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ABSTRACT

The fluctuation–dissipation theorem (FDT) has been proposed as a method of calculating the mean re-

sponse of the atmosphere to small external perturbations. This paper explores the application of the theory

under time and space constraints that approximate realistic conditions. To date, most applications of the

theory in the climate context used univariate, low-dimensional-state representations of the climate system

and an arbitrarily long sample size.

The authors explore high-dimensional multivariate FDT operators and the lower bounds of sample size

needed to construct skillful operators. It is shown that the skill of the operator depends on the selection of

variables and features representing the climate system and that these features change once memory (slab

ocean) is added to the system.

In addition, it is found that the FDT operator has skill in estimating the response to realistic sea surface

temperature (SST) patterns, such as El Niño–Southern Oscillation (ENSO), despite the fact that these pat-

terns were not part of the data used to produce the operator. The response of clouds is also studied; for

variables that represent cloud properties, the decrease in skill in relation to decrease in sample size still

maintains the key features of the response.

1. Introduction

Leith (1975) proposed the use of the fluctuation–

dissipation theorem (FDT) as a method for determining

atmospheric response to external perturbations. At its

core, the theory yields an operator that estimates the

mean response of a system from observations of un-

forced fluctuations. Such an operator can then be used in

sensitivity studies. For example, when only the mean

response is desired, an FD operator can replace an en-

semble of more expensive model integrations (Gritsun

and Branstator 2007, hereafter GB07; Gritsun et al.

2008, hereafter GBM08). A more general purpose in

applying the theory is to test the conceptual and prac-

tical limits of our understanding of climate.

Since Leith’s proposal, several alternative derivations

of the theory in the climate context have been proposed

for time-invariant cases (Bell 1980; Gritsoun et al. 2002;

Majda et al. 2005, 2010), time-periodic cases (Majda and

Wang 2010), and nonparametric time-invariant cases

(Cooper and Haynes 2011). To date, however, tests of

the theory on a full atmosphere-like global climate

model (GCM) consisted mostly of the basic form of the

theory [Gritsun (2010) being an exception]. In this form,

the unperturbed atmosphere is assumed to follow

a time-invariant probability density function (PDF) and

this PDF is assumed to be sufficiently close to Gaussian

[or quasi Gaussian as was coined in Majda et al. (2005)].

An application of FDT to determine steady-state re-

sponse of the climate system generally comes with an

additional assumption that the climate system is ergodic

in its nature. As a consequence, the averaged response

of an ensemble of simulations can be replaced with the

time average of a sufficiently long single trajectory. This

is an attractive property if the theory is to be applied on

direct observations. With all these assumptions in place,

the operator boils down to an integration of lag co-

variances and an inverse covariance.

Let the unperturbed atmosphere be accessed through

the state vector x. Given a small but constant external

perturbation df, the mean deviation (response) from

the unperturbed climate mean hdxi is estimated through

Eq. (1):
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hdxi5
ðN

t

0
C(t)C(0)21 dtdf , (1)

where the angle brackets denote a time mean, C(t) 5
hx(t)x(0)Ti is the lag-t covariance matrix, and C(0)21

denotes the inverse of the lag-zero covariance matrix. It

is assumed that long-termmeans were removed from the

state vector before calculating the covariances. Since we

are interested in the estimate of steady state response,

the upper bound of the integral should, in principal,

be infinite. In practice, the integral is bounded by the

sample size of the data; hence,Nt is finite but sufficiently

large to capture the time scale of a response.

A second form of the operator correlates the pertur-

bation of the state x to some known function of the

state A(x) (Majda et al. 2005; Risken 1984). In this case,

Eq. (1) generalizes to

hdA(x)i5
ðN

t

0
CA(t)C(0)

21 dtdf , (2)

where CA(t) denotes the lag-t covariance matrix

hA[x(t)]x(0)Ti. GBM08 took this idea a step further and

assumed the existence of a functional relation between

a climate variable and the state of the operator.

When the quasi-Gaussian assumption is made, the

response operator is nothing more than a sum of linear-

regression operators. Such a result may be considered an

oversimplification considering the scale and complexity

of the climate system. What is then the justification for

such an approach? The literature shows a mix of suc-

cesses and failures in applying the theory to the climate

system. Kirk-Davidoff (2009) shows that a univariate low-

dimensional operator fails to show skill given a limited

sample size in a system that is forced through stochastic

perturbation. Similarly, Ring and Plumb (2008) show

a significant nonlinear response in a GCM to axisym-

metric forcing. Their experiments show that an approach

that follows similar derivation as Eq. (1) fails to approxi-

mate the response of the annular modes to this kind of

forcing. In contrast, GB07 and GBM08 show that the

same equation has high skill in estimating the response to

local perturbations in a simple atmosphere only GCM.

Inspection of these and other experiments reveals

significant differences between these studies, especially

in assumptions that go beyond the theory and relate to

application to climate. First, there are significant dif-

ferences in the way the climate state is described. While

most studies use a low-dimensional operator, GB07 and

GBM08 attempt to capture as many dimensions as

possible from the full phase space of a GCM. It is argued

that the high dimensionality of the operator is needed in

order to sample the chaotic attractors of the climate

system [for more on this topic, refer to Gritsoun et al.

