sample period
(the first 30 years), 84.14% of the observations data points fall within the range of
±1 standard deviation of the global time mean. The same calculation on individual
model runs gives a similar figure. However, this is not directly comparable to the
percentages given in the table, as this value is calculated against a scalar observations
mean, rather than a spatially and temporally varying ensemble mean. Under the
replicate earth paradigm, we can assume that the independence weighted mean
provides a good estimate of the CPDF mean, and use these to calculate the variance
of the observations about the mean. Doing so gives values of 82.21%, 80.97%, and
81.45% for the three ensembles. The true value is likely slightly lower, as the
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independence weighted means are only an approximation of the CPDF mean, and
the true CPDF mean would be expected to reduce the MSE from the observations
slightly.

From Table 3.5, we see that the improvement in the projected variance under the
performance weighting is far less consistent than the improvement to the projected
mean: both the initial conditions and perturbed parameters ensembles variance es-
timates actually degrade under the performance weighting. Since we don’t know
the variance of the observations around the true CPDF mean, it is difficult to say
whether the structural ensemble variance is improved or degraded under the perfor-
mance weighted mean. It is possible that performance weighting improves variance
estimates for ensembles that are very over-dispersive (such as our structural ensem-
ble), however this data does not provide compelling evidence. It is also important
to note here that this only applies to model-observations covariance-based perfor-
mance weights. It is possible that, under other cost functions, performance-weighted
projection variance does not perform so poorly.

Table 3.5: Percentage of observations that fall within one standard deviation of the
projected mean.

Ensemble Unweighted Performance Independence
mean weighted mean weighted mean

Initial Conditions 37.407 37.404 75.891
Perturbed Parameters 53.047 52.324 76.187
Perturbed Structure 81.703 76.997 77.101

Under the independence transformation, all variance projections improve dra-
matically. The variance estimate for the initial conditions ensemble is still the lowest,
but the range of values is only just larger than 1%. This strong convergence may
suggest that the percentage of observations that fall within one standard deviation
of the true CPDF mean is around these values.

3.5 Summary
This chapter has shown that the three generation methodologies result in vastly
different ensembles. The initial conditions ensemble provides the least variability,
and as a consequence may underestimate the variability in the climate when used
to make projections. The perturbed parameters ensemble provides more variabil-
ity, and the structural ensemble provide more again – to the point that they can
overestimate the variability in the observations.

However, these ensembles’ projections can be rectified to maximise their pre-
dictive power by using a weighting methodology. Under all ensemble generation
methods, the performance weighting improves the mean projection performance,
working especially well when there is high heterogeneity in the individual models’
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performances. The independence weighting also improves the mean projection per-
formance when there is high heterogeneity in the weights (i.e. varying dependence
between models in the ensemble), and more so than under performance weighting.

Projected variance estimates are heavily dependent on ensemble generation
method, and reflect the variance estimates in the ensembles themselves – initial
conditions ensembles are too low, while perturbed parameters and structural en-
sembles are too high. It appears that performance weighting does not improve
projected variance, although there may be some cases where it does. Independence
weighting, on the other hand, can maximise the accuracy of projected variance
estimates for all ensembles.
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Chapter 4

Discussion and Conclusions

The aims of this thesis were:

1. To examine the effects of different ensemble generation techniques, using ex-
isting ensemble analysis techniques,

2. To examine the effect of different weighting methodologies on the ensembles
produced in 1, and

3. To develop new ensemble analysis tools and methodologies, and use them to
compare different ensemble interpretation paradigms.

This chapter examines the results with reference to these aims, and the ramifications
for the field of climate modelling, before presenting some conclusions.

4.1 Properties of the ensembles

The three different ensemble generation techniques explored produce vastly different
ensembles. In particular, the ICE was under-dispersive for surface temperature,
while the PPE and PSE were both over-dispersive. Time constraints prevented
the testing of other variables (such as sea level pressure or precipitation), but we
should not necessarily expect these variables to behave in the same way as surface
temperature (see Annan and Hargreaves, 2010).

