
Clim. Past, 9, 811–823, 2013
www.clim-past.net/9/811/2013/
doi:10.5194/cp-9-811-2013
© Author(s) 2013. CC Attribution 3.0 License.

EGU Journal Logos (RGB)

Advances in 
Geosciences

O
pen A

ccess

Natural Hazards 
and Earth System 

Sciences

O
pen A

ccess

Annales  
Geophysicae

O
pen A

ccess

Nonlinear Processes 
in Geophysics

O
pen A

ccess

Atmospheric 
Chemistry

and Physics

O
pen A

ccess

Atmospheric 
Chemistry

and Physics
O

pen A
ccess

Discussions

Atmospheric 
Measurement

Techniques

O
pen A

ccess

Atmospheric 
Measurement

Techniques

O
pen A

ccess

Discussions

Biogeosciences

O
pen A

ccess

O
pen A

ccess

Biogeosciences
Discussions

Climate 
of the Past

O
pen A

ccess

O
pen A

ccess

Climate 
of the Past

Discussions

Earth System 
Dynamics

O
pen A

ccess

O
pen A

ccess

Earth System 
Dynamics

Discussions

Geoscientific
Instrumentation 

Methods and
Data Systems

O
pen A

ccess

Geoscientific
Instrumentation 

Methods and
Data Systems

O
pen A

ccess

Discussions

Geoscientific
Model Development

O
pen A

ccess

O
pen A

ccess

Geoscientific
Model Development

Discussions

Hydrology and 
Earth System

Sciences

O
pen A

ccess

Hydrology and 
Earth System

Sciences

O
pen A

ccess

Discussions

Ocean Science

O
pen A

ccess

O
pen A

ccess

Ocean Science
Discussions

Solid Earth

O
pen A

ccess

O
pen A

ccess

Solid Earth
Discussions

The Cryosphere

O
pen A

ccess

O
pen A

ccess

The Cryosphere
Discussions

Natural Hazards 
and Earth System 

Sciences

O
pen A

ccess

Discussions

Skill and reliability of climate model ensembles at the Last Glacial
Maximum and mid-Holocene

J. C. Hargreaves1, J. D. Annan1, R. Ohgaito1, A. Paul2, and A. Abe-Ouchi1,3

1RIGC/JAMSTEC, Yokohama Institute for Earth Sciences, Yokohama, Japan
2University of Bremen, Bremen, Germany
3AORI, University of Tokyo, Tokyo, Japan

Correspondence to:J. C. Hargreaves (jules@jamstec.go.jp)

Received: 20 July 2012 – Published in Clim. Past Discuss.: 13 August 2012
Revised: 22 February 2013 – Accepted: 22 February 2013 – Published: 21 March 2013

Abstract. Paleoclimate simulations provide us with an op-
portunity to critically confront and evaluate the performance
of climate models in simulating the response of the climate
system to changes in radiative forcing and other boundary
conditions.Hargreaves et al.(2011) analysed the reliabil-
ity of the Paleoclimate Modelling Intercomparison Project,
PMIP2 model ensemble with respect to the MARGO sea sur-
face temperature data synthesis (MARGO Project Members,
2009) for the Last Glacial Maximum (LGM, 21 ka BP). Here
we extend that work to include a new comprehensive collec-
tion of land surface data (Bartlein et al., 2011), and introduce
a novel analysis of the predictive skill of the models. We
include output from the PMIP3 experiments, from the two
models for which suitable data are currently available. We
also perform the same analyses for the PMIP2 mid-Holocene
(6 ka BP) ensembles and available proxy data sets.

Our results are predominantly positive for the LGM, sug-
gesting that as well as the global mean change, the models
can reproduce the observed pattern of change on the broad-
est scales, such as the overall land–sea contrast and polar am-
plification, although the more detailed sub-continental scale
patterns of change remains elusive. In contrast, our results for
the mid-Holocene are substantially negative, with the models
failing to reproduce the observed changes with any degree of
skill. One cause of this problem could be that the globally-
and annually-averaged forcing anomaly is very weak at the
mid-Holocene, and so the results are dominated by the more
localised regional patterns in the parts of globe for which data
are available. The root cause of the model-data mismatch at
these scales is unclear. If the proxy calibration is itself reli-
able, then representativity error in the data-model compari-
son, and missing climate feedbacks in the models are other
possible sources of error.

1 Introduction

Much of the current concern over climate change is based on
decadal to centennial forecasts from climate models forced
with increased greenhouse gas concentrations due to anthro-
pogenic emissions. However, a direct assessment of the pre-
dictive performance of the models is not generally possible
because the time scale of interest for climate change predic-
tions is typically for decades or centuries into the future, so
we cannot build up confidence and experience via repeated
forecasts on a daily basis as is typical in the field of weather
prediction. Therefore, in order to have confidence in the abil-
ity of the ensemble to provide a credible projection of future
climates, we must try to develop other methods for assessing
the performance of models in simulating climates which may
be very different to today.