(2002), Majda et al. (2005), and references therein]. A

second reason to capture asmany dimensions as possible

concerns the model reduction approach and will be

discussed in the next section. Another aspect of the di-

mensionality of the operator is the number of climate

variables used. Most studies (GB07 being an exception)

consider the climate state as being captured by a single

quantity—commonly, temperature. This, however, may

not be sufficient since it may only sample part of the

chaotic attractors that compose the climate system.

GB07, in contrast, used an operator composed from two

variables—one dynamic and the other thermodynamic.

The second point of divergence is the differences in

the sample size used to construct the operator. These

range from 5 to 12 000 years of data with some additional

variability in sampling rates. Sample size is related to the

dimensionality of the operator (and the climate system

in general) since the amount of spatial dimensions re-

quired in order to construct a robust operator poses

a hard lower bound on the amount of data required. For

example, addingmore variables to the operatormay add

skill but it may also increase the lower bound of the data

if the problem is to remain well posed.While the general

assumption is that the sample size is large enough not to

pose a problem, the scarcity of climate data drives the

applications of the theory using arbitrary amount of data

(e.g., Cionni et al. 2004). In principle, one hopes to find

a minimal set of variables that forms a robust operator

for a given system and external perturbation.

Another source of errors, related to the chaotic nature

of the climate system, is the finding that the Gaussian

approximation produces the wrong results when the ex-

ternal forcing is applied along the stable direction of the

attractor (Colangeli and Lucarini 2014). This observation

motivated to the development of alternative algorithms

that combine the information contained in the observable

instead of the PDF. For example, Abramov and Majda

(2007) ‘‘blends’’ the short-term prediction made on the

observable with the long-term prediction made by a sta-

ble algorithm such as the Gaussian approximation. Their

approach depends on the ability to identify a tangent

model of the observable and a ‘‘blending’’ point, from

which the stable algorithm takes over. Recent theoretical

advances seem to follow this path (Baiesi andMaes 2013;

Colangeli and Lucarini 2014). Baiesi and Maes (2013)

provides a unified view of approaches that operate on the

observable and those that operate on the PDF. At the

same time, Colangeli et al. (2012) argue that the con-

struction of an operator from a projection, or a subset, of

the phase space offers some benefits in mitigating the

deficiencies described above. However, in order to focus

on issues relating to dimensionality and sample size, the
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operators used in this work rely on the presence of an

invariant PDF along with the Gaussian approximation to

that PDF.

Finally, although FDT applies as an approximation of

the atmosphere, it is important to consider the relation to

the surface. Much of the atmospheric response can be

attributed to the interaction with surface patterns such as

ENSO. From the perspective of FDT, changes to these

patterns can be considered as an external perturbation.

The following sections are organized as follows. Sec-

tion 2 describes the experimental setup, the construction

of the FD operator, and the model reduction approach

that was used. The relation between skill to dimen-

sionality, sample size, and memory are then explored in

section 3. We conclude with a discussion in section 4.

2. Methodology

a. Experimental setup

To study the response operator under different sce-

narios, weworkwith aGCMof intermediate complexity—

namely, Mk3L (Phipps 2010). The atmospheric compo-

nent of Mk3L uses a R21 truncation, which amounts to 18

hybrid vertical levels and 64 3 56 grid points on the hor-

izontal, offering a balance between complexity and per-

formance. It is also integrated with a land surface model

and may be augmented with ocean or slab components.

Even in these relatively coarse settings, it is impractical to

use a climate variable (i.e., temperatureT) in its unreduced

form in an operator (as was done in GB07 and GBM08;

more on that in section 2b). To compare the results to

GB07 and GBM08, the GCM is fixed to a single-season

boundary condition. This also conforms with the assump-

tion that the PDF of the system is stationary.

Two model configurations are used to produce the

data, from which response operators are created: first,

a fixed-SST configuration, with SSTs set to the clima-

tology taken from coupled runs of the same model and

second, a 100-m-depth slab-ocean configuration, with

surface fluxes derived from the fixed-SST configuration

(Table 3). Both configurations are run with preindustrial

carbon dioxide levels and fixed March boundary condi-

tions (more on that shortly). One difference between

these configurations is the sea ice model, which was fixed

for the fixed-SST configuration and allowed to vary when

using a slab ocean. This has been the main difference

between the two configurations (aside from the obvious

difference in heat capacity). Each configuration produced

up to 100 years of data output sampled every 12h.

We study the response to tropical SST perturbations.

Two types of perturbations were considered: a simple

Gaussian perturbation and realistic patterns derived

from a coupled run of the same model at a finer reso-

lution (Santoso et al. 2012). Figure 1 shows the place-

ment of the perturbations and Table 1 lists the naming

conventions by which these will be referenced. The re-

alistic patterns used are the positive modes of the Indian

Ocean dipole (IOD) and ENSO patterns, with the latter

covering the entire Pacific Ocean between 308N and

308S. These patterns are realistic to the extent that they

are produced by the same model and have a relation to

the climatology on which the current simulations oper-

ate. They are nonrealistic in two ways: first, the patterns

are specific to Mk3L and second, these are applied

continuously for a duration of 30 years during which the

simulation is run to equilibrium. We therefore refer to

these patterns as ENSO-like and IOD-like patterns. The

Gaussian patterns that were used were placed at the

same locations as the realistic patterns (one in the Indian

Ocean and two in the Pacific Ocean).