4.1.1 Are the ensembles representative of the CPDF?

We have only one true sample of the CPDF – the underlying distribution of probable
earth states over time, given known boundary conditions – with which to estimate
what the entire CPDF looks like. Hence it is difficult to state categorically whether
any of these ensembles are truly representative of the CPDF. We can not know for
certain that our observations are not a stark outlier – that most other replicate
earths would not be quite different. If they are, then our CPDF estimates will
clearly be biased.

43
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Statistically, it would be highly unlikely for 718560 data points to be outliers.
However, the observation data points are not independent: neighbouring data points
are strongly related, both spatially and temporally. If we make the assumption that
the observations are not heavily biased, we still have to contend with the question
of whether the model ensemble adequately represents the CPDF.

4.1.2 Can these results be generalised?

It is unclear whether or not these results can be generalised to other models. In
particular, other models may provide more or less variability under initial condition
or physical parameter perturbations. It seems highly likely that a true perturbed
structure ensemble, using diverse models, would also have higher variability.

Barnett (1999) shows that inter-model variability is higher than intra-model
variability, by comparing 11 of the first CMIP ensemble model runs. Barnett also
shows that variability operates on different scales for different models, however, they
make no comparison of the differences in general intra-model variability between
models. It is possible that other models exhibit greater variability under initial
conditions perturbation, such that ICEs from these models have a broad enough
spread and can adequately represent the CPDF variance. Mk3l is low resolution
and relatively simple compared to many other modern AOGCMs. However, it is not
clear that a model that is more complex or has a higher resolution should necessarily
exhibit greater behavioural diversity under a fixed physics parameterisation.

It is unlikely that the results for our PPE would be able to be generalised to other
PPE experiments – the combination of parameters is too specific. Nevertheless, the
methods used in this thesis can be applied to a perturbed parameter experiment,
in order to get an indication of the fit of the ensemble spread. This would be
especially valuable for large PPE experiments used for making projections, such as
the ClimatePrediction.net experiments. PPEs are also often used for ascertaining a
reasonable default value or range for parameterisations: in such experiments, these
tools would also be particularly useful, as they can allow estimates of parameter
ranges to be qualified, or re-assessed.

It is almost certain that the PSE presented here is not representative of a
true multi-model structural ensemble. We have perturbed the structure of only
a small sub-set of the Mk3L model components. While it is true that some modern
AOGCMs share some components (the theoretical background, if not the numerical
implementation), these models have many more components than the seven that
we have perturbed here. None of the Mk3L model switches were irrational choices
– the alternative schemes have all be used successfully in models in the past (for
example, the Mk3L predecessors). This suggests that true multi-model structural
ensembles are likely to have far broader spread than our PSE does. Bishop and
Abramowitz’s (2012) transformation methodology allows us to recalculate variance
estimates based on independence, and may be particularly useful here.
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4.1.3 Ramifications

If we assume that these results are, at least to some degree, able to be generalised,
then this has some important ramifications. Firstly, it is clear that ICEs are not
behaviourally diverse enough – that is, too interdependent with respect to the CPDF
– to provide an adequate estimate of spread. This is problematic because the most
politically important projections – those presented in the reports of the IPCC –
are based on ensembles that include smaller ICEs. However, it seems likely that
any reduced variance due to these sub-ensembles is off-set by the fact that these
ensembles are also partly PSEs, which tend to have far too broad a spread.

Because of this large spread exhibited by PSEs (and, to a lesser extent to PPEs,
which are also used for projection), we must find ways of combining multi-model
ensembles that account for this. This leads us to performance and independence-
based ensemble weighting and transformation as a potential solution.

4.2 Impacts of weighting methodologies

As well as the large differences in estimates and projections for different ensemble
generation methods, there were also significant differences in projection accuracy
under different weighting regimes. Relative to the unweighted mean, performance
weighting improved the projection mean, but only slightly for ensembles where there
was less behavioural diversity. The improvement was most marked in the PSE,
where some ensemble members performed quite poorly. But performance weighting
drastically weakened the projected variance, for both the ICE and the PPE.

