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Abstract
Winter atmospheric circulation over the Euro-Atlantic domain and three subdomains (British Isles, Central Europe, and 
Eastern Mediterranean) is validated in outputs of historical runs of 32 global climate models (GCMs) from phase 5 of the 
Coupled Model Intercomparison Project (CMIP5). Eight automated classifications of daily SLP patterns from five reanalysis 
datasets are produced for each domain in order to analyse the effect of the choices of methods and reference data on results. 
The results show that the ranking of GCMs fundamentally depends on which classification is used; therefore, only parallel 
usage of multiple classifications can provide robust rankings of models. Considering all eight classifications, three models 
(HadGEM2-CC, MIROC4h, and CNRM-CM5) are among the best in simulating the frequency of circulation types (CTs) 
over all four domains. Regardless the domain, the bias in CT frequency of the worst GCMs is larger than 50% of the fre-
quency in the reference reanalysis dataset. Conversely, the best GCM for each domain differs from the reference reanalysis 
by about 10–20%, which is nearly the same result as found for the NOAA-CIRES Twentieth Century Reanalysis (version 2). 
The persistence of circulation is simulated better than the frequency with errors rarely exceeding 15%. The GCMs overes-
timate the frequency of westerly circulation over all domains (by about 7% over the British Isles, 21% over Central Europe, 
and almost 70% over the Eastern Mediterranean) and also cyclonic CTs, while easterly and anticyclonic CTs are typically 
underestimated by 30–40%.
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1 Introduction

Global climate models (GCMs) have become an invaluable 
tool for studying the climate system of the Earth. Valida-
tion of these models against observation-based datasets is 
of utmost importance in order to assess the reliability of 
the models as well as to provide the developers with a feed-
back that would help them further improve their models. 
One of the simulated climatic features that have drawn par-
ticular attention of researchers is large-scale atmospheric 
circulation.

The importance of the ability of climate models to simu-
late atmospheric circulation and not only thermodynamic 
and moisture variables was repeatedly discussed (e.g. Boer 
et al. 1992; McKendry et al. 1995; Hall 2014; Shepherd 
2014; Kröner et al. 2017). For the Euro-Atlantic domain, this 
ability seems particularly important owing to the synoptic 
link between the large-scale circulation and regional/local 
near-surface climatic (meteorological) elements, which is 
especially tight during winter (see e.g. van Ulden and van 
Oldenborgh 2006; Beck et al. 2007; Plavcová and Kyselý 
2013; Broderick and Fealy 2015; Belleflamme et al. 2015; 
Cahynová and Huth 2016). Consequently, errors in simula-
tion of circulation properties (such as the strength, direction, 
vorticity, and persistence of flow) and/or of the synoptic link 
markedly limit the applicability of model output in both sta-
tistical and dynamical downscaling, since statistical models 
assume this link is simulated correctly and regional climate 
models have only limited ability to improve on the biases 
inherited from their driving data (van Ulden and van Old-
enborgh 2006; Plavcová and Kyselý 2012).
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Several approaches have been used to characterize atmos-
pheric circulation both in reality (station data) or quasi-
reality (atmospheric reanalyses) and in model simulations 
and projections. One of the most widely used approaches is 
classifications of atmospheric circulation patterns (circula-
tion classifications for short). They can be seen as a tool 
that describes the entire variety of atmospheric circulation 
by defining a catalogue of a few circulation types (CTs) 
and subsequently classifying circulation patterns with one 
of these CTs. The classified circulation patterns are usu-
ally instantaneous or daily mean sea level pressure (SLP) 
or geopotential height (GPH) patterns defined typically on 
regional to continental spatial scales.

