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The “handshake” question




The “handshake” question

How do we integrate proxy data and climate models
in a way that extracts the maximum possible
information about the dynamics of the climate
system?



Unlocking the secrets of the past...
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Proxy data covers wide area and has high resolution
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Boundary conditions over the past 1500 years

Insolation (2000 CE minus 500 CE)

90°N

60°N -

30°N

00_

LATITUDE

30°S

.....

’
-
L
-

.......
-
-

- e
- - -
~~~~~~~
'''''

Jan

1366.5

il

T
Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Total solar irradiance
| | | | | | | | | | | | |

1366.0

1365.5

1365.0

Total solar irradiance (W m™2)

1364.5

500

CO, concentration (ppm)

Radiative forcing (W m=2)

Equivalent CO, concentration
] ] ] ] ] ] ] ] ] ] ] ]

420
400
380
360 -
340
320 -
300 -

280 -

260
500

1000 1500

Year CE

Radiative forcing due to volcanoes

0 -

Ty




The solar cycle and grand minima

400 Years of Sunspot Observations
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Concentration (LEg/L)

The Law Dome sulphate record

—Residual non sea-salt sulfate (2 year smooth)
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The “Year Without a Summer”

1816 Summer Temperature Anomaly
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Luterbacher et al. (2004), Science, 303, 1499-1503



CLIMATIC AND DEMOGRAPHIC CONSEQUENCES OF THE
MASSIVE VOLCANIC ERUPTION OF 1258

RICHARD B. STOTHERS
Institute for Space Studies, Goddard Space Flight Center, NASA, 2880 Broadway, New York,
NY 10025, US.A.

Abstract. Somewhere in the tropics, a volcano exploded violently during the year 1258, producing
a massive stratospheric aerosol veil that eventually blanketed the globe. Arctic and Antarctic ice
cores suggest that this was the world’s largest volcanic eruption of the past millennium. Accord-
ing to contemporary chronicles, the stratospheric dry fog possibly manifested itself in Europe as a
persistently cloudy aspect of the sky and also through an apparently total darkening of the eclipsed
Moon. Based on a sudden temperature drop for several months in England, the eruption’s initiation
date can be inferred to have been probably January 1258. The frequent cold and rain that year led
to severe crop damage and famine throughout much of Europe. Pestilence repeatedly broke out in
1258 and 1259; 1t occurred also in the Middle East, reportedly there as plague. Another very cold
winter followed in 1260-1261. The troubled period’s wars, famines, pestilences, and earthquakes
appear to have contributed in part to the rise of the European flagellant movement of 1260, one of
the most bizarre social phenomena of the Middle Ages. Analogies can be drawn with the climatic
aftereffects and European social unrest following another great tropical eruption, Tambora in 1815.
Some generalizations about the climatic impacts of tropical eruptions are made from these and other
data.

Climatic Change, 45, 361-374, 2000



CONSEQUENCES OF THE MASSIVE VOLCANIC ERUPTION OF 1258 367

Makin, 1260; Bar-Hebracus, 1286). Because the Middle East has been historically
prone to epidemics of bubonic plague, possibly that is what it was,

6. The Flagellants

Flagellation, or scourging, had long been practiced as an occasional form of dis-
cipline or penance within Christian monastic communities. In the spring of 1260,
however, a popular penitential movement of sclf-flagellation arose in Perugia, cent-
ral Italy, and spread south, in the autumn, to Rome and north toward central Europe.
Wholly orthodox at first, it attracted not only members of the clergy but all ranks
and ages of pious lay people. Early in the following year, though, it degenerated
mto a heterodox movement of peasants and malcontents, which was put down
finally by the ecclesiastical and civil authorities. In 1ts typical manifestation, bands
of unshirted male flagellants marched through the streets in double file, uttering
hymns and religious slogans and flogging their backs with whips until blood began
to flow. Troops of flagellants traveled from town to town. It was one of the oddest
mass social phenomena of the Middle Ages.

Climatic Change, 45, 361-374, 2000



Extreme weather events of 535-536 CE

The sun was dark and its darkness lasted for eighteen months; each day it
shone for about four hours; and still this light was only a feeble shadow; the

fruits did not ripen and the wine tasted like sour grapes. - Michael the Syrian

During this year [536 CE] a most dread portent took place. For the sun gave
forth its light without brightness ... and it seemed exceedingly like the sun in

eclipse, for the beams it shed were not clear. - Procopius of Caesarea
Crop failures and famine worldwide.

Low temperatures, including summer snowfall, in China.

A “dense, dry fog” in the Middle East, China and Europe.

Drought in Central and Southern America; fall of the city of Teotihuacan.

Scandinavian elites sacrificed large amounts of gold, possibly to appease the
angry gods and get the sunlight back.