In contrast projections means and variance both improved under the indepen-
dence transformation, and projections were far more consistent from each ensemble.
The convergence of projections under independence transformation (Bishop and
Abramowitz, 2012) seems almost too good to be true. It begs the question how
poorly performing, or how dependent, would models in an ensemble have to be be-
fore the independence transformation could not produce an accurate projection? It
is unclear how much of this effect is confirmation of the validity of the model itself,
or whether there is some kind of over-fitting occurring.

We did perform some preliminary tests of the validity of the independence trans-
formation over different periods, using a model similar to the toy model used by
Bishop and Abramowitz (2012). These tests suggested that the independence weight-
ing only produced useful projections if the variability seen in the in-sample period
was related to the variability in the testing period. While this provides a tentative
suggestion that these results are not largely due to over-fitting, there is certainly
room for more exploration here.
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4.2.1 Problems with performance weighting

Performance weighting is in widespread use, and is an active area in model combina-
tion research, yet almost all weighting procedures consider only the weighted mean,
and ignore the effect on variance (e.g. Giorgi, 2005; Krishnamurti et al., 2000). Re-
cent reviews of model combination methodologies and issues related to weighting
also appear to have largely ignored the application of any kind of weighting to pro-
jection variance (Weigel et al., 2010; Knutti et al., 2010b). We have shown fairly
conclusively in this thesis that this can be very problematic: performance weigh-
ing can drastically reduce the quality of projections of variance. As a consequence,
performance-weighted projections may severely underestimate the variability we
should expect to see in the future climate. For small ensembles, this would likely
only be compounded by using naive variance calculations in the place of appropriate
weighted variance calculations, as explained in Section 2.4.1.

As we only considered error variance based weighting, it is theoretically possible
that other cost functions do no suffer as severely from this problem. However,
the very nature of performance weighting reduces the impact of the more extreme
samples, and in doing so, likely reduces the variance of projections.

4.2.2 Effect of the CPDF mean estimate on independence-
transformed projections

In the replicate earth transformation, the distance of the CPDF mean estimate from
the observations is critical in determining how broad the CPDF variance estimate
should be. The CPDF variance estimate is just the time-averaged variance between
the observations and the CPDF mean estimate. This means that if the CPDF
mean tracks the observations very closely, the difference between the mean and
the observations, and hence the CPDF variance, will be very small. If, on the
other hand, the CPDF mean estimate is very smooth, the natural variability in the
observations will ensure that the CPDF variance estimate is higher.

The obvious implication here is that an ensemble of simulations from models
which have over-fitted parameterisations will likely significantly underestimate the
variance. On the other hand, an ensemble of poorly performing models is likely
to overestimate variance. It is also worth noting here that the CPDF variance is,
to some degree, a function of the number of models. The more models that are
added to the ensemble, the more tightly the CPDF mean estimate can be fitted to
the observations. However, this is not likely to be a problem except for very large
ensembles, with a very short period, or low resolution. In our ensembles, we have at
most 25 models, and a corresponding number of free variables (the model weights),
with which to fit hundreds of thousands of data points, so over-fitting is not likely
to be a problem for these results.

The CPDF mean, ultimately, represents the mean response to all large-scale forc-
ings that all replicate earths would share. So the CPDF mean should respond to, for
example, changes in CO2, solar forcings, and volcanic and anthropogenic aerosols,



4.2. IMPACTS OF WEIGHTING METHODOLOGIES 47

which are shared input to models. It should not respond directly to chaotic fluc-
tuations in internal model processes, such as El-Niño Southern Oscillation (ENSO)
cycles, or large ocean and atmospheric eddies. It should capture changes in the pat-
terns of those chaotic fluctuations, for example, a state-shift that shuts down the
North Atlantic thermohaline circulation, or a shift to a permanent El Niño state, if
those changes are inevitable with the given boundary conditions. The difficulty then
lies in determining which changes are important, affecting every replicate earth, and
which are replicate-specific.