Paleoclimate simulations provide us with an opportunity
to critically confront and evaluate the performance of cli-
mate models in simulating the response of the climate sys-
tem to changes in radiative forcing and other boundary con-
ditions. A particularly attractive feature of using paleocli-
mate simulations is that, in contrast to the situation regard-
ing more recent climate changes, the performance of mod-
els over these intervals has not been directly used in their
development. Therefore, these simulations provide a truly
independent test of model performance and predictive skill
under substantial changes in external forcing. The extent to
which such assessments may then be used to imply skill
for future forecasts is still, however, open to some debate,
since not all the past climate changes are necessarily rele-
vant for the future. Models which provide the most realis-
tic simulations of past changes may not necessarily provide
the most accurate predictions of future change. Nevertheless,
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812 J. C. Hargreaves et al.: Paleoclimate multi-model ensemble skill

the potential of such assessments to help in evaluating model
performance provides strong motivation for research in this
area. The sparse and semi-qualitative nature of paleoclimatic
data (for example, interpretation as vegetation type) has mo-
tivated the development of advanced but semi-quantitative
methods, such as using fuzzy logic to measure model-data
mismatch (Guiot et al., 1999) and cluster analysis to clas-
sify types of model behaviour (Brewer et al., 2007). With
the advent of new more comprehensive syntheses of gridded
paleodata (MARGO Project Members, 2009; Bartlein et al.,
2011), it becomes possible to attempt more directly quanti-
tative analyses of model performance, which we undertake
here.

The second phase of the Paleoclimate Modelling Inter-
comparison Project, PMIP2 (Braconnot et al., 2007a), estab-
lished a common protocol of boundary conditions for two
different paleoclimate intervals, the Last Glacial Maximum
(LGM, 21 ka BP) and the mid-Holocene (MH, 6 ka BP). Of
the two, the LGM represents by far the greatest change
in climate with significantly decreased concentration of at-
mospheric carbon dioxide and other long-lived greenhouse
gases, and large ice sheets over the northern hemisphere
high latitudes. The climatic response was characterised pre-
dominantly by a large-scale cooling, albeit with substan-
tial regional variation (Annan and Hargreaves, 2013). The
forcing of the mid-Holocene is more subtle, with the only
changes considered by the models being that of orbital forc-
ing, and a moderate decrease in atmospheric methane. While
this results in substantial changes in the seasonal and spa-
tial pattern of the insolation, the annual mean forcing is
rather small. Rather than globally homogeneous changes,
the mid-Holocene experienced a number of more regional
changes (Steig, 1999), with one of the the largest relating
to shifts in monsoon patterns and the associated vegetation
changes (Braconnot et al., 2007b).

In this paper we extend our previous work presented
in Hargreaves et al.(2011), hereafter H11, which assessed
sea surface temperature at the LGM. We use several state of
the art proxy data syntheses for surface temperatures for both
the LGM and MH, and compare them to outputs from the
coupled atmosphere and ocean (AOGCM) and coupled atmo-
sphere, ocean and vegetation (AOVGCM) general circulation
models in the PMIP2 database. For the LGM we additionally
include the two models from the ongoing PMIP3 experiment
for which sufficient output are available at the time of writ-
ing. We perform analyses based on quantitative model eval-
uation methods which are widely used in numerical weather
prediction. We first present a rank histogram analysis to in-
dicate reliability. Secondly, we introduce a skill analysis us-
ing two different reference baselines. We also present Taylor
diagrams (Taylor, 2001). These diagrams summarise three
conventional statistics, and have been widely used to analyse
climate model ensemble output in the context of the modern
climate. In addition, we introduce some simple modifications

to these conventional statistics to account for observational
uncertainty.

We introduce the models and data used in the analysis in
Sect.2. Then we overview the methods for analysis of reli-
ability and skill in Sect.3. In Sect.4 we present the results
from the LGM and MH, and this section is followed by the
discussion and conclusions.

2 Background to the model runs and proxy
reconstructions

2.1 Last Glacial Maximum

All the PMIP2 models analysed in this paper are either phys-
ical coupled climate models comprising atmosphere, ocean
and sea ice components (AOGCMs), or additionally includ-
ing vegetation modules (AOVGCMs). One of the models,
ECBILT, is an intermediate complexity model (see Table1).
For the LGM, the forcing protocol (Braconnot et al., 2007a)
comprises a set of boundary conditions including large north-
ern hemisphere ice sheets, altered greenhouse gases includ-
ing a reduction to 185ppm for atmospheric carbon dioxide,
a small change in orbital forcing, and altered topography.
There are some minor changes in the multi-model ensemble
compared to our previous analysis of this ensemble in H11.
Firstly, the output of the run from IPSL has been updated.
In addition, previously the number of days in each month
(which differs across models) was not taken into account
when calculating the annual mean from the monthly data.
This has been corrected, making a small difference to the
values of the annual mean obtained. We require both surface
air temperature (SAT) and sea surface temperature (SST) for
our main analysis, and therefore only use the 9 models in
the database for which both these variables are available.
The boundary conditions for the PMIP3 experiments (see
http://pmip3.lsce.ipsl.fr/) are slightly revised, primarily in re-
spect of the ice sheet reconstruction, but remain sufficiently
similar that it seems reasonable to also include these models
where possible. We therefore also include two models from
the PMIP3 experiments for which SAT and SST outputs were
available. Thus we have a total of 11 models.

Where centres have contributed more than one model to
our ensemble, there are reasons to expect that these mod-
els will be particularly similar to each other (Masson and
Knutti, 2011) but there is little consensus about how to treat
this. We start from the premise of assigning equal weight
to each model. However, including two model versions that
are identical to each other would be clearly pointless and in-
deed harmful as it would be equivalent to double-counting
one model and would therefore reduce the effective sample
size of our ensemble, degrading the results. The only differ-
ence between MIROC3.2 and MIROC3.2.2 (which are both
in the PMIP2 database) is that one minor bug has been fixed
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in the latter, so we included only the latter model in the en-
semble. For substantially updated versions of the same model
(such as might exist in consecutive iterations of the PMIP
experiments) or AO and AOV versions we would expect the
differences to be rather greater. But, ideally we should wish
for each new model included in the ensemble, to be not par-
ticularly more similar to one existing model than it is to
all the others. Therefore, although our main analysis assigns
equal weight to each model, we also test whether our results
are changed by downweighting or excluding some particular
sets of models in an attempt to compensate for model simi-
larity.