Probably caused by a volcanic eruption in around 533 CE.



Climate modelling and proxy data

e The CSIRO MK3L climate system model (Phipps et al., 2011, 2012)
— Atmosphere-land-sea ice-ocean general circulation model.
— Used to conduct transient simulations of the past 1500 years.

— Different combinations of orbital, greenhouse gas, solar and volcanic

forcing applied.
— Three-member ensembles used to help distinguish between forced and
unforced variability.
e Northern Hemisphere temperature reconstruction (Mann et al., 2009)
— Network of 1209 annually- and decadally-resolved proxies.

— Used to reconstruct annual-mean NH temperature for 500-2006 CE.



Annual-mean Northern Hemisphere temperature
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Temperature anomaly (K)
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Temperature anomaly (K) Temperature anomaly (K)

Temperature anomaly (K)

Warm-season Australasian temperature
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Percentage of variance explained

NH variability explained over previous 501 years
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(a) Magnitude of solar and volcanic forcing

Total solar irradiance
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Sulphate injection (Tg)

Sulphate injection (Tg)

Aerosol optical depth
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(b) Dating of past volcanic eruptions

Northern Hemisphere (Gao et al, 2008)
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Volcanic sulfate
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Sulphate injection (Tg)

Sulphate injection (Tg)

Aerosol optical depth

Revised dating of the Kuwae eruption

Northern Hemisphere (Gao et al, 2008)
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NH temperature during the 15th century

Original volcanic forcing
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(c) Dating of past climatic changes

e To explore this, generate a “pseudo Northern Hemisphere” and then
attempt to reconstruct it.

e Pseudo Northern Hemisphere:
— Orbital response: Cooling trend of 0.46 K per 1000 years.
— Anthropogenic response: Warming of 0.8 K after 1850 CE.

— Volcanic response: Cooling of 1.5 K in response to 1258 CE eruption;

scale other eruptions accordingly.
— Stochastic variability: AR(1) red noise with amplitude of 0.1 K and
autocorrelation coefficient of 0.7.
e Reconstruction:
— Network of 1000 proxies.

— Assume that each proxy is perfect, except for dating uncertainties that
are normally distributed with a standard deviation of 1%.
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Temperature anomaly (K)

Temperature anomaly (K)

Reconstruction with dating uncertainty

Reconstructed Northern Hemisphere temperature
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Pseudo climate model

Now generate a “pseudo model” to compare with the reconstruction.

Assume that the model has perfect representations of both forced and

unforced climate variability.
Assume that the boundary conditions on the model are perfect.

The simulated response to orbital, anthropogenic and volcanic forcings will

therefore agree exactly with reality.

The simulated stochastic climate variability will have the same
characteristics as the real world, but the timing, amplitude and duration of

specific events will differ.



Comparison between “model” and “reconstruction”

Simulated Northern Hemisphere temperature
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Correlation of MSLP with
Law Dome precipitation

(1979-2004)

van Ommen and Morgan (2010), Nature Geoscience

0.7
0.6

0.4

[TTTTTTTT .
o 0O O Q
S I RN |
S

wh
o
!

,
[T TTT T
o 0O O O
a2 O O N

‘ 0.3 0.3 0.3

o2 0.2 0.2

‘ —o.1 0.1 ' 0.1

» o 0 ] 0

) 0.1 0.1 ‘ 0.1
: L4 '® 0.2 0.2 0.2
_ 0.3 0.3 0.3
‘Q -0.4 —0.4 —0.4
i, -0.5 -0.5
W X\ -0.6 -0.6
-0.7 -0.7

Member 1 (1975-2000) Member 2 (1975-2000) Member 3 (1975-2000)



Relationship is consistent over the 20th century ...
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... and the full 1500 years ...
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Conclusions

e The combination of palaeoclimate proxy data with climate
modelling can reveal insights into the dynamics of the climate
system.

e Volcanoes appear to have been the dominant driver of forced
climate variability over the past 1500 years in the Northern
Hemisphere, but the pre-industrial climate of Australasia
appears to have been essentially stochastic.

e Our ability to learn from the past is constrained by our
understanding of climatic forcings — particularly volcanic
eruptions — and uncertainties in dating of proxy records.

e The fundamental assumption of stationarity in relationships
within the climate system may not be tenable, particularly on
decadal timescales, and warrants further investigation.



The way forward

e Climate modelling has an essential role to play in the process of
palaeoclimate reconstruction, with the models used to test the
stability of relationships within the climate system.

e There is a critical need for better reconstructions of past climatic
forcings and more accurate dating of proxy records.
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