Many statistical methods have been used to obtain circula-
tion classifications; the topic was reviewed in detail by Huth 
et al. (2008). To evaluate circulation in model output, the 
most widely used approaches have been leader (threshold-
based) algorithms (Crane and Barry 1988; McKendry et al. 
1995; Lapp et al. 2002; Schoof and Pryor 2006; Belleflamme 
et al. 2013, 2015), principal component analysis (Huth 1997, 
2000), cluster analysis (McKendry et al. 2006; Rust et al. 
2010; Pastor and Casado 2012; Cattiaux et al. 2013b; Perez 
et al. 2014; Rohrer et al. 2017), the neural-network algorithm 
of self-organizing maps (Cassano et al. 2006; Lynch et al. 
2006; Finnis et al. 2009a, b; Gibson et al. 2016), as well as 
approaches that predefine CTs—and thus constitute hybrids 
between (the above listed) automated classification methods 
and traditional manual synoptic catalogues—, for example 
Jenkinson-Collison’s method (Demuzere et al. 2009; Lor-
enzo et al. 2011; Rohrer et al. 2017).

Over the last three decades, research into circulation types 
in model simulations has developed from pioneering studies 
focused on one model and various methodological aspects of 
the analysis to complex examinations of multi-model ensem-
bles, in response to development in statistics, data process-
ing, and computing and to production of a large amount of 
GCM outputs under phases three (Meehl et al. 2007) and five 
(Taylor et al. 2012) of the Coupled Model Intercomparison 
Project (CMIP). Nevertheless, two issues have so far been 
rather marginalized in this kind of studies, namely how is the 
result affected by the choice of a reference dataset reanaly-
sis—which represents the quasi-reality against which models 
are validated—and a classification method.

So far, most studies have arbitrarily chosen either ERA-40 
or NCEP-1 (see Sect. 2.2 for more information on reanaly-
ses) as their reference dataset. A few studies utilised more 
than one reanalysis (Rust et al. 2010; Belleflamme et al. 
2013, 2015; Perez et al. 2014; Gibson et al. 2016); however, 
the goal of all of these studies was evaluation of models 
and only little attention was paid to the intercomparison of 
reanalyses. Recently, Stryhal and Huth (2017) showed that 
classifications can considerably vary in different reanaly-
ses even over regions where abundant observations were 

assimilated into reanalyses, such as Europe, and that the 
choice of reanalysis can have a substantial effect on errors 
of simulated CT frequencies and, consequently, rankings of 
GCMs based on these errors. Therefore, they suggested that 
multiple reanalyses be used in future validation studies. We 
aim to address this issue by validating CMIP5 GCMs against 
an ensemble of five reanalyses—such that the observation 
uncertainty is accounted for and the magnitudes of inter-
reanalysis differences and GCM biases can be compared.

Furthermore, classification methods have been used 
rather arbitrarily as well; only a handful of the studies listed 
above—namely those by Rust et al. (2010), Pastor and Cas-
ado (2012), Belleflamme et al. (2013), Rohrer et al. (2017), 
and Stryhal and Huth (2017, 2018)—used more (typically 
two) classifications to compare CTs in multiple datasets. 
This is somewhat striking since it has been shown nearly two 
decades ago that parallel examination of multiple classifica-
tions helps eliminate subjectivity of the methodology and 
provides more reliable results if one compares circulation 
in multiple datasets (Huth 2000). Furthermore, Rust et al. 
(2010) showed that the magnitude of differences between 
two reanalyses is sensitive to how CTs are defined. In their 
validation study, Belleflamme et al. (2013) concluded that 
also the similarity measure (e.g. Euclidean distance or pat-
tern correlation) used to classify daily patterns with CTs 
markedly affects the results as it highlights qualitatively dif-
ferent kinds of GCM errors. Stryhal and Huth (2017) showed 
that differences between reanalyses project into various clas-
sifications with varying intensity, causing the estimation of 
significance of these differences to be very sensitive to sub-
jective methodological choices.