FIG. 1. SST perturbation patterns used. The ellipses represent

the location of Gaussian patterns and the colored patches represent

the (top) ENSO-like pattern and (bottom) positive IOD-like pattern.

TABLE 1. Definition of forcing patterns.

Pattern (ID) Location Type

Central western

Pacific (CWP)

08, 1658W Gaussian

Eastern Pacific (EP) 08, 1008W Gaussian

Indian Ocean (IO) 78S, 708E Gaussian

ENSO 258N–258S, Pacific Realistic

(Santoso et al. 2012)

Positive IOD Indian Ocean Gaussian
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We verified that the simulation reaches approximate

equilibrium in two ways: first, by ensuring that the dif-

ference between the means of relevant variables is ap-

proximately time invariant (perturbed simulation less

control values) and, second, by looking at time series of

the global means of these variables. In all simulations,

including the slab-ocean simulations, the response of the

system reaches approximate equilibrium within the first

10 years after the introduction of the perturbation.

Surface temperature perturbations such as ENSO and

IOD are important forcing patterns interacting with the

atmosphere. In contrast, FDT is applied to the atmo-

sphere only. This required us to reinterpret the SST

perturbations as an atmospheric forcing function defined

on the model levels that are directly in contact with the

surface. The forcing is defined as a temperature pertur-

bation affecting the surface boundary layer and decaying

toward the top of the boundary layer (which, for Mk3L,

corresponds to the first five model levels). This is one

potential source of errors that has to be taken into ac-

count when evaluating the results. However, at least for

the tropics, it was found to be of lesser importance

compared to other sources of error such as the model

reduction approach and sample size.

b. Construction of the operator

Because of the dimensionality of a GCM, even at the

relatively coarse Mk3L resolution, it is not practical to

produce a response operator on the entire phase space

of the system. As a result, one is forced choose a model

reduction strategy—which introduces some bias. Our

model reduction approach is adapted from the one that

was used in GB07. The approach proposed in GB07 is

unique in that it used a combination of variables—

namely temperature and streamfunction—to construct

a high-dimensional response operator. Motivated by the

attempt to produce a proof of concept, GB07 did not

treat the two variables equally. The variables were

normalized differently giving more emphasis to tem-

perature. Streamfunction was reduced to the first 100

EOF components at each model level before reducing

all the model levels of the two variables using a second

EOF stage. From this second EOF reduction stage, the

first 1800 components were used to accumulate lag co-

variances, from which the response operator was con-

structed. More recently, a similar approach using the

same variables set was studied for the time-periodic

(seasonal) case (Gritsun 2010). However, in that study

the phase space of the climate system was first in-

terpolated to two vertical levels (s 5 0.336 and 0.664).

As a consequence, the forcing function may not be

unique; that is, two forcing functions with different re-

sponses may have the same reduced representation.

Using only two vertical levels also means that the study

of the response is limited to those levels (the paper only

presents the response of streamfunction at s5 0.336). A

key difference in this work, compared to the ones dis-

cussed so far (i.e., GB07; GBM08; Gritsun 2010), is in

that the sample size used to construct the operator is

significantly smaller and the derivation of the operator is

forced to take that into account.

Seeking to explore the skill of high-dimensional op-

erators, while consolidating the approach used in GB07,

we implement several changes:

(i) First, all the variables that were used were normal-

ized at each model level by removing the area-

weighted standard deviation of the respective

model level. There was no favoring of one variable

over another at this stage (i.e., weighting).

(ii) Each model level (and for each variable) is then

transformed to an EOF basis. The variables used

and the number of components kept at each model

level is listed in Table 2. For temperature, 600 EOF

components were kept in order to properly represent

TABLE 2. The list variables used in the experiments. The column listing the number of components refers to the number of components or

variance taken from each model level when reducing its dimensions at the first stage of the model reduction.

Variable ID Description

No. of components or

variance fraction Dimensions

T Temperature 600 3D

RH Relative humidity 100 3D

V Meridional wind speed 100 3D

U Zonal wind speed 100 3D

v Vertical velocity 100 3D

CRE(lw) Longwave cloud radiative effect 0.9 2D

CRE(sw) Shortwave cloud radiative effect 0.9 2D

CF(all) Total-cloud fraction 0.9 2D

CF(high) High-cloud fraction 0.9 2D

P(all) Total precipitation 0.9 2D

P(conv) Convective precipitation 0.9 2D
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the forcing function. This represented approximately

97.5% of the variance at each model level. For

other variables, 100 EOF components were kept,

which represented approximately 90% of the

variance at each model level. This stage will be

referred to as the first reduction stage. An excep-

tion to this was relative humidity for which 100

components at each model level amounted to

60%–70% of the variance. Adding more compo-

nents of this variable was not possible because of

the long tail of variance and the limitations

imposed by the relatively small sample. Reasons

to consider relative humidity as part of the state

variables will be discussed shortly.