The proxy data compilations that we use are largely based
on two recent syntheses of land (SAT) and ocean (SST)
data. The ocean data is primarily that of the MARGO syn-
thesis (MARGO Project Members, 2009), but with a small
number of points having been updated bySchmittner et al.
(2011). These updated points may not be fully homogeneous
with the original MARGO data set as the data error has not
necessarily been estimated in an identical way. The land data
is primarily the pollen-based compilation ofBartlein et al.
(2011), again with some additions bySchmittner et al.(2011)
which includes some data from ice cores. TheBartlein et al.
(2011) data set may be considered a somewhat more ad hoc
data set than the MARGO synthesis, in that the data and er-
ror estimates have been directly drawn from the original lit-
erature in which the underlying data were presented, rather
than being recalculated homogeneously across the data set
as inMARGO Project Members(2009). In addition, the tem-
perature anomalies inBartlein et al.(2011) are taken relative
to the core tops in contrast to the modern World Ocean Atlas
data that were used to anchor the MARGO anomalies. The
SST data are analysed on the MARGO 5 degree grid, while
all the SAT data are on a 2 degree grid. After removing grid
points for which SST information is unavailable in one or
more models (due to their differing land sea masks), there
are 309 SST points left for comparison with PMIP2, and
300 points for comparison with PMIP2 + PMIP3. Our goal
is to assess the model response to imposed forcing, rather
than the forcing itself, so for the land data we remove those
points for which 50 % or more of the grid box area lies under
the model’s ice sheet. This affects 11 points, leaving 95 land
points for both PMIP2 and PMIP3. Thus we have a total of
404 points for comparison with PMIP2 and 395 for compar-
ison with the combined PMIP2 and PMIP3 ensemble.

Estimates of the data error uncertainty are included for all
the data points, although we note that the MARGO errors are
only defined in terms of their relative reliability. As in H11,
we assume these values can be interpreted as Gaussian uncer-
tainties in degrees Celsius, which gives an apparently plau-
sible magnitude of uncertainties. The resulting errors range
from 0.24◦C to 6.4◦C across the data set, with a large ma-
jority of values lying in the range 1◦C to 2.5◦C. However,
Annan and Hargreaves(2013) found some cause for concern
in these error estimates and so we also test the sensitivity of

our results to this. The model SST output was interpolated
on to the 5 degree MARGO grid and the SAT onto the 2
degreeBartlein et al.(2011) grid. We use equal weighting
for each grid box. The data and their uncertainty are shown
in Fig. 1.

2.2 Mid-Holocene

For PMIP2 the mid-Holocene protocol includes only
two changes compared to the pre-industrial climate. Or-
bital forcing parameters are changed, and the atmospheric
methane concentration is decreased slightly (from 760 ppb
to 650 ppb). The changes in orbital parameters affect the sea-
sonal pattern of insolation. Annually averaged, however, the
insolation is everywhere very similar for pre-industrial and
6ka, so we expect to see only a modest signal in the an-
nual mean temperature field. Therefore, our primary interest
is in changes in the seasonal cycle, although we also con-
sider annually averaged temperature. There are 11 AOGCMs
and 6 AOVGCMs in the PMIP MH ensemble that have both
SAT and SST data available. Only one of the AOVGCMs,
ECHAM, does not have a counterpart AOGCM in our en-
semble (see Table1). As well as the full ensemble, we also
analyse a conservative ensemble where versions of the same
model are downweighted (as discussed in Sect.2.1) so that
each underlying model has a total weight of 1.

For the land temperatures at the MH we use the pollen-
based data set ofBartlein et al.(2011). This synthesis in-
cludes estimates of annual average temperature as well as
the temperatures of the hottest and coldest months, which in-
dicate changes in the seasonal cycle. An uncertainty estimate
is also included for all points, which ranges from 0.04◦C
to 4.8◦C over all the variables. The values at the lower end
of this range appear particularly optimistic, and so we also
perform some sensitivity tests to investigate the robustness
of our results to these values. The number of data points
varies slightly between the different variables (between 615
and 638), and the data are very clustered with high density in
Europe and North America. The data, and the data error for
the hottest month are shown in Fig.2.

The “GHOST” SST data set (Leduc et al., 2010) contains
annual average estimates of annually averaged SST at both
6 ka and core-top for only 81 sites, and, while recognising
that the core top is not an ideal or wholly consistent refer-
ence point (as the dates, and therefore climates, represented
by the core tops may vary across the data set), we neverthe-
less take the difference between these two values to represent
the annually averaged MH temperature anomaly with respect
to the pre-industrial climate. Seasonal SST data are, as yet,
unavailable. Many of these points are quite close to the coast,
and due to varying coastlines in the models, SST output from
all models is available for only 42 points. Data uncertainties
are not readily available so for this analysis we assumed a 1
standard deviation error of 2◦C for all the points, which is
representative of the data uncertainty of the MARGO SSTs.

www.clim-past.net/9/811/2013/ Clim. Past, 9, 811–823, 2013
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LGM anomaly, Data

LGM anomaly, Data Uncertainty

oC
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(a)

(b)

Fig. 1. (a)LGM temperature anomaly for the proxy reconstructions described in Sect.2.1. The colorbar axes are chosen to best display the
data. The actual minimum and maximum are−16◦C and 6.32◦C. (b) The value of the uncertainty on the annual mean included in the data
synthesis. Max = 6.42, Min = 0.24 Mean = 1.73.