Recently, ample evidence has been accumulated that 
relying on a single classification provides one with only an 
incomplete picture of reality and, consequently, puts one at 
risk of misinterpreting results. This risk was shown to relate 
to various meteorological and environmental variables and 
phenomena including temperature (Huth 2010; Ustrnul et al. 
2010; Broderick and Fealy 2015; Beck et al. 2016; Huth 
et al. 2016), precipitation (Casado et al. 2010; Lupikasza 
2010; Schiemann and Frei 2010; Tveito 2010; Broderick and 
Fealy 2015; Beck et al. 2016; Casado and Pastor 2016; Huth 
et al. 2016), trends in meteorological variables (Cahynová 
and Huth 2010, 2016) and circulation (Belleflamme et al. 
2013; Kučerová et al. 2017), droughts (Fleig et al. 2010; 
Beck et al. 2015), air quality (Stefan et al. 2010; Beck et al. 
2014; Valverde et al. 2015), surface ozone (Demuzere et al. 
2011), wild fires (Kassomenos 2010), landslides (Wood 
et al. 2016), and phenological phases (Palm et al. 2017). 
Additionally, it was proved beyond doubt that none of the 
statistical approaches to classification is superior and that 
which method is the best depends on many factors includ-
ing (but not limited to) the objective of a study, the classi-
fied variable and the target environmental or meteorological 
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variable, number of CTs, and character of circulation. In the 
present paper, this issue is addressed by repeating the valida-
tion by multiple distinct classification methods—such that a 
robust estimation of GCM errors is obtained, misinterpreta-
tion of results is avoided, and the sensitivity of validation to 
the choice of methods is quantified.

The goal of the paper is to validate daily mean SLP pat-
terns simulated by an ensemble of 32 CMIP5 GCMs for the 
historical period of 1961–2000 against reality represented by 
five atmospheric reanalyses, with emphasis on the sensitiv-
ity of the results to the choice of classification method. The 
study is carried out for winter—a season in which the link 
between circulation and surface climate is strongest over 
the region and, therefore, for which the ability of models to 
simulate circulation correctly is of utmost importance. Four 
spatial domains are analysed: the continental-scale Euro-
Atlantic domain as well as three smaller domains—the Brit-
ish Isles, Central Europe, and the Eastern Mediterranean.

2  Data and methods

2.1  Classification methods

The study can be seen as a follow-up to the European Coop-
eration in Science and Technology Action 733 (COST 733) 
“Harmonisation and Applications of Weather Type Clas-
sifications for European regions”—see editorials of special 
issues by Huth et al. (2010) and Tveito and Huth (2016) 
where results of COST 733 are summarized—which aimed 
at creating a database of classification methods and their 
applications in synoptic climatology. Additionally, a soft-
ware package including 33 methods was coded and made 
freely available online (http://cost7 33.geo.uni-augsb urg.
de/cost7 33wik i). From this database, we use eight methods 
(see Table 1), which together represent all main approaches 

to classifying circulation patterns. A brief description of 
the methods follows; for more details refer to Philipp et al. 
(2010, 2016).

First, hybrid methods used here are Grosswettertypes 
(GWT) and two algorithms of Jenkinson–Collison (JCT). 
All three algorithms define ten CTs based on pre-set thresh-
olds of several circulation indices, such as vorticity and 
flow direction. The two JCT algorithms differ only in the 
selection of grid points from which the indices are calcu-
lated: JCT1 (JCT2) selects points from the centre (across the 
whole) of a region. Eight of the ten CTs are directional—one 
for advection from each directional octant [further referred 
to as west (W), northwest (NW), north (N), northeast (NE), 
east (E), southeast (SE), south (S), and southwest (SW)]—
one is purely cyclonic (C), and one purely anticyclonic (AC). 
Second, Lund’s method is one of leader-based algorithms; 
by comparing pattern-to-pattern correlations, it finds key 
patterns that well represent relatively large parts of the phase 
space. Third, methods based on principal component analy-
sis (PCA) are represented by PCA with the input data matrix 
in the T-mode [i.e. grid points correspond to columns of the 
data matrix and time realizations (days) to its rows], fol-
lowed by oblique rotation of principal components (PCs). 
The scores of the rotated PCs represent CTs and their load-
ings (which form time series) are used to assign patterns 
to classes. Last, three algorithms of non-hierarchical CA 
are used (k-means, k-medoids, and SANDRA). These three 
methods—also called optimisation methods—incorporate 
steps that help find a solution closer to the optimal partition-
ing (that is the one with minimum within-type variance).