(iii) The reduced variables at all model levels are then

stacked and a second EOF reduction phase is

carried out. It was found that keeping enough

components at this stage to capture 90% of the

variance produced the highest skill. This amounted

to 800–2000 components, depending on the vari-

able combination that was selected.

(iv) Using the components taken at the second EOF

reduction stage, lag covariances are calculated for

up to 30 days.

The limiting factor guiding this approach is the lack of

sample, which affects the reduced representation. Er-

rors due to reduced representation can be divided into

errors due to representation of the forcing and errors

due to representation of the state.We note that the early

truncation of temperature components, imposed by lack

of sample, results in a violation of the prerequisites of

a reduced representation described in Majda et al.

(2010, their section 2b). This is due to the fact that

the forcing is not perfectly captured by the reduced

representation.

We start by discussing the representation of the

forcing; a key problem with the approach presented

above is capturing ‘‘unnatural’’ or highly localized per-

turbation patterns. The operator is constructed using

historical data, and the perturbation pattern may only

occur at small amplitudes in the natural variability. It is

essential to ensure that such patterns are properly rep-

resented after the model reduction phase. The per-

turbations used here, and in GB07, tend to project to

low-order components of the lower model levels. This

creates a conflict between the need to represent the

perturbation and errors attributed to components with

low variance (Martynov andNechepurenko 2006;GB07).

To demonstrate this issue, we project the Gaussian

pattern centered at 08, 1658W onto the EOF basis of the

lowest model level. This is done using 300 and 600

components that capture, respectively, about 90% and

97% of the variance. The top panel in Fig. 2 shows the

original pattern; the results of the projection to and from

the two bases are plotted in the middle panel (300

components) and bottom panel (600 components).

Looking at the middle panel, it is apparent that the

forcing pattern is mostly represented by the lowest 10%

of the variance. In addition, comparing the top and the

bottom panels, it is apparent that the lowest 2.5% of the

variance is needed to fully capture the amplitude of

the pattern (which in this case was 1K). However, going

beyond the 97.5% variance per model level was found to

decrease the skill of the operator. As a consequence, for

patterns that project poorly onto the natural variability,

FIG. 2. (top) The results of transforming the central Pacific

Gaussian SST perturbation pattern onto the reduced basis of the

first (lowest) model level of the fixed-SST case. (middle),(bottom)

As in the top panel, but using 300 (;90% variance) and 600

components (;97.5% variance), respectively.
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such as the Gaussian SST perturbation in the eastern

Pacific, this approach is not sufficient to capture the

pattern. Since some form of model reduction is in-

evitable in these settings, this analysis proves to be an

essential step in applying this approach to climate sce-

narios.

For the other patterns tested, keeping 600 compo-

nents at each model level in the first reduction stage was

sufficient to reproduce the pattern of the response

(Fig. 3). On the other hand, the amplitude of the re-

sponse was, in general, smaller than the true response. A

natural assumption is that the loss of amplitude in the

response is proportional to the loss of amplitude in the

forcing owing to themodel reduction. This assumption is

especially justified if the operator is successful in re-

producing the pattern (but not the amplitude). However,

we were not able to find a simple scaling relation to ac-

count for the lost amplitude. This relation becomes more

complicated once multiple variables, excluded from the

forcing pattern, are used. We therefore focus on the skill

of the operator in reproducing the spatial pattern of the

response. In what follows. both the true and estimated

responses were standardized to unit variance.

Next, we discuss the representation of the state. The

use of relative humidity required some consideration.

The incentive for its inclusion comes from several rea-

sons. First, this choice is physically motivated, since the

thermodynamic state of the climate system is better

represented by the inclusion of water vapor. It is well

established that information on current humidity im-

proves the accuracy of weather forecasts (e.g., Chahine

et al. 2006; Benjamin et al. 2010). Relative humidity was

preferred over other variables associated with water

vapor since it is less dependent on temperature and

shows relatively constant variance (across model levels

and compared to other state variables). Second, we wish

to study the prediction of cloud response, and inclusion

of direct information about water vapor is generally

considered more relevant in this case. Third, humidity

displays a fine spatial structure that tends not to be

captured by temperature and wind. It is assumed that the

leading components of relative humidity replace some of

the long tail of truncated temperature components. This

is particularly important when seeking a reduced repre-

sentation in a small sample, which forces us to perform

a two-step model reduction. Finally, one cannot rule out

the possibility that a heuristic search of the space of

possible reductions would yield a skillful operator.

As a metric of evaluation we choose spatial pattern

correlations. This metric is sensitive to shifts, translations,

and rotations of patterns. To account for that, the pat-

terns were also manually inspected. In addition, confi-

dence intervals were computed to ensure the significance

of the correlations. The use of relative entropy as ametric

was also considered as an alternative to correlations, but

this metric suffers from the same pointwise biases as

correlations and is only usable to compare one prediction

against another.