4.2.3 Comparison of paradigms

The results shown in Section 3.3 highlight a striking difference between the truth
plus error and replicate earth paradigms (introduced in Section 1.2). Under the
truth plus error paradigm we expect the observations to be the centre of the model
distribution, with extra random noise in the models. With this understanding, we
should expect the model error to be randomly distributed around the observations,
and hence expect a set of independent models to have a mean error correlation of
0.

In contrast, under the indistinguishable paradigm we expect that the observa-
tions are similar to model runs, as both are drawn from the same distribution.
Under the replicate earth paradigm, the same is true, but only if the model runs
adequately represent replicate earths. In both cases, “model errors” are actually a
linear combination of two samples (the model, minus the observations), and some
of the variance between a pair of model errors is contributed by the observations.
Thus, if the models and observations are independently drawn from the same distri-
bution, as in the indistinguishable paradigm, or are true replicate earths, then the
expected correlation between error pairs is actually 0.5 (Bishop and Abramowitz,
2012).

Under the replicate earth paradigm, if the models and observations are not
drawn from the same distribution – for example, if the models’ distribution has less
variance – then the observations contribute more variance to the linear combination,
and we should expect higher error correlations. Likewise, if the models’ spread is
higher than the observations, we should expect error correlations to be lower.

Figure 3.6 shows that the truth plus error paradigm would be hard to justify
with any of these ensembles. The confidence interval (CI) interval for the ICE and
PPE both exclude 0. The CIs intervals of the initial conditions ensemble (0.782,
0.80) also excludes 0.5, the value expected by the indistinguishable paradigm. The
CI for the PSE is far broader, partly due to the sample size, with a CI of (-0.2699,
0.9783), and includes both 0 and 0.5. The results for the ICE would be hard to
support even under the indistinguishable paradigm, where we would always expect
0.5 error correlation. But under the replicate earth paradigm, if models are not
replicate earth-like, we actually expect the error correlations to vary depending on
the variance in the observations relative to the variance in the models, and due
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to the very small spread of the initial conditions ensemble, a mean pair-wise error
correlation of 0.79 seems entirely understandable.

4.3 Tools used, and potential new directions

We have used and developed a number of ensemble analysis tools which have rarely,
or never, been used before in the field of climate modelling. Rank histograms
were introduced into the field by Anderson (1996), but have rarely been used until
recently (Annan and Hargreaves, 2010; Bishop and Abramowitz, 2012). As far as
we are aware, QQ-plots have never been used for this purpose. The pair-wise error
correlation histograms that we use in Section 3.3 have been alluded to in Annan
and Hargreaves (2010); Bishop and Abramowitz (2012), but have never before been
explicitly produced.

4.3.1 Rank Histograms

Rank histograms are useful tools for model verification. The methodology provides
a means to compare any ensemble to the observations to determine whether spread
is close the CPDF variance. This methodology can be applied to any model en-
semble. It would be possible, for example, to generate standardised ICEs for any
number of models, using default parameterisations, and then to compare the inter-
nal variability of different models by comparing rank histograms. Unfortunately,
different models do not always contain comparable numerical schemes and parame-
terisations, so this can not be used for simple comparison between different models
for PPE experiments. It could, however, be used to compare variability of a model
with different implementations of a particular component (e.g. the same atmosphere
and ocean model, with two different land surface schemes).

But there are a number of drawbacks to the rank histogram that may apply
in some situations. The resolution of the histogram is specified by the number of
models plus one, so it can be difficult to get a good understanding of the differences
in spread and distribution between models and observations for small ensembles.
Conversely, for large ensembles over short sample periods, the number of bins is
high, and there can be considerable noise in the histogram. Another problem is
that because the histogram is calculated on ranks, there is no possibility of catching
outliers – if the observations are a long way from the models, the rank will simply
be 1, or n+1, where n is the number of models.

4.3.2 QQ-plots

We used the QQ-plot as a means of overcoming these problems: the QQ-plot uses
real values, and so we potentially have the ability to spot large-scale temperature
anomalies. The resolution is also independent of the number of models, and is
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restricted only by the number of data points in the observational data set. The QQ-
plot can also be used for inter-model comparison, and using something as simple
as a linear regression on the QQ-plot data would allow us to numerically quantify
over- or under-dispersion.