Since we have no seasonal information for the ocean, most
of our analyses are for the land only. These comprise the
anomaly for the annual average, and the hottest and cold-
est months. Given the nature of the forcing, the change in
the magnitude of the seasonal cycle would seem the most
obvious target for the MH, but there is some concern that
calculating the anomaly of the hottest month minus coldest
months may not provide a completely fair comparison with
the data as the same proxies are not used to compile the two
data sets. For the land and ocean together we analyse the an-
nual average anomaly only.

It is clear that for the MH although we have more data
points in total, the coverage is substantially less uniform than
for the LGM and very sparse over large areas. As with the
LGM analysis, we give equal weight to each data point. It is
possible that the hottest month in the tropics may not be the
same for the models and data due to the ways the calendars
are configured (Joussaume and Braconnot, 1997). We have
few data in the tropics, and the actual error in the value of
the anomaly arising from this issue is expected to be small,
so we do not expect this to have a significant effect on our
results.

3 Ensemble analysis methods

3.1 Reliability

To assess the reliability of the ensembles we adopt the
same approach used in several recent papers (Annan and
Hargreaves, 2010; Hargreaves et al., 2011; Yokohata et al.,
2011), in which we interpret the ensemble as representing
a probabilistic prediction of the climate changes and assess
its performance by means of the rank histogram (Annan and
Hargreaves, 2010) formed by ranking each observation in the
ensemble of predictions for each data point. In the case of a
perfectly reliable ensemble (meaning that the truth can be
considered as a draw from the distribution defined by the en-
semble), the rank histogram would be flat to within sampling
uncertainty. For an ensemble that is too wide such that the
truth is close to the mean, the histogram is dome shaped.
Conversely, an ensemble that is too narrow (often not includ-
ing the truth) has a U-shaped rank histogram, with large val-
ues in one or both end bins. The analysis for the PMIP2 LGM
ensemble using only the MARGO data set was already per-
formed in H11, and overall produced encouraging results. In

Clim. Past, 9, 811–823, 2013 www.clim-past.net/9/811/2013/
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oC

oC

Data 

Data Error 

(a)

(b)

Fig. 2. Mid-Holocene temperature anomaly for the hottest month from the proxy reconstructions described in Sect.2.2: (a) data,
Max = 10.0◦C, Min =−20.1◦C, (b) data error, Max = 3.3, Min = 0.05, Mean = 0.96.

this analysis we extend this test by including land data. We
also analyse the performance of the ensemble at the MH, for
which a larger ensemble of model simulations is available.

In order to make the models and data comparable, we
follow the same procedure as H11 to account for data un-
certainty, by adding random deviates (sampled from the as-
sumed distributions of observational errors) to each model
output before calculating the rank histogram. Thus, if reality
was a sample from the model distribution, then the impre-
cise observation will also be a sample from the distribution
of perturbed model outputs. We use the same statistical tests
as H11 to quantify the significance of any divergence from
flatness of the rank histogram (Jolliffe and Primo, 2008).
The rank histogram test is only a necessary but not suffi-
cient test of reliability, in that an ensemble which does not
have a flat rank histogram may be considered unreliable, but
a flat rank histogram does not necessitate reliability (Hamill,
2001). Indeed, with a large enough ensemble and fine data
coverage we generally expect the ensemble to be unreliable
at some level, and thus this test is not whether the ensemble is

perfect, but rather whether the limitations are so substantial
as to be immediately apparent with this standard test. In pre-
vious applications such as H11 andYokohata et al.(2011), it
has been found that the ranks of nearby observations are of-
ten highly correlated, and therefore the effective number of
degrees of freedom are substantially lower than the number
of data points. In order to estimate the number of degrees of
freedom, we adopt the EOF analysis approach ofBretherton
et al.(1999), as used byAnnan and Hargreaves(2011). That
is, rather than the conventional approach which typically uses
a sequential series of fields, we calculate the EOFs of the en-
semble of modelled equilibrium states. Analysing the LGM
fields of SAT and SST for the model ensembles, we estimate
a value of 8 degrees of freedom, which we use throughout our
analyses. Our results are insensitive to reasonable changes in
this value.

www.clim-past.net/9/811/2013/ Clim. Past, 9, 811–823, 2013
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Table 1.Overview of the model versions used in the different ensembles analysed. The names correspond to the filenames in the PMIP2 and
CMIP5 databases.

Model PMIP2 LGM AOGCM PMIP2 LGM AOVGCM PMIP3 LGM PMIP2 MH AOGCM PMIP2 MH AOVGCM

CCSM CCSM3 CCSM3
CNRM CNRM-CM33
CSIRO CSIRO-Mk3L-1.1
ECBILT∗ ECBILTCLIO ECBILTCLIOLOVECODE ECBILTCLIOLOVECODE
ECHAM ECHAM53-MPIOM127-LPJ MPI-ESM-P ECHAM53-MPIOM127-LPJ
FGOALS FGOALS-1.0g FGOALS-1.0g
FOAM FOAM FOAM
GISS GISSmodelE
HadCM3 HadCM3M2 HadCM3M2 UBRIS-HadCM3M2a UBRIS-HadCM3M2
IPSL IPSL-CM4-V1-MR IPSL-CM5A-LR IPSL-CM4-V1-MR
MIROC MIROC3.2.2
MRI-nfa MRI-CGCM2.3.4nfa MRI-CGCM2.3.4nfa
MRI-fa MRI-CGCM2.3.4fa MRI-CGCM2.3.4fa

∗ECBILT is the only EMIC in the ensemble. All the other models are full general circulation models.