Every automated method requires a few methodologi-
cal choices to be made before the classification is run. 
Regarding the number of CTs and the spatial extent of 
geographical domains, we follow the choices made by the 
COST733 action. Nine CTs are defined for each classifi-
cation, with the exception of hybrid methods, for which 

Table 1  List of classification methods used in the study

Method abbreviation Method name No of CTs Method group Projection method References

GWT Grosswettertypes 10 Hybrid None Beck et al. (2007)
JCT1, JCT2 Jenkinson–Collison 10 James (2006)
LND Lund 9 Leader algorithm Highest pattern-to-CT-

centroid correlation
Lund (1963)

PCT T-mode PCA obliquely 
rotated

9 Principal component 
analysis

Highest pattern-to-PC-
score correlation

Huth (1996)

CKM k-means (differing start 
partitions)

9 Cluster analysis Smallest pattern-to-CT-
centroid Euclidean 
distance

Enke and Spekat (1997)

SAN Simulated annealing and 
diversified randomisa-
tion (SANDRA)

9 Philipp et al. (2007)

KMD k-medoids 9 Kaufman and Rousseeuw 
(1990)

http://cost733.geo.uni-augsburg.de/cost733wiki
http://cost733.geo.uni-augsburg.de/cost733wiki
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ten are more feasible as described above. Classifications 
are performed over four domains, one covering the whole 
of Europe, others covering the British Isles, Central 
Europe, and the Eastern Mediterranean (see Fig. 1), in 
order that the skill of GCMs and the usability of methods 
are assessed across regions with different climate condi-
tions and circulation. For each dataset and each domain, 
eight classification methods produce 75 (3 × 10 + 5 × 9; see 
Table 1) CTs together. Since the software requires the pat-
terns to have an identical spatial resolution, all datasets 
were interpolated onto the longitude-latitude grid of 3° 
per 2° over the large domain and 1° per 1° over the small 
domains; original resolution of the datasets is included in 
Tables 2 and 3.

2.2  Reanalyses and GCM simulations

The analyses are carried out for 40 climatological winters 
(Dec 1960 to Feb 2000). 29 February was excluded for 
simplicity. For this period, daily mean SLP maps produced 
by historical runs of 32 CMIP5 GCMs were accessed from 
the Program for Climate Model Diagnosis and Intercom-
parison (http://www-pcmdi .llnl.gov) and the Earth System 
Grid [https ://www.earth syste mgrid .org, models CCSM4 
and CESM1(CAM5)] databases. Only one ensemble mem-
ber was chosen for each GCM, preferably r1i1p1. If r1i1p1 
was not available, models are represented by another 
member: r3i1p1 (IPSL-CM5A-MR), r5i1p1 (HadGEM2-
ES), r6i1p1 (IPSL-CM5A-LR), r1i2p1 (CCSM4, CSIRO-
Mk3L-1-2). GCMs were validated against five reanalysis 
datasets that fully cover the surveyed period and domains. 
The lists of GCMs and reanalyses used in the paper are 
shown in Tables 2 and 3, respectively.

2.3  Circulation statistics and comparison 
of datasets

First, using each method, a classification is performed for 
all (18,000) available reanalysed daily patterns (5 reanaly-
ses × 40 winters × 90 days). The subsequent procedure differs 
for hybrid algorithms from the rest of methods. Since both 
GWT and JCT predefine the catalogue of CTs, classifica-
tions in reanalyses can be directly compared with classi-
fications in GCM simulations (115,200 patterns), and CT 
frequency and persistence easily calculated separately for 
each reanalysis and each model.

For the remaining methods, the shape of CTs [note that by 
the shape of a CT one understands the composite (centroid) 
pattern computed as the mean of all patterns classified with 
the CT (Philipp et al. 2016)] is a result of the classifica-
tion and, thus, differs for classifications in reanalyses and 
in models. Therefore, projection is used in order to obtain 
comparable classifications: first, CTs are defined in com-
bined output of all reanalyses, CT centroids are computed 
for all reanalyses together (reanalysis centroids), and the 
circulation statistics are calculated for each reanalysis sepa-
rately. Second, the centroids are projected onto all simu-
lated patterns, resulting in each pattern being classified with 
(assigned to) the most similar CT. The projection method 
(Table 1) is specific for each classification method and is 
identical to the approach that the particular classification 
method uses to classify patterns with CTs (e.g. Euclidean 
distance for k-means and pattern correlation for Lund). Last, 
the circulation statistics are calculated for every model, and 
centroids for the GCM ensemble (GCM centroids) are cre-
ated. Additionally to biases in CT frequency and persistence, 
also biases in the centroids are assessed by means of three 
metrics: pattern correlation, Euclidean distance, and mean 
horizontal SLP gradient between the two grid points with 
the highest and lowest SLP.