However, our QQ-plot methodology is not without problems. Firstly, the prob-
lem of de-trending: if we simply use the raw bias corrected model data in compari-
son with the observations, we are comparing data sets that contain large, correlated
trends. These trends contain more variability than the natural grid-scale variability,
and, because of the high correlation, overpower the QQ-plot trend line. We used
a simple de-trending process involving subtracting multi-model mean from all the
models and the observations. Unfortunately this introduces some ambiguity: we
are now looking at the comparison of the distributions of differences between the
model and observations temperatures from the mean. This is certainly de-trended,
but meaning is quite hard to extract from this graph.

A potential solution lies in a more refined de-trending processes. It should be
possible to use annual, seasonal, and zonal de-trending; averaging over all models
or all models and observations, before computing the QQ-plot. This would allow
a simpler interpretation of the QQ-plot trend: the data plotted is the difference
from major trends. It may also be possible to de-trend based on some, but not all
major trends. For example, the data could be de-trended using only the annual and
seasonal trends, in order to compare the distribution of all spatial data, including
the zonal trend. This would allow a comparison of the zonal trend. The QQ-plot
is certainly an under-utilised tool in climate model verification, and there is large
scope for development here.

4.3.3 Error correlation histograms

Error correlation histograms are a very simple tool, yet give a good initial indication
of independence of the models in the ensemble, especially when combined with
rank histograms or QQ-plots. The exact interpretation of these diagrams is highly
dependant on ensemble interpretation paradigm, but, as we argue in Section 4.2.3,
the results provide a strong argument for rejecting the truth plus error paradigm,
and possibly the indistinguishable paradigm as well. If we adopt the replicate earth
paradigm, these diagrams provide very useful information, giving an indication of
the overall model variability relative to the observations. The ease with which these
diagrams are generated allow us to recommend them highly for future work on
ensemble analysis.

4.3.4 Comparison of observations to ensemble spread

In the last part of our results (Section 3.4.2), we present a method of comparing
observations to projections, by comparing how many of the observations fall into
the domain defined by the mean and the variance of the projection. We are not
aware of this having been done before. There is certainly some improvement that
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could be made to this methodology, for instance, the expected value for a perfect
ensemble is not known. However, this tool is useful even in its present form, and
could be used for verification and validation of previous projections. It could also
be used to guide future projections: if used in a similar way to this thesis, to create
a pseudo-projection over the last decade or so of our in-sample period, it may be
possible to get an estimate of the predictive power of projections over future periods.

4.4 Conclusions and Future Work

The results presented in this thesis form another stepping stone on the path to
understanding the impact of dependence on climate models. We have focussed on
three main areas: The effect of different ensemble generation methods, the impact
of different weighting methodologies on ensemble-based projections, and the devel-
opment of new ensemble analysis methods and tools.

We have shown that there are stark differences between ensembles generated
in different ways: initial conditions ensembles tend to have too narrow spread, and
hence tend to underestimate the variability in projections. There is no strong reason
to believe that this would be significantly different models other than Mk3L. In our
results, the perturbed parameter ensemble over estimated that variance, however,
this is likely highly dependant on the parameters perturbed, and the scale of those
perturbations, and is difficult to generalise to other perturbed parameters ensembles.
Our perturbed structure ensemble also exhibited a spread that was far too broad.
This is likely to be even more exaggerated in a true multi-model ensemble, where
there would usually be more diversity of model components within the ensemble.

These results have quite important ramifications for the field of climate mod-
elling. In particular, it should be expected that while mean projections from these
ensembles may be comparable, the range of uncertainty in the projections, as rep-
resented by ensemble spread, will be vastly different depending on what ensemble
generation technique is used. How this interacts with ensembles of opportunity
(such as the CMIP ensembles), or grand ensembles (mixed initial conditions and
perturbed parameter ensembles, such as the ClimatePrediction.net experiments) is
uncertain, but certainly deserves further investigation.