3.2 Skill

The concept of model skill in climate science has been oc-
casionally touched upon, but it has rarely been clearly and
quantitatively defined (Hargreaves, 2010). Here we use the
term skill in the sense in which it is in common use in nu-
merical weather prediction, which is as a relative measure
of performance: skill compares the performance of the fore-
cast under consideration, to that of a reference technique
(Glickman, 2000). Perhaps the most straightforward of these
is the skill score (SS) defined by

SS= 1−

(
Ef

Eref

)
, (1)

whereEf is the error of the forecast under evaluation, and
Eref is the error of the reference technique. A perfect forecast
will have a skill score of 1, one which has errors equal to that
of the reference will have a skill score of 0, and a negative
skill score implies that the errors of the forecast are greater
than that of the reference. It is conventional to describe a
forecast with positive skill score as “having skill”, but note
that this is always defined relative to a specific reference. So
for example, using a root mean square difference to evaluate
the forecast, one has

S = 1−

√∑
i (mi − oi)2∑
i (ni − oi)2

, (2)

wheremi are the forecast results,oi the data andni the refer-
ence. According to this equation, however, in the presence of
error on the data, even a perfect model (where the model pre-
diction precisely matches reality) would not achieve a skill
of 1. Especially in the case of paleoclimates, the uncertainty
on the data is often substantial (Hargreaves et al., 2011), and
must be taken into account for a fair evaluation. We therefore
modify Eq. (1) as follows:

S = 1−

√∑
(mi − oi)2 −

∑
(e2

i )∑
(ni − oi)2 −

∑
(e2

i )
(3)

whereei are the one standard deviation uncertainties on the
observations. The numerator and denominator in the fraction
have here been adjusted to account for the observational er-
rors, under the assumption that these are independent of the
forecast errors. Note that the skill score here becomes unde-
fined if either the model or the reference agrees more closely
with the data than the data errors indicate should be possible.
Such an event would be evidence either that the data errors
are overestimated, or else that the model had already been
over-tuned to the observations. In principle, no model should
agree with the data with smaller residuals than the observa-
tional errors, since even reality only just achieves this close
a match, and only then if the observational errors have not
been underestimated.

For the obvious reason that long-term forecasts are have
not been generally realised in climate models, skill analy-
ses of this nature for climate model predictions are rare. One
simple analysis was performed byHargreaves(2010), which
indicated that, at least on the global scale, the 30 yr fore-
cast made by Hansen to the USA congress in 1988 had some
skill. Unfortunately, regional data from this forecast were not
available for testing. We are not aware of previous analyses
of model skill for paleoclimates and it has not been estab-
lished what might be an appropriate reference forecast for
such calculations. In numerical weather prediction, persis-
tence (that tomorrow’s weather is the same as today’s) is a
common baseline for short-term forecast evaluation. How-
ever, for seasonal prediction, where persistence is clearly in-
appropriate, it would be more usual to use the seasonal cli-
matology as a reference. An analogous reference for climate
change predictions might be that the climate persists, that is,
a reference of no change. It should be clear that this is a rather

Clim. Past, 9, 811–823, 2013 www.clim-past.net/9/811/2013/
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minimal baseline to beat, only requiring that the model pre-
dicts any forced response at each location to within a fac-
tor of anywhere between 0 and 2 times the correct ampli-
tude (on average). On the other hand, it is worth checking,
as it provides a baseline test as to whether the models are
responding in a qualitatively appropriate manner. We might
reasonably hope for our models to perform rather better than
this, and provide a useful prediction not only of the over-
all magnitude, but also the spatial pattern of change. Thus
we also employ a second reference to test the pattern of the
change more directly. For this reference forecast, the climate
change is assumed to be a uniform change equal to the mean
change of the available data. This represents the case of a
perfectly-tuned zero dimensional energy balance, in which
the global mean temperature change is predicted which opti-
mally matches the data, but without any information on the
spatial pattern. In order to have skill with respect to this ref-
erence, the model must also represent the spatial pattern of
change relative to this global mean.

3.3 Conventional Taylor diagram analysis

We also present an analysis of the model outputs in terms
of the conventional statistics of (centred) RMS difference,
correlation and field standard deviation which will be famil-
iar to many readers. Such values are conveniently presented
in a Taylor diagram (Taylor, 2001) which summarises these
three values with a single point. The usual calculation and
presentation of these statistics does not account for observa-
tional uncertainty, andTaylor (2001) only suggests investi-
gating the effect that this might have on the results through
the use of multiple data sets, which we do not have here.
However, since we do have estimates of observational un-
certainty, we can instead adjust the statistics to account for
this. We present our results based on two approaches. First,
we present the conventional results, without accounting for
observational uncertainty, but also indicate where a hypo-
thetical “perfect model” (which exactly matches the real cli-
mate system) would be located. This is straightforward to
calculate (under the natural assumption that observational
errors are independent of the climatic variables), as its nor-
malised RMS difference from the imperfect observations will
be just the root mean square of the observational uncertain-
ties divided by the standard deviation of the observations,
and the field standard deviation will add in quadrature to
the errors to give the observational standard deviation, thus
sd2

real = sd2
obs− sd2

errors. We also present an alternative ap-
proach, in which we correct the statistics for each model, to
indicate where they would be expected to lie relative to per-
fect observations. This is an equally simple calculation when
error estimates are given, as for example the RMS model-
truth difference is calculated by subtracting (again, in quadra-
ture) the estimated errors from the model-data differences.