To verify the results of projection, the whole process was 
repeated also in the opposite direction; that is, CTs were 
first defined on all simulated patterns and, subsequently, 
projected onto reanalyses. Nevertheless, running classifica-
tions on all GCMs together was computationally unexecut-
able for LND and KMD; therefore, only PCT, CKM, and 
SAN were verified this way. Ideally, GCM biases should 
be approximately the same for both directions of projec-
tion. Indeed, the results were almost identical in most cases; 
therefore, only the results for projection from reanalyses to 
GCMs are presented. The projections from GCMs onto rea-
nalyses are discussed only if they considerably differ from 
their counterparts.

Additionally to analysing each classification separately, 
some analyses are carried out on the set of all 75 CTs regard-
less of the classification method. It has to be stressed that 
data are not classified to 75 classes but by eight methods into 

Fig. 1  Spatial extent of domains analysed in the study: a Europe and 
the North Atlantic (domain D00 according to COST733), b British 
Isles (D04), c Central Europe (D07), and d Eastern Mediterranean 
(D11)

http://www-pcmdi.llnl.gov
https://www.earthsystemgrid.org
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Table 2  List of GCMs used in the study

No Model acronym Model 
resolution 
(LON × LAT)

Modelling centre or group

1 BCC_CSM1.1(m) 1.1° × 1.1° Beijing Climate Centre, China Meteorological Administration
2 CanESM2 2.8° × 2.8° Canadian Centre for Climate Modelling and Analysis
3 CCSM4 1.3° × 0.9° National Centre for Atmospheric Research
4 CESM1(CAM5) 1.3° × 0.9° Community Earth System Model Contributors
5 CMCC-CESM 3.8° × 3.8° Centro Euro-Mediterraneo per I Cambiamenti Climatici
6 CMCC-CM 0.8° × 0.8°
7 CMCC-CMS 1.9° × 1.9°
8 CNRM-CM5 1.4° × 1.4° Centre National de Recherches Météorologiques/Centre Européen de Recherche et de Formation 

Avancée en Calcul Scientifique
9 CSIRO-Mk3L-1-2 5.6° × 3.2° Commonwealth Scientific and Industrial Research Organisation in collaboration with the 

Queensland Climate Change Centre of Excellence
10 EC-EARTH 1.1° × 1.1° EC-EARTH consortium
11 FGOALS-g2 2.8° × 2.8° LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences and CESS, Tsinghua 

University
12 GFDL_CM3 2.5° × 2.0° NOAA Geophysical Fluid Dynamics Laboratory
13 GFDL-ESM2G 2.5° × 2.0°
14 GFDL-ESM2M 2.5° × 2.0°
15 HadCM3 3.8° × 1.9° Met Office Hadley Centre
16 HadGEM2-AO 1.9° × 1.3° National Institute of Meteorological Research /Korea Meteorological Administration
17 HadGEM2-CC 1.9° × 1.3° Met Office Hadley Centre
18 HadGEM2-ES 1.9° × 1.3°
19 INM-CM4.0 2.0° × 1.5° Institute of Numerical Mathematics
20 IPSL-CM5A-LR 3.8° × 1.9° Institut Pierre-Simon Laplace
21 IPSL-CM5A-MR 2.5° × 1.3°
22 IPSL-CM5B-LR 3.8° × 1.9°
23 MIROC4h 0.6° × 0.6° Atmosphere and Ocean Research Institute (The University of Tokyo), National Institute for Envi-

ronmental Studies, and Japan Agency for Marine-Earth Science and Technology24 MIROC5 1.4° × 1.4°
25 MIROC-ESM 2.8° × 2.8° Japan Agency for Marine-Earth Science and Technology, Atmosphere and Ocean Research Insti-

tute (The University of Tokyo) and National Institute for Environmental Studies26 MIROC-ESM-CHEM 2.8° × 2.8°
27 MPI-ESM-LR 1.9° × 1.9° Max Planck Institute for Meteorology
28 MPI-ESM-MR 1.9° × 1.9°
29 MPI-ESM-P 1.9° × 1.9°
30 MRI-CGCM3 1.1° × 1.1° Meteorological Research Institute
31 MRI-ESM1 1.1° × 1.1°
32 NorESM1-M 2.5° × 1.9° Norwegian Climate Centre

