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1. Severe droughts or flooding rains?

El Nino Is the dominant mode of natural variability within thenadite system, and influences
climate extremes across the globe. Bhdlevents occur every two to seven years, and are characteris
by changes in ocean temperatures and atmospheric cimulatthe tropical Pacific (Figure 1).
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Figure 1. The state of the tropical Pacific during normal years (left) &l Nino events (right).

In a normal year, ocean temperatures are warm in the westaifid? This drives a convective
overturning cell in the atmosphere, creating wet condgimnthe west and dry conditions in the east.
An El Nino event arises when this overturning falters and the seitfacle winds weaken. The warm
surface waters in the west flow eastwards, taking the raim thkm. A La Nha event is the opposite
of an El Nino event, and is characterised by increased rainfall in g&evn Pacific.
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Figure 2. Rainfall over Australia during El Nio events (left) and La Wi events (right).

El Nino has a strong influence on the climate of Australia, as caeee from Figure 2. El Mo
events can cause severe droughts, while LisaMNvents can bring flooding rains. It is therefore of
critical importance to Australian society to be able to pretdow El Nino might evolve under future
climate change. However, as shown in Figure 3, current gtieds are highly uncertain.
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Figure 3. Projected changes in the amplitude of Ehbivariability in response to global warming,
according to 17 different climate models (Collins et al.1@))

2. The coral time machine

Past climatic changes provide an opportunity to learn mboaiaithe dynamics of El Mo, and
to explore the physical mechanisms that can drive changés rehaviour. In the tropical Pacific
Ocean, the annual growth rings of corals capture the hisioB Nino. Fossil corals show that El
Nino events have become stronger and more frequent over mad&rinia (Figure 4). There is also
strong variability on decadal timescales, accompaniedpydrswitches between modes.
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Figure 4. Climate variability in the central Pacific Ocean, recordgddssil microatolls from Kiriti-
mati (Woodroffe et al., 2003; updated version of Figure amges in the amount 6t0 are strongly
correlated with changes in sea surface temperature. Yéldos/indicate EI Nio events.

3. El Nino and global climate change

To learn from the coral record, the CSIRO Mk3L climate systaadel (Phipps, 2010) is used
to simulate the evolution of the global climate over the 800 years. The simulations provide a
dynamical framework within which physical links can be eqgd. They reveal that, on millennial
timescales, cyclical changes in the Earth’s orbit arouredstim are the dominant influence on Ehbli
Warmer northern summers in the past resulted in strongéergagade winds in the tropical Pacific,
suppressing the development of ERldievents (Figure 5).
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Figure5. The simulated global climate 8,000 years ago, expressawbasalies relative to the modern
climate: surface temperature (left), and sea level pressoud winds (right).

On shorter timescales, random variability within the cliemaystem becomes increasingly impor-
tant. Figure 6 shows the evolution of Elii over the past 8,000 years, according to three indepen-
dent simulations conducted using the same climate modein&stochastic variability on centennial
timescales is superimposed upon the overall upward trewariability.
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Figure 6. The change in the amplitude of El i variability over the past 8,000 years, according to
three independent climate model simulations. A 100-yeaather has been applied.

On annual timescales, volcanic emissions can also becopwtamt. Figure 7 shows the evolution
of sea surface temperature in the central Pacific during3tiecentury, according to three independent
climate model simulations. A massive volcanic eruption268 CE — the largest to occur during the
past millennium — causes sudden and dramatic coolingaimgy a La Niha event. Strong random
variability on decadal timescales is also apparent, asamcdnal record.
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Figure 7. The change in sea surface temperature in the central PacdiarQluring the 13th century,
according to three independent climate model simulations.

4. Conclusions

Coral reefs and computer models tell us that the tropics rexpee strong natural variability on
timescales that range from years to millennia. The workewt=sl here suggests that there are fun-
damental limits to our ability to predict changes in EhNiduring the 21st century. On decadal to
centennial timescales, the amplitude of unpredictabldaamvariability is so great that it may swamp
any underlying trend arising from increasing concentragiof greenhouse gases.
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