4 Results

4.1 Last Glacial Maximum analyses

4.1.1 LGM Reliability

Figure3shows the reliability analysis for the combined LGM
ensemble of 11 models for all the points at which we have
data. Overall, the ensemble has a rank histogram which can-
not be statistically distinguished from uniform (Fig.3b), and
the differences between the data and the ensemble mean
(Fig. 3c) are mostly of similar magnitude to the uncertainty
in the data. Looking at the map in Fig.3a, there are some
patches that are predominantly red or blue, indicating the
spatial limit to the reliability. Analysing the ocean and land
data separately (Fig.4) we find that, assuming 8 degrees of
freedom, the ensemble is statistically reliable with respect
to both. However, we note that the histogram for the land
(Fig. 4c) has a fairly large peak at the left hand side, indicat-
ing that the ensemble tends to have a greater anomaly than
the data. It is also apparent that the difference between the
ensemble mean and the data is larger for the land than for
the ocean (Fig.4d). This model-data difference exceeds the
quoted data uncertainty much more frequently for the land
than for the ocean.

Paleoclimate data are derived from measurements made
from cores drilled into the surface of the earth at discrete lo-
cations. The open ocean may be considered laterally quite
well mixed, whereas land has many more local features due
primarily to high resolution topography. Thus it may be more
difficult to derive a representative grid box average temper-
ature from proxy data for direct comparison with the mod-
els over the land, than over the ocean. On the grid scale of
the models, one sees more variation over land than ocean,
but even so it is likely that the models have inadequate spa-
tial variability at this scale due to smoothing in the forcing,
boundary conditions, and dispersion in the model numerics.
Thus it is understandable that the model data mismatch is
greater over the land due to this “representativeness” error
(so called because the issue is not that the data are erroneous
per se, but rather that they may not represent the observa-
tional equivalent of a model grid-box climatology).

With this in mind, we performed some sensitivity analy-
ses into our treatment of the ensembles and the errors, which
demonstrate overall that our results appear to be robust to
these choices. Focussing first on the issue of model similar-
ity (discussed above in Sect.2.1) we do find that in terms of
correlation and RMS differences, successive generations of
models from a single centre, or AO and AOV versions of the
same model, are generally more similar to each other than to
other models in the sample. Therefore, we first excluded the
two PMIP3 models which provide both SAT and SST. This
does not make a difference to the level of reliability, a result
consistent with the suggestion that CMIP3 and CMIP5 mod-
els do not appear to have substantially different behaviour in
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Rank of data in model ensemble.

Rank histogram Ensemble mean bias

Temperature (oC)Rank

(a)

(b) (c)

Fig. 3. (a) The rank of the data in the 11 member LGM ensemble.(b) Rank histogram of the ranks in plot(a). (c) The histogram of the
difference between the ensemble mean and the data for each data point in plot(a). A low rank indicates that the climate change is greater in
the models than the data.

distribution (though with only two PMIP3 models, any dif-
ference would be hard to detect in any case). As an alternative
to excluding models, we also tested down weighting models
which were related in this way, assigning half weight to each
model in the pair. In the case of our 11 member ensemble,
this means that the PMIP2 and PMIP3 IPSL and ECHAM
(MPI) models each had half-weight each as did the PMIP2
HadCM2 AO and AOV models. The results of the rank his-
togram analysis are not significantly different for those using
the whole ensemble equally weighted.

Due to our concerns over the magnitude of the data un-
certainties (Annan and Hargreaves, 2013), we also tried an
assumption of spatially uniform errors, setting this value to
2◦C (close to the mean of the individual error estimates). Our
results are unchanged by this alteration.

4.1.2 LGM Skill

Figure5 shows the results for the skill calculations for the
LGM anomaly. For the PMIP2 and PMIP3 models, we anal-
ysed ocean and land both separately and together, and we
also calculated the skill for the multi-model mean along with

(a) Rank histogram for ocean points 

(c) Rank histogram for land points 

Rank

Rank

(d) Ensemble mean bias

(b) Ensemble mean bias

Temperature (oC)

Temperature (oC)

Fig. 4. Rank histograms and mean bias histograms for the LGM
anomaly, considering the ocean and land separately.
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Fig. 5.Skill for the LGM anomaly. The top plot shows the result us-
ing the first reference that the LGM anomaly is zero, and the lower
plot the results using the second reference that the LGM anomaly is
equal to the data mean.

each model individually. For the first reference forecast, of a
zero LGM anomaly, there is skill for both the land and the
ocean individually, and both combined. As expected (Annan
and Hargreaves, 2011) the multi-model mean performs rela-
tively well. Thus we can see that in general the models are
producing a cooling that, overall, is of the same scale as the
data. As mentioned above, this is, however, a rather limited
test. A skill score of 0.5 indicates that the modelled anoma-
lies are typically 50 % greater or smaller than observed.