Table 3  List of atmospheric reanalyses used in the study

Acronym Institute Resolution (LON × LAT) References

ERA-40 European Centre for Medium-Range Weather Forecasts 1.125° × 1.125° Uppala et al. (2005)
NCEP-1 National Centers for Environmental Prediction(NCEP)-National 

Center for Atmospheric Research (NCAR)
2.5° × 2.5° Kalnay et al. (1996)

JRA-55 Japan Meteorological Agency 0.5625° × 0.5625° Kobayashi et al. (2015)
20CRv2 NOAA/Earth System Research Laboratory, University of Colo-

rado CIRES Climate Diagnostics Center
2° × 2° Compo et al. (2011)

ERA-20C European Centre for Medium-Range Weather Forecasts 2° × 2° Poli et al. (2016)
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9 or 10 classes. Since the total relative frequency is 100% 
for each classification, the relative frequency corresponding 
to all eight methods, that is, to all 75 CTs, is 800%. This 
may seem counterintuitive, but it should be noted that every 
single circulation pattern is classified with eight CTs (one 
for each method)—hence the total of 800% is quite natural.

3  Results and discussion

In this chapter, main results are presented and discussed. 
The first four sections focus on general issues concerning 
the validation: In Sect. 3.1, the reference dataset is selected 
with which reanalyses and GCMs are compared; in Sect. 3.2, 
GCMs are ranked according to their performance in terms of 
frequency and persistence of CTs; Sect. 3.3 describes how 
GCM biases in CT frequency (and GCM rankings) depend 
on the choice of classification method; and in Sect. 3.4, the 
relation between biases in CT frequency and mean SLP is 
analysed and discussed. Section 3.5 presents the most impor-
tant biases of GCMs in the four regions and discusses them 
in more detail. Last, Sect. 3.6 addresses main limitations of 
the study.

3.1  Observational uncertainty and selection 
of the reference dataset

Since no study has so far validated the large-scale circulation 
over Europe in reanalyses against independent observations, 
it is not known which reanalysis is the best. Therefore, rather 
than arbitrarily choosing one of the reanalyses as a reference, 
all datasets (both reanalyses and GCMs) are compared with 
a “median” reanalysis. The median reanalysis is defined for 
each variable (e.g. frequency of a CT) as the median of the 
corresponding values in the five reanalyses.

In Fig. 2, the difference of CT frequency in individual 
reanalyses from the median reanalysis is shown for each 
domain; furthermore, these differences are compared to 
biases of GCMs, which are defined as the median of abso-
lute values of errors of the frequency of 75 CTs. The results 
show that—with the exception of 20CRv2 and the Eastern 
Mediterranean—reanalyses differ from the reference value, 
and therefore from each other, relatively little. Furthermore, 
ERA-40 is in all four cases closest to the reanalysis median. 
Although this does not necessarily mean that ERA-40 is 
the best reanalysis, it does mean that using ERA-40 alone 
to validate the models would lead, relative to selecting any 
of the other reanalyses, to results most similar to the con-
siderably more laborious approach used here. It should be 
noted that although the median deviation is small, devia-
tions of some CTs are not to be neglected. For instance, over 
the British Isles, the second most frequent CT in the PCT 
classification (SW directional CT) is 14% more frequent in 

NCEP-1 relative to ERA-40. Readers are referred to Stryhal 
and Huth (2017) for more information on the effect of the 
choice of classification on differences between reanalyses; 
the effect of classifications on GCM biases will be analysed 
in detail later in the text.

One might argue that the anomalous behaviour of 
20CRv2 means that one should exclude this reanalysis from 
validation. We include 20CRv2 in order that one can see 
how it performs relative to good GCMs; moreover, since 
medians are used instead of means, including one outlying 
value does not have a marked impact on results.