3. Results

In this section we study the relationship between the

spatial dimensions of an operator, the sample size from

which an operator is fitted, and its skill. Two key aspects

are investigated. First, we investigate the skill as a func-

tion of the number of retained EOF basis components

and state variables that are included in the model re-

duction. As will be seen, the choice of a sufficient number

of features is intimately related to the ability of the model

reduction technique to represent the climate state and

imposed perturbation. Second, we investigate the relation

between the skill and sample size when the sample size is

well below an ideal sample (e.g., GB07; Gritsun 2010) and

approaching the dimensionality of the operator. In what

follows, unless otherwise specified, the results correspond

to an operator that is constructed based on no more than

100 years of control run sampled at 12-h intervals.

a. Dependence of results on the perturbation

We start by studying the skill of a univariate,

temperature-based operator in reproducing equilibrium

FIG. 3. The skill in reproducing the true forcing (in terms of

pattern correlation) as a function of the number of temperature

components retained at the bottom model level, where the per-

turbation is applied, for the fixed-SST case.
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responses to the Gaussian SST perturbations. Figure 4a

shows the skill of the operator in predicting the response

to the local Gaussian perturbations, described in Table 1,

in terms of pattern correlation at each model level.

Most notable are the differences in skill among pertur-

bation scenarios. The highest global skill is achieved for

the Indian Ocean perturbation (78S, 708E). The pattern

correlation is moderate for the central Pacific perturbation

(08, 1658W) and low for the eastern Pacific perturba-

tion (08, 1008W). An inspection of the patterns at different

pressure levels (not shown) suggests that the modest re-

duction in skill for the central Pacific perturbation arises

mainly from errors in the Indian Ocean region.

The possibility that the lack of skill of the operator in

the eastern Pacific case is related to the sampling rate

was ruled out by changing these parameters in the sim-

ulation. We also ruled out nonlinear responses as a pri-

mary cause by running the same set of simulations with

an inverted (cooling) pattern, taking the center differ-

ence of the warming and cooling as the linear response

(as was done in GB07). On the other hand, as was noted

above, the perturbation pattern in the eastern Pacific

case was significantly less well preserved than the other

perturbations at the model reduction phase (Fig. 3).

Note that the ordering of the 600 components in Fig. 3 is

highly correlated to the skill in predicting the response.

We believe this is a leading possibility for explaining the

poor performance for this case.

b. Addition of variables

Including temperature as part of the operator is es-

sential because the external forcing consists of heating.

One motivation to introduce additional variables is the

possibility of increasing the skill of the operator, as was

done in GB07. Another motivation is the need to study

a certain set of variables. In general, the amount of skill

gained by introducing a variable represents an infor-

mation content that may be related to a process that was

not captured previously, motivating the study of oper-

ators consisting of different variable combinations.

We study the increase in dimensionality by inclusion of

additional variables using the realistic SST perturbation

FIG. 4. Pattern correlations comparing true and predicted responses for the fixed-SST cases.

Comparing the responses to (a) Gaussian SST forcing at different locations, (b) operators

constructed from different sample sizes, and (c) sampling rates. Refer to the text for further

information.
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scenarios. Figures 5a and 5b show the temperature pat-

tern correlations for the ENSO-like and the IOD-like

perturbations, respectively, for different operators. To

demonstrate the relation between the skill of the op-

erator and the information gained from a specific var-

iable, the plots present a sequence of operators of

growing complexity. These include temperature, rela-

tive humidity, andmeridional wind (refer to Table 2 for

more details). The zonal wind component was excluded

from the operators since it degraded the skill of the

operators, while vertical velocity did not add skill. The

skill in the IOD-like case is similar to the Gaussian case

at the same location (Fig. 4a), perhaps because the two

patterns are similar in size and location. The correla-

tions in the free troposphere are fairly high with one

variable and therefore adding more variables does not

improve much on the univariate case. However, the

improvements are still significant at the 95% confi-

dence interval. For the ENSO-like perturbation, there

is a smooth increase in skill for temperature as more

variables are introduced to the operator. An inspec-

tion of the pattern of the response suggests that the

improvement is attributed to added skill over the In-

dian Ocean (not shown).

So far, even though we used multivariate operators,

only the skill of temperature patterns was evaluated.

But, adding more variables to the operator allows us to

study the response of these variables as part of the state.

In the current example, the operator was augmented

with relative humidity (RH) and meridional velocity V.

It was found that the skill in estimating these variables

closely matched the skill of temperature. For example,

the first three rows in Fig. 6 compare the true and pre-

dicted the responses of T, RH, and V for the full (T 1
RH 1 V) operator at 700 hPa to ENSO-like perturba-

tion. The correlation at this level is about 0.69, peaking

around 0.85 at 100 hPa (Fig. 5d). In some cases, adding

one variable improved the skill of another; for example,

meridional velocity improved the skill for relative hu-

midity. We attribute this to improved numerical prop-

erties of the operator that includes all variables compared

to the one that includes only temperature and relative

humidity. This was observed by looking at the eigen-

values of the lag-zero covariance matrix of each operator

FIG. 5. Pattern correlations comparing true and predicted temperature responses of operators of growing com-

plexity to (a) ENSO-like perturbation and (b) IOD-like perturbation for the fixed-SST case. (c) Repeating (a) with

the addition of a slab ocean. (d) Comparing the true and predicted responses for RH and V using the (T1RH1 V)

operator to the ENSO-like perturbation for the fixed-SST case. Refer to the text for further information.
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[as described inMartynov and Nechepurenko (2006) and