The second reference forecast is of a uniform field equal
to the data mean. This provides a much greater challenge
to the models, as they have to not only reproduce a broad-
scale cooling of the correct magnitude (which the reference
forecast already achieves), but must also represent the spa-
tial pattern and magnitude of changes. While on the face
of it, this still does not seem like a highly challenging re-
quirement (given the well-known phenomena due to land–
ocean contrast and polar amplification), none of the models
have high skill against this reference, and in fact more than
half the models have negative skill when assessing the land
and ocean separately. Separate assessment of these data sets
eliminates the influence of the large land–sea contrast and
thereby provides a stiffer challenge. The skill of the multi-
model mean is generally greater, especially for the ocean

where it outperforms all of the ensemble members, and is
also positive for the land. This indicates that the broad scale
features which remain after the models are averaged, do bear
some relation to the spatial pattern in the data.

The combination of land and ocean together shows much
improved skill for all the models compared to the assess-
ments of land and ocean separately. The main reason for this
greatly improved performance is that the land–ocean contrast
itself is a fairly dominant feature of the climate state which
is reasonably well represented in the models, even when they
cannot accurately represent the spatial patterns on either land
or ocean. This is encouraging, especially in light of recent
work (Schmittner et al., 2011) in which an intermediate com-
plexity model appeared to underestimate this land–sea con-
trast significantly. In the data, the LGM anomaly is larger
over the land than the ocean, with the simple averages of the
data points (making no attempt to account for spatial dis-
tribution) over these regions being−6.53◦C and−1.98◦C,
respectively, giving a land–ocean ratio of 3.30. For the mod-
els, the averages over the data points are from−3.59◦C to
−9.00◦C over the land and from−1.88◦C to−2.95◦C over
the ocean, and the land–ocean ratios range from 1.90 to 3.09.
So the data ratio is outside the model range, but not neces-
sarily to an alarming degree. It seems plausible that missing
forcings (such as dust forcing) may have more effect over
land than ocean (Schmittner et al., 2011), which could imply
the error is more in boundary conditions rather than models
themselves. Overall it must be noted that the levels of skill
are not particularly high based on either of the two reference
forecasts, suggesting that much of the sub-continental spatial
pattern of the change is not being reproduced by the models
and that there is plenty of scope for improvement.

4.1.3 LGM Taylor Diagram

Conventional statistics are presented in the form of a Tay-
lor diagram in Fig.6. The modelled LGM anomalies shown
in the top plot have correlations with the data which range
from around 0.4 to almost 0.7, with a centred RMS differ-
ence which is somewhat lower than the standard deviation of
the data itself (which is 3.5◦C in this case). However, obser-
vational errors are quite large, as is indicated by the location
of the theoretical “perfect model”. The lower plot shows that
if instead we had “perfect data” with no observational uncer-
tainty, we could expect the correlations to mostly lie in the
range 0.6–0.8 and the RMS difference from the data would
also be substantially smaller.

4.2 Mid-Holocene analyses – reliability, skill, and
Taylor diagrams

For the MH we analysed eight ensembles. For both the full
and conservative ensembles we analysed the temperature
anomalies for the annual average, and the hottest and coldest
months. For the annual average we made separate analyses
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(a) Conventional Taylor Diagram
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Fig. 6. Taylor diagrams for the LGM mean temperature anomaly and MH hottest month anomaly. Distance from origin indicates standard
deviation of field, distance from reference point indicates centred RMS difference between model and data, and pattern correlation is given
by the azimuthal coordinate. The left plot shows conventional analysis, with the location of the “perfect model” indicated for comparison.
The right plot shows the analysis where model statistics are corrected to account for observational errors. All results are normalised by the
standard deviation of the data fields.

with and without including the GHOST ocean data. The re-
sults obtained for the MH are mostly negative for both the
reliability and skill analyses. Of all the analyses, only three
ensembles are not shown to be unreliable (through signifi-
cantly non-uniform rank histograms), and even these are vis-
ibly tending towards being U-shaped (see Fig.7). These are
the mean temperature anomaly for land and ocean for the
conservative ensemble (where we downweight similar mod-
els), and the coldest month anomaly for both the full and
conservative ensembles. The anomaly for the hottest month
is unreliable. This anomaly is also considerably larger in the
models than that of the coldest month, and thus although we

do not directly test it, we expect that the anomaly in the sea-
sonal cycle is also unlikely to be reliably predicted by the
models.

For the skill analyses, the picture is even worse, with most
models having negative skill for most target data sets, and
no models or model means having skill greater than 0.1
(not shown). There is no indication in the skill results, or
in an analysis of the RMS model-data differences, that the
AOVGCMs models perform any better than the AOGCMs.
This is somewhat disappointing as it is widely thought that
vegetation feedbacks had a strong influence on the climate
of the MH interval. The best results in these analyses were
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Fig. 7.Rank histograms for the three out of the eight ensembles analysed for the mid-Holocene which passed the statistical test for reliability.
They nevertheless show a tendency towards being too narrow.

when we tested ocean (annual mean) data only, and in this
case a majority of models exhibited very small positive skill.
The Taylor diagram (Fig.6) also indicates poor results for
the MH hottest month. Correlations are typically negative
(albeit small), and the model fields exhibit substantially too
small variability. In contrast to the situation for the LGM in
Sect.4.1.3, accounting for observational uncertainty (which
is estimated to be relatively small) does not improve these
results significantly.

As is the case for the LGM data, some of the observa-
tional error estimates appear optimistic, reaching values as
low as 0.04◦C. Therefore, we tested the impact of replacing
the stated error estimates with a spatially uniform value of
2◦C. However, this barely affects our results.