3.2  Ranking of models

The median absolute errors shown in Fig. 2 can be used to 
rank GCMs. The median error of the best performing model 
for each domain is between 10 and 20%, which is, interest-
ingly, approximately as far from the median reanalysis as 
the outlying reanalysis, 20CRv2. On the contrary, for all 
domains, several worst models differ from the median rea-
nalysis by more than 50% (i.e. the frequency of at least half 
of the CTs is either less than 50% or more than 150% of the 
median reanalysis). A further investigation of GCM errors in 
CT frequency revealed that what particularly discriminates 
good models from the bad ones is the ability to simulate 
the occurrence of frequent CTs (those with the relative fre-
quency of 15% and more), while the skill to simulate less 
frequent CTs is very similar for most models (not shown). 
Additionally, GCMs are considerably better at simulating 
persistence than frequency: median errors of persistence of 
most GCMs do not exceed 15% (Fig. 3).

Figure 4 compares GCM rankings for all domains based 
on the biases of frequency and persistence. Notably, there 
are not one or a few GCMs outperforming the rest of 
models in simulating CTs for all domains. Based on fre-
quency, only three models rank among the best ten mod-
els for all four domains: HadGEM2-CC, MIROC4h, and 
CNRM-CM5. Moreover, a different model ranks first for 
each domain: HadGEM2-CC for the Euro-Atlantic domain, 
GFDL-ESM2G for the British Isles, CMCC-CM for Central 
Europe, and EC-EARTH for the Eastern Mediterranean. At 
the opposite end of the spectrum, a subset of ten GCMs per-
form below average in all cases. Finally, a few models have 
good to excellent results in one domain but fail in others: for 
example, GFDL-ESM2G—the best model over the British 
Isles and above average over Central Europe—is one of the 
worst over the Eastern Mediterranean with the median error 
of over 50%; on the other hand, EC-EARTH, the best model 
over the Eastern Mediterranean, falls into the inferior half 
of models over both Central Europe and the British Isles.

Our results can be compared with two studies that vali-
dated ensembles of CMIP3/CMIP5 GCMs over the Euro-
Atlantic domain. Pastor and Casado (2012) validated 16 
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CMIP3 GCMs over the Euro-Atlantic region based on two 
clustering algorithms and winter 1980–1999 data. Most 
models identified there as best representing ERA-40 CTs 
frequencies [HadGEM1, GFDL-CM2.0, MIROC3.2(hires) 
and ECHAM/MPI-OM], were also found among the best 
here (more precisely, their newer generations). When com-
paring the results there with the ranking found here for the 
large domain, sharp differences occur in the rank of some 
models: CCSM3 was among the best, while CCSM4 is one 
of the worst here; contrariwise, CNRM-CM3 was among the 
worst, while CNRM-CM5 is one of the best here. CCSM3 
was also found mediocre by Perez et al. (2014) over north-
east Atlantic Ocean in all seasons except summer. Naturally, 
differences can be to some extent expected between different 
generations of models and for different spatial and temporal 

domains analysed in different studies. However, we hypothe-
size that the major cause of the differences is that Pastor and 
Casado (2012) subtracted SLP biases of the models prior 
to the classifications. Since CCSM3 had a marked negative 
SLP bias (− 12 hPa) over central Europe, its subtraction led 
to more realistic CT frequencies. Without doubt, bias correc-
tion can be useful when using GCM simulations. However, 
models that perform well only if bias corrected should not 
be considered equal to models that produce accurate clima-
tologies directly, which is exactly what validation of bias-
corrected models does.

Perez et  al. (2014) validated 42 CMIP5 GCMs over 
northeast Atlantic Ocean using k-means classification of 
PCs inferred from 1950 to 1999 NCEP-1 3-daily mean SLP 
anomalies. Their ranking for winter corresponds well with 