GB07].

c. Estimating cloud response

Next, we examine the skill of operators in estimating

the cloud response. GBM08 demonstrated by example

that the FD operator has skill in estimating variables

with known or assumed functional relationship to the

variables that compose the operator. This idea has been

discussed by both Leith (1975) and Majda et al. (2005)

(although using different arguments as justification). In

the current model setup, where the seasons and ocean

are fixed, clouds are emphasized as a driver of vari-

ability. Therefore, it is expected that an operator will

capture important relations between cloud variables

and variables representing the climate state. Further-

more, working with multiple operators consisting of

different sets of variables offers the opportunity to

study these relations as a function of different repre-

sentations of the climate state. From this perspective,

the lack of skill of an operator is as important as the

presence of skill.

FIG. 6. Comparing the responses at 700 hPa for T, RH, and V to an ENSO-like perturbation (standardized) for (top

three rows) the fixed-SST scenario and (bottom three rows) the slab-ocean scenario.
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Figure 7 shows the pattern correlations and absolute

errors for six quadratic measures related to cloud or

precipitation for four different operators. The correla-

tion increases as more variables are introduced to the

operator, and the absolute error decreases, consistent

with the skill for the operator quantities themselves.

For the shortwave cloud radiative effect [CRE(sw)] and

precipitation P, the correlation is generally low, with

slight improvement when adding variables to the opera-

tor. The patternmaps, however, show that, even for these

variables, the operator captures the main geographic

features of the response, with much of the error arising

from small-scale details that are not reproduced (Fig. 8).

This feature points to the limitation of using any kind of

point by point correlations as a measure for success. For

example, for the (T1RH1 V) operator, the correlation

of shortwave CRE is 0.55 while longwave CRE is 0.78.

However, from Fig. 8 it is apparent that both show skill

and the difference in skill is not easy to discern.

Once a multivariate operator achieves high skill in

reproducing a cloud variable, one can assume that it

captures the climate process. It is then possible to use the

operator to attribute the skill contribution to the dif-

ferent state variables. We demonstrate this on convec-

tive precipitation [P(conv)] and high-cloud fraction [CF

(high)]. Figure 9 shows this idea for CF(high) where the

contributions of relative humidity andmeridional velocity

are separated from that of temperature. The bottom-right

plot shows the difference of results with operators (T 1
RH 1 V) versus T. Relative humidity and meridional

velocity increase the skill in the Indian Ocean, consistent

with the fact that temperature alone did not show skill

there (for this perturbation). The response in the Pacific

stretching to the Gulf of Mexico is also mostly related to

these additional variables. For P(conv) the response in

the Indian Ocean follows the same lines as for CF(high)

(Fig. 10). In addition, most of the response in the South

Pacific convergence zone (SPCZ) and around the Mar-

itime Continent can be attributed to relative humidity

and meridional velocity. These results demonstrate the

value in using this method to condition a climate re-

sponse as a function of specific state variable. Note,

however, that in order to achieve complete separation

one is required to produce operators for the entire

power set of variables included in the original (full skill)

operator.

One critique of this approach is that the guarantees

provided by FDT rely on the complete state vector of

the system, while using subsets of variables from the full

operator does not benefit from those guarantees. In pre-

vious sections, the argument for incorporating a subset of

variables in the state vector was that it provides sufficient

skill (i.e., other climate variables are superfluous). What is

then the argument supporting subsets of variables when

the skill may be affected? If we look at the covariance

matrix, from which the operator is constructed, re-

moving a variable is equivalent to zeroing of matrix el-

ements where that variable occurs. Assuming that the

errors that are introduced are small, the loss of skill is

associated with information that exists only in the ex-

cluded variable (and not in other variables that are in-

cluded in the operator).

d. Addition of interactive SST via a slab ocean

So far surface perturbations were used as external

forcing but the surface temperature was held fixed. We

now remove part of this limitation by adding a mixed-

layer (slab) ocean, so as to allow more natural temper-

ature variability at the surface. A new set of operators is

constructed using 100 years of control runs that include

a slab ocean and fluxes derived from the fixed-SST

control runs. The perturbation patterns in this case re-

main the same but these are now applied as prescribed

heating rates to the slab ocean (Kday21). For compar-

ative purposes, we ensure (through trial and error) that

the magnitude of the temperature response pattern

at the surface matches the magnitude that was imposed

in the fixed-SST case (mean values). The perturbed

simulations are again run for 30 years to equilibrium.

The first question to ask is whether the same combi-

nation of variables, optimal in the fixed-SST scenario,

FIG. 7. Correlations and absolute errors of six cloud-related

variables as a function of the operator that was used for the fixed-

SST case.
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will also produce the highest skill here. Figure 5c shows

the pattern correlation of various operators tested. The

operator that produced the highest skill in the fixed-SST

case (T1RH1V) did not achieve the highest skill here.

The zonal wind component that was excluded from the

fixed-SST case since it degraded the skill of the operator

(possibly owing to colinearities with temperature) was

found to add skill in the slab-ocean case. Interestingly, it

FIG. 8. Comparing true and predicted responses of several cloud-related variables to anENSO-like perturbation using (left) the (T1RH1V)

operator and (middle) 100 and (right) 50 years of data for the fixed-SST case.
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was essential to include vertical velocity to bring the skill

to acceptable levels, as seen for the operator (T1RH1
U1V1v). A closer look at the differences between the

standardized estimates of the (T 1 RH 1 U 1 V 1 v)

and (T 1 RH 1 V) operators showed some differences

in skill in the Indian Ocean, Europe, and southern

midlatitudes (not shown). Overall, qualitatively, both

operators had similar responses. However, the squared-

error difference between the true response and the

estimated responses of both operators shows a 40% im-

provement for the full operator (T1RH1U1 V1 v).

An important difference in the behavior of the

operator in the slab-ocean scenario compared to the fixed-

SST scenario was the temperature response. The per-

turbed slab simulations allowed the mean temperature to

drift further away from its control values. We found that

the magnitude of the predicted temperature response was

about a third of the true response (fourth row in Fig. 6).

This was the case only for temperature and was partly

alleviated as more variables were introduced to the op-

erator. We assume that part of this difference can be

attributed to missing temperature components in the op-

erator’s state representation. Other variables used in the

operator did not show this bias (bottom two rows in Fig. 6).

e. Relation of skill to sample size

We now focus on the relationship of the skill to the

sample size or record length. Validation of the FD

approach for the climate case has so far focused either on

asymptotic bounds or on idealistic settings with 10000

years of data (i.e.,GB07). The relation between the sample

size to the increase in errors has been shown to be as-

ymptotically proportional to 1/
ffiffiffiffi
N

p
, whereN is the sample

size (Martynov and Nechepurenko 2006). The short du-

ration of useful climate records justifies looking at the

lower bounds of the problem, since, ideally, onewouldwant

to produce FDT operators from observed data. In this

section the data are taken from the same fixed-SST simu-

lation that produced 100 years of data, from which the re-

sults shown so far were produced. From these data, we

produce operators for 75, 50, and 25 years beginning at

arbitrary starting points in the simulation (Table 3).

One thing that needs to be taken into account when

looking at the lower bounds of the sample size is the

relation between the dimensionality of the problem and

the sample size. A hard lower bound on the sample size

is the number of components needed to construct a

skillful operator without the problem becoming under-

determined. The dimensionality of the operators pro-

duced so far was well below 2000 components. However,

another bottleneck that needs to be considered is the

requirements of the model reduction approach that is

used. For example, the selection of 100 years of simu-

lation to construct the operators amounts to a sample

size N 5 73 000, which is only slightly larger than the

dimensionality of a single atmospheric variable in Mk3L

FIG. 9. CF(high) response to ENSO-like perturbation (standardized). Separating the response due to relative

humidity and meridional velocity from temperature.
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(3Dgrid size5 64512).Our procedure of first transforming

each model level to a reduced EOF basis partly cir-

cumvents this.

Figure 4b shows the pattern correlations, comparing

the responses for the IOD-like perturbation, for a suit of

operators constructed using 100–25 years of data. It is

apparent that the skill depends on sample size. Inter-

estingly, the degradation in skill is small in the mid- and

high troposphere where the skill is high. Similar be-

havior was observed with the other patterns that were

studied. Qualitatively, the degradation in skill was away

from the source of the perturbation. For 50 years of data,

several samples were drawn from the 100-yr simulation,

and operators were constructed using these samples.

The predictions and skill of these operators were com-

pared and found to be equivalent. One option that was

explored was the relation of the skill to a change in the

sampling rate. Figure 4c compares the pattern correla-

tions for predictions made by operators that were con-

structed using 100 and 50 years of data sampled at 12-h

intervals and 50 years of data sampled at 6-h intervals.

Note that the sample size for the latter matches the

sample size of the 100-yr run at 12-h intervals. In this

case, the improvement in skill due to sampling brings the

skill of a 50-yr operator closer to the 100-yr operator.

Similar relationships between skill and sample size

were observed for operators predicting cloud responses.

While degradation in skill due to a decrease in sample

size was visible, the main features of the cloud response

are present. For example, in Fig. 8, the response of the

longwave cloud radiative effect [CRE(lw)] is well re-

produced by both 100- and 50-yr-based operators. How-

ever, for the 50-yr-based operator, there is a spurious

response in the Atlantic Ocean (away from the imposed

ENSO-like perturbation). In contrast, for precipitation,

there is a visible decrease in skill in the Pacific. Overall,

while the increase in errors is clearly visible, the core of

the prediction was maintained. This was the case even for

a variable such as CRE(sw), where the correlations were

generally low.

4. Discussion

This paper investigates the skill of FD operators and

its dependence on dimensionality and sample size. The

FIG. 10. As in Fig. 9, but for P(conv) response to ENSO-like perturbation (standardized). Separating the response

due to relative humidity and meridional velocity from temperature.

TABLE 3. Main simulation parameters.

Simulation Purpose

Duration

(yr)

Control (fix SST) Construct FD operator 100, 75, 50, 25

Control (slab ocean)

SST forcing (fix SST) Evaluate FD response 30

SST forcing (slab ocean)
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working hypothesis guiding this work was that in-

creasing the dimensionality and broadening the choice

of climate variables could substantially improve the

performance of FD operators for climate applications.

Ocean surface temperature patterns were investigated

as a source of external forcing of the atmosphere, as

opposed to more idealized forcings used in previous

studies (i.e., GB07; Ring and Plumb 2008; Gritsun 2010).

The skill of the operators in reproducing responses to

such perturbations was shown to differ when the surface

is treated as a slab ocean compared to the case where

surface temperatures remains fixed. In particular, with

a slab ocean, a more extended set of variables was found

to produce the highest skill. Interestingly, in this case,

the inclusion of vertical velocity was essential to the skill

of the operator, possibly because of the larger natural

fluctuations of this variable in the control climate when

SST is variable. The immediate consequence of a vari-

able SST was an increase in the dimensionality required

in order to achieve skillful operators.

The results suggest that the FD operator is more

skillful in estimating the response to realistic patterns

then to highly localized ‘‘hot spots.’’ The highest skill

was indeed achieved for ENSO-like perturbation pat-

terns. This was despite the fact that the operator was

produced from model runs where ENSO did not ex-

plicitly occur. The fact that these patterns achieved high

skill, while other patterns on the same geographical lo-

cation achieved low skill, implies that a fundamental

change in surface patterns may decrease the skill of an

FD operator. It also points out the importance of the

surface as an external forcing of the atmosphere and in

determining the atmospheric response. However, it

should be noted that, in order to reach a greater degree

of confidence in these results, more extensive experi-

ments are required. Another limitation of this study

comes from the fact that only the response to pertur-

bations that are reliably described in the reduced basis

of the operator can be predicted in this approach.

Another aspect put to the test here is the use of the

theory under conditions that approximate practically

available observations. As was demonstrated by Kirk-

Davidoff (2009), success of the theory with arbitrarily

large sample sizes may not indicate practical utility. We

studied the lower bounds of the sample size, relating it to

the spatial dimensionality of the operator and the data

requirements of the model reduction technique that was

used. We show that even in the extreme conditions,

where the sample size approaches the hard lower bound

below which the problem becomes ill posed, an FD op-

erator based on the quasi-Gaussian assumption (Majda

et al. 2005) still has skill in reproducing climate responses.

Despite clear degradation of skill in relation to sample

size, the main features of the response persisted as the

sample sizewas shrunk. The relation between sample size

and the dimensionality of the operator prevents further

reduction in the sample size. One possible extension to

the current approach is to replace the naive model re-

duction approach used here by more elaborate strate-

gies. For example, Cooper et al. (2013) proposed to

replace the selection of a reduced basis based on

leading EOFs with a greedy algorithm based on the

spatial locality assumption. Such approaches may re-

sult in improved performance of the FD operator. In

the current approach, the dependence of skill on the

choice of state variables suggests that proper choice of

variables can mitigate lack of data. Furthermore, it is

important to identify those subsets of variables and

features that produce skillful operators under condi-

tions that approximate real observation.

For cloud variables, the operator was able to capture

the key features of the responses. Although a decrease

in skill with shortening sample size was visible, gross

features of the response were captured even with

50 years of data and some still evidentwith shorter records.

These record lengths are within what is now available

from the satellite record beginning in 1979. Since the

time scale of the forcing defined by FDT matches the

time scale of cloud processes, FDT is an ideal framework

to study these processes. One application that was dem-

onstrated here was the ability to study cloud responses as

a function of different FD operators (encapsulating dif-

ferent climate-state representations). This allowed us to

separate the response due to temperature from those of

relative humidity and meridional velocity. A more com-

plete separation of responses can be achieved by con-

sidering the power set of variables found in the operator.

Looking beyond this work, we note challenges and

opportunities on the path to an operator that is derived

from observations. Among the challenges are mea-

surement errors, missing data, and seasonality (Majda

2012). Formal quantification of the error term due to

missing data and measurement error is required. Sea-

sonality may fragment the observed sample into subsets

of distributions with an approximately Gaussian PDF

(Majda and Wang 2010). However, the interpretation

offered by Gritsun (2010) may be overly restrictive since

our knowledge of the climate system suggests a smoother

day-to-day variability (hence a smaller degree of frag-

mentationmay be required). Combined with a dynamical

ocean, seasonality also ensures a wider set of perturba-

tions will be part of the natural variability, making the

lack of skill to warming in the eastern Pacific less prob-

able. In terms of representation, the approach offered

here is clearly not the end of the road. Approaches that

take advantage of specific assumptions related to the
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representation of the state and forcing (e.g., Cooper et al.

2013; Majda et al. 2010) may improve the skill of the

operator while further reducing the lower bounds of the

sample size.

In a broader sense, FDT tests the limits of our un-

derstanding of climate. Because of the complexity and

nonlinearity of climate, the theory can at best work only

approximately, but this may be enough for it to have

utility. It is crucial to establish our confidence in those

approximations that show high skill. Application of

the theory to arbitrary sample sizes and feature sets is

discouraged.
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