5 Discussion

Our results for the LGM are generally positive, indicating
that state of the art climate models are responding to these
large changes in boundary conditions in a manner which is
not only qualitatively correct, but also quantitatively reason-
able. The large-scale cooling simulated by most models has
an appropriate magnitude and the pattern shows reasonable
agreement with the data, primarily dominated by land–ocean
contrast and polar amplification. These results are not sur-
prising, being consistent with (and extending) the analysis of
H11, but it may be the first time that this has been shown in
a quantitatively detailed manner using comprehensive global
data sets. Even for the LGM, however, the sub-continental
patterns show weaker agreement with data, as is indicated by
the rather poor skill scores relative to the second null hypoth-
esis of a uniform temperature change. On average, the agree-
ment between models and data at the LGM is a little better
over the ocean than over land. The high spatial variability in

some land data, and limited model resolution, suggests that
part of this mismatch may be due to “representativeness” er-
rors.

The MH lacks the strong annual mean forcing that is
present at the LGM, and we have seen from the LGM re-
sults that the models perform better at the large spatial scales.
Thus, we expect the MH interval to provide a greater chal-
lenge for the ensemble. The challenge is further increased
because, in comparison with the LGM, for the MH we have
far more land data points and far fewer ocean points. Thus
the “representativeness” error alone could cause the model-
data disagreement to be greater for the MH than LGM. The
data are not evenly distributed around the globe at the MH,
with high density in Europe and North America, but very
poor coverage elsewhere on land and in the oceans.

Consistent with these expectations, we find that the MH
results are substantially poorer than those for the LGM in
all respects. Indeed the ensemble is largely unreliable at the
MH, with essentially zero (or even negative) skill. Further-
more, it appears possible from examination of the data that
there are coherent spatial patterns in reality that are not quan-
titatively reproduced by the models. To make this point more
clearly, we rebinned the data and the multi-model mean for
the hottest month into 10 degree boxes. The result is shown
in Fig. 8. In Europe and Africa, the anomaly in the observa-
tions appears predominantly positive. In North America, the
anomalies are smaller and more mixed. The data are, how-
ever, generally sparse so it is far from certain whether or not
there is a significant spatial pattern in the data. What is clear
is that to the extent that there is a pattern in the data across
these regions, it is substantially different to that of the multi-
model mean response to the forcing. Thus it appears that the
model-data mismatch is not just due to sub-grid-scale vari-
ability. It should be noted that the models are responding to
the applied forcing much in the way that would be expected
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Fig. 8. The hottest month MH anomaly rebinned onto a 10 degree
grid, to more clearly illustrate the model-data mismatch on the sub-
continental scale.

from simple physical intuition, with changes in seasonality
directly relating to the changes in radiative forcing, and lit-
tle change in annual mean temperature. Therefore, it seems
likely that missing or erroneous feedbacks in the models are
contributing to the mismatch. Poor representation of vege-
tation itself is one possible cause, though it should also be
noted that climate models have limited ability to represent
fine details of precipitation which, while not directly tested
here, will also likely lead to significant errors in vegetation
cover. Improved global data coverage should help to clarify
the source of model-data mismatch.

While more qualitative approaches have produced some
positive results for the MH (Brewer et al., 2007), our di-
rect comparison of gridded data to model output highlights
the substantial discrepancies. When considering only ocean
data,Schneider et al.(2010) andLohmann et al.(2012) found
positive correlations between model results and proxy data,
but also showed their models to greatly underestimate the
magnitude of the changes. When we use only ocean data,
we find consistent results, with many models showing posi-
tive skill for the annual mean temperature change, but only
at an extremely low level (typically less than 0.02 in absolute
magnitude). The correlations are somewhat larger, averaging
0.3 across the ensemble. Understanding and reducing the dis-
crepancy in magnitude of response between models and data
remains a major challenge.

6 Conclusions

In this paper we extended our previous analysis of the LGM
to include more data, more models, and the MH interval. We
also performed the first conventional analysis of predictive
skill for paleoclimate GCMs, and present Taylor diagram
summaries for both intervals. In these model-data compar-
ison exercises, we have obtained generally positive and en-
couraging results for the LGM, showing that the models pro-
duce generally reasonable and informative predictions of the
large-scale response to strong forcing. However, limitations
are apparent at finer scales. The model-data mismatch is quite
large but it is possible that representativeness error in the data
is obscuring the signal, particularly on land.

The MH, with its much smaller net climate forcing, clearly
highlights the difficulties of reproducing sub-continental
scale patterns of climate change. For this experiment the
global climate change signal is very small, and the changes
are sub-continental and seasonal in nature, possibly involv-
ing significant vegetation feedbacks.

For the point of view of directly using existing models
to constrain future climate, the LGM with its large forcing
seems the most promising of the two experiments (e.g.Har-
greaves et al., 2012). However, climate science is now fac-
ing the challenge of predicting future changes on regional
scales, which includes the requirement to correctly model
vegetation and many other feedbacks. Our results provide
some sobering evidence of the limits to the ability of current
models to accurately reproduce the local patterns of change
that are seen in paleoclimate data. Therefore, unlocking the
reasons for the local to regional model-data mismatch for pa-
leoclimates should be a powerful contribution to furthering
progress in this area.

Both data and model archives are subject to change.
The model output used here were obtained from the model
archives in mid-2012. The data were obtained from Andreas
Schmittner’s website, and directly from Pat Bartlein around
the same time. For reasons of reproducibility, we include the
derived output from the models, and the data that we used, in
the Supplement to this paper.

Supplementary material related to this article is
available online at:http://www.clim-past.net/9/811/2013/
cp-9-811-2013-supplement.zip.
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