We have also shown that different weighting methodologies have large effects on
projections based on these ensembles. In particular, although mean projections will
improve under performance-based weighting, we have shown that projection vari-
ance may not, and may in fact dramatically worsen. Considering there is significant
effort being put into research in this area, these results have potentially far-reaching
consequences. There remains the possibility that this result is particular to error
variance-based results, and may be quite different for projections based on other
cost functions. Without evidence to support that conjecture, however, it seems un-
wise to assume so without further exploration, and care should be taken when using
performance based weighting for climate prediction.

Our results show that independence-based weighting does not suffer from this
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problem, and that both the projection mean and variance improve notably. The
improvement to the projection mean is notably better than that under performance
weighting, and the improvement to the projection variance is both better, and far
more consistent. This indicates that independence weighting could provide large
gains in projection accuracy, which could be hugely beneficial to society in general,
by reducing uncertainty around actions needed to avert the worst of climate change.

Because independence weighting is such a new area, there are certain to be
problems that we have not managed to uncover in this thesis. More work needs to
be done in testing this process. In particular, it would be useful to conduct similar
experimentation using different cost functions as the basis for the independence
measure. It would also be useful to apply the methodology to existing ensembles,
and compare the results to other weighting methodologies, as this may uncover
problems not apparent in the single-model ensembles that we have produced. Lastly,
it would be worth doing more in-depth study using toy models in order to classify the
conditions that produce pathological behaviour in the independence transformation
process, and to try to clarify if those pathologies might apply to real climate data
and models.

The ensemble analysis tools and methods that we have developed in this thesis
are fairly rough, and more development and testing is needed. QQ-plots in particu-
lar, while crudely used in this thesis, show potential to produce some quite nuanced
results. All of these tools provide good indicative results of ensemble performance,
and are relatively easy to apply. There appears to be no reason why their use
shouldn’t become more widespread.

The ultimate goal that this thesis begins to pave the way for is the ability to
design optimal ensembles, with the properties required, such as model independence,
and appropriate spread to produce the most accurate projections possible. There is
still significant work that needs to be done, much of which probably is unforseeable
at this stage. This goal is not going to be reached tomorrow. However, it is on the
horizon, and we hope that the work presented here has brought it closer.
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Abbreviations

AOGCM coupled atmosphere-ocean general circulation model. iii, 8, 44

AR3 3rd Assesment Report. 19

AR4 4th Assesment Report. 3, 6, 12, 25, 40

ARIMA Auto-Regressive Integrated Moving Average. 2

CCRC Climate Change Research Centre. v

CMIP3 Coupled Model Intercomparison Project Phase 3. iii, 3, 7, 13, 14

CMIP5 Coupled Model Intercomparison Project Phase 5. 3, 7, 13

CPDF climate probability density function. vii, 4–7, 10, 41, 43–48

CSIRO Commonwealth Science and Industrial Research Organisation. 18

ENSO El-Niño Southern Oscillation. 46

GCM general circulation model. 1

GISS Goddard Institute for Space Studies. 19

HadCRUT3 UK Met Office Hadley Centre/University of East Anglia Climate
Research Unit observations dataset. 17–19, 29

ICE initial conditions ensemble. 12, 13, 17, 19, 43–45, 47, 48

IPCC Intergovernmental Panel on Climate Change. 3, 6, 12, 19, 40, 44

IPO input-process-output. 10

Mk3L Mk3L Climate System model. v, 18, 19, 22, 50

MSE mean square error. 26, 32, 41

PCMDI Project for Climate Model Diagnosis and Intercomparison. 7

PDF probability density function. 10

PPE perturbed physical parameters ensemble. 13, 17, 19, 43–45, 47, 48
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PSE perturbed structure ensemble. 13, 17, 19, 23, 43–45, 47

RMSE root mean square error. 8, 26, 34, 38, 40

TSI total solar irradiance. 19, 29

UNSW University of New South Wales. v

WCRP World Climate Research Programme. 3
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