Fig. 2  GCM biases in CT frequency for four European domains. Each 
horizontal bar refers to one GCM (see Table 2 or Fig. 4 for the GCM 
legend) and shows the median of absolute values of errors of fre-
quency of 75 CTs. The biases are expressed in percent of the median 
reanalysis. The crosses indicate the range of median errors (in percent 

points) if individual classifications are used to compute the median 
errors instead of all 75 CTs (see Sect. 3.3 for more information and 
discussion of results). For each reanalysis, the median absolute differ-
ence in CT frequency (relative to the median reanalysis) is indicated 
by a coloured line
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the ranking for the large domain shown here  (r2 based on 
linear regression is more than 0.75; note that only 31 GCMs 
used in both studies are included in this assessment). Expect-
edly, the ability of GCMs to simulate circulation over the 
northeast Atlantic Ocean is the primary factor contributing 
to a correct simulation of CTs over the British Isles and Cen-
tral Europe  (r2 of 0.56 and 0.66, respectively), while it is less 
relevant for the Eastern Mediterranean (0.30). The relation 
is also weak between the rankings for the Eastern Mediter-
ranean and the large Euro-Atlantic domain used here (0.40), 
which confirms that the selection of models performing well 
over the Eastern Mediterranean requires dedicated research 
and cannot rely on results for large Euro-Atlantic domains.

The median errors in frequency and persistence shown, 
respectively, in Figs. 2 and 3 are highly correlated (Pear-
son correlation is between 0.77 and 0.84 depending on the 
domain); consequently, the rankings based on them are simi-
lar. Nonetheless, they are not the same and pinpointing the 
best GCMs always leads to somewhat different results. This 
can be considered a warning against choosing GCMs for 
further research based on GCM rankings (instead of on their 
errors) since the ranking can be markedly altered by only 
minor changes in the underlying methodology. For instance, 
GFDL-ESM2G ranks 16th in simulating persistence over 
the British Isles; however, its median error is only about two 
percent points higher than that of the best model.

It has to be stressed that even in the best models there 
are CTs with substantial errors in frequency. Figure 5 illus-
trates this by showing errors in frequency of all 75 CTs in 
HadGEM2-CC over the large domain. Therefore, studies 

that focus on synoptic climatology of certain features (e.g. 
extremes) should not overly rely on overall rankings but 
rather on the ability of models to simulate CTs that condi-
tion the studied features.

The sensitivity of model biases in CT frequency and 
persistence to resolution of models seems negligible (not 
shown). The cross-model correlation between the horizontal 
resolution (total number of grid points) and median errors 
in frequency and persistence is significant (at α = 0.05) only 
in the case of CT frequency for the Eastern Mediterranean 
(r = − 0.42); otherwise, resolution of models explains less 
than 10% of the inter-model variability. This result is in 
agreement with findings by Anstey et al. (2013) and Perez 
et al. (2014) that the link between model resolution and CT 
errors is weak and regionally variable. We conjecture that 
the somewhat stronger link over the Eastern Mediterranean 
is caused by relatively low SLP gradients there, which leads 
to higher impacts of smaller-scale features on classifications, 
which are better resolved by models with finer resolution.

3.3  Sensitivity of validation to the choice 
of a classification method

So far, all presented results were based on the combination 
of all eight classifications (75 CTs). In this section we ana-
lyse whether the results would differ if the classifications 
were used separately.

First, Fig. 6 shows median absolute errors in CT fre-
quency of the whole GCM ensemble. Based on all CTs, 
the ensemble medians are—for the four domains and in 

Fig. 3  Same as in Fig. 2, but for persistence. a Europe and the North Atlantic, b British Isles, c Central Europe, d Eastern Mediterranean
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the order in which they are shown in Fig. 6—about 33, 
24, 30, and 40 percent. Consequently, one would conclude 
that the skill of the GCM ensemble is best for the British 

Fig. 4  Rankings of GCMs based on a frequency and b persistence of CTs for four European domains. The numeric codes in parentheses are the 
same as in Figs. 2 and 3

Fig. 5  Errors in frequency of 75 CTs in HadGEM-CC relative to the 
median reanalysis over the Euro-Atlantic domain. Methodologically 
similar classifications are grouped together to increase clarity

Fig. 6  GCM ensemble biases in CT frequency based on eight classifi-
cations for a Euro-Atlantic domain, b British Isles, c Central Europe, 
and d Eastern Mediterranean
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Isles and worst for the Eastern Mediterranean. However, 
using only the LND or PCT classification would lead to 
considerably different conclusions: choosing LND (PCT) 
instead of JCT1 for the British Isles (Central Europe