Climate modelling and OZ-INTIMATE

Steven J. Phipps

Climate Change Research Centre University of New South Wales

Why climate modelling?

- Data:
 - The real world
- Models:
 - Precise chronology
 - Complete spatial coverage, from bottom of ocean to top of atmosphere
 - As much temporal resolution as you need (hourly?)
 - Simulate actual physical variables (no transfer functions)
 - Just *not* the real world...

Why climate modelling?

Modeling the Climate System

Data-model integration: a win-win situation

- Data-model integration is a two-way process
- The data constrains the model simulations
- The models provide the dynamical interpretation of the data
- Everyone wins!

Palaeoclimate modelling: National efforts

- General circulation models (GCMs):
 - CSIRO Mk3L (UNSW, CSIRO, Macquarie University + others?)
 - CCSM (UNSW, University of Sydney)
 - FOAM (Monash University, University of Western Australia)
 - NASA GISS (ANU)
 - CSIRO Mk3.6 (CSIRO/QCCCE)
- Earth System Models of Intermediate Complexity (EMICs):
 - UVic (UNSW)
- Different timescales, different questions:
 - ENSO variability during the Holocene
 - Changes in the Australian monsoon during the last glacial cycle
 - Deep time/past warm periods
 - Process studies (abrupt changes, carbon cycle, topography...)

Palaeoclimate Modelling Intercomparison Project

- Phase 1 (1991–2001) :
 - Atmospheric GCMs
 - Primary experiments were $6\,\mathrm{ka}$ (mid-Holocene) and $21\,\mathrm{ka}$ (LGM)
 - 22 models participated
 - Contributed towards IPCC TAR
- Phase 2 (2002–2008) :
 - Atmosphere-ocean(-vegetation) GCMs
 - Primary experiments were 6 ka (mid-Holocene) and 21 ka (LGM)
 - 18 models participated
 - Contributed towards IPCC AR4

Phase 3 (2009–)

- Theme 1: Evaluation of earth system models at 6 ka and 21 ka
 - Vegetation, biogeochemical cycles, chemistry, ice sheets...
 - Use of new data syntheses for model evaluation
- Theme 2: Interglacials and warm periods
 - Last interglacial (~130–115 ka) snapshot and transient
 - Mid-Pliocene (\sim 3.3–3.0 Ma) snapshot (PlioMIP)
- Theme 3: Abrupt climate changes
 - Transient simulations of last deglaciation, $8.2\,\mathrm{ka}$ event...
- Theme 4: Uncertainties: characterisation and understanding
 - Uncertainties in reconstructions, boundary conditions...
 - Weight models according to a palaeoclimate skill index?
- Will contribute towards IPCC AR5
- $\bullet\,$ Two Australian models: CSIRO Mk3L and CSIRO Mk3.6

Climate modelling for OZ-INTIMATE

- CSIRO Mk3L climate system model
 - Atmosphere: $5.6^{\circ} \times 3.2^{\circ}$, 18 vertical levels
 - Ocean: $2.8^{\circ} \times 1.6^{\circ}$, 21 vertical levels
 - Sea ice: Dynamic-thermodynamic
 - Land surface: Static vegetation
- Pre-industrial control simulations (10,000 years)
- 3 x transient simulations of the past 8,000 years
 - Orbital forcing only
- $3 \ge 3 \ge 3 \ge 2,000$ years
 - Orbital + GHGs
 - Orbital + GHGs + solar
 - Orbital + GHGs + solar + volcanic
- Transient simulation of 15–10 ka
 - Coming soon...

Simulated changes in El Niño variability

Simulated changes in SH sea ice extent

Climate modelling and OZ-INTIMATE

- How the proxy people can help the modellers:
 - Evaluation of models and model simulations
- How the modellers can help the proxy people:
 - Dynamical interpretation of data
 - Fill spatial gaps in datasets
 - Enhance temporal resolution
 - Chronology?
 - Explore how teleconnections (transfer functions) evolve over time
- The future:
 - More realistic forcings (GHGs, solar, volcanic...)
 - Data-model integration
 - Data assimilation