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1. Introduction 4. Southern Hemisphere

The Southern Annular Mode (SAM) is the dominant mode of SexntlHemisphere (SH) extratropical The evolution of the SAM within each experiment is shown igufe 4. Under the RCP4.5 scenario,
variabllity, influencing the climate of the entire hemisphéGillett et al., 2006). Stratospheric ozone deple- the historical shift towards a more positive phase becom@gasingly pronounced during the 21st century.
tion and increasing greenhouse gases (GHGSs) have causdt tavghrds the positive phase of the SAM This shift is weaker in CSIRO-Mk3L-1-2, which has fixed sbsgiheric ozone, than in the other models.
over recent decades, associated with a southward shifnégasification of winds over the Southern Ocean In all experiments, the application of geoengineering sads in shifting the SAM back towards a more
(Arblaster and Meehl, 2006). These trends are projectedriorwe in future (Zheng et al., 2013), playing neutral state.
an important role in driving future changes in SH temperand precipitation.

Geoengineering Is increasingly being discussed as a tdessen the impacts of anthropogenic climate z:
change through deliberate modification of the climate systé&or example, solar radiation management 1.5 -
via stratospheric injection of sulphate aerosols has besyoged as a fast-acting and cost-effective solution
(Robock et al., 2009). While geoengineering could play arkésy in reducing the risk of dangerous climate
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Figure 4. The evolution of the annual SAM Index within each experiméltie values shown are 15-year

e G3 simulates the gradual introduction of stratospheriplsatle aerosols during the period 2020 to 2069,
running means.

with the aim of keeping the net radiative forcing constant.

e G3solar is conducted in the same manner as G3, but uses dgioednadhe solar constant to balance the BNU—ESM CSIRO—MK3L—1-2
radiative forcing due to increasing GHGs. >\w IE ”\w IE
e G4 simulates the sudden onset of geoengineering in the Y24x, vith aerosols being injected into the [ _ N\ ;:8 _ 23 ;:8
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We examine the output of four climate models: BNU-ESM, CSIR&BL-1-2, HadGEM2-ES and IPSL- apparent in Figure 5, which in- | =5 | =5
CM5A-LR. These models differ in their treatment of stratestic ozone, employing three distinct ap-  dicates a northward shift and A e ’ e
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Figure 1. Schematics of GeoMIP experiments G3 and G4 (from Kravitz.ep@ll).
Figure5. The impact of geoengineering on zonal surface wind speadgiur

3. Global changes the period 2050-2069 (G3 minus RCP4.5, Th)s

In G3 and G3solar, geoengineering is broadly successfuahtliising global-mean surface air tempera- BNU—ESM CSIRO—Mk3L—1-2
ture within each model simulation (Figure 2). Geoengimagers also successful at reducing global-mean
temperature in G4. However, within all three experimernis, temperature increases abruptly as soon as
geoengineering ceases. Within 10 years, temperaturesdavieed levels similar to those simulated under

the RCP4.5 scenario.
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Precipitation follows the
changes in the westerly winds
(Figure 6). All models simulate
an increase in precipitation over
T southern Australia in response
0.8 to geoengineering, accompanied
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Figure 2. The evolution of global-mean surface air temperature wigach experiment. Figure 6. The impact of geoengineering on precipitation during theooe

Similar changes are also seen in global-mean precipit@figure 3). Geoengineering causes a reduction 2050-2069 (G3 minus RCP4.5, mm/day).

In precipitation in all three experiments, with global-mgaecipitation remaining roughly constant in G3
and G3solar during the geoengineering phase. However, raptadessation effect is again apparent, with

5. Conclusions

the effects of geoengineering dissipating within aroungraArs. In the Southern Hemisphere, we show that the climatic respom large-scale geoengineering is char-
SNUTESM CSIRO-MSL-1=2 acterised by a shift towards a more neutral state of the SA& Gounteracts the ongoing trend towards a
more positive phase under the RCP4.5 scenario. As a rdsilg s a northward shift and weakening of the
SH westerly winds. Precipitation increases over southerstialia, but decreases over the Southern Ocean.
However, the climatic impacts cease abruptly as soon angew®ering ends. Any cessation of geoengi-
neering would therefore lead to rapid changes in the SoatHemisphere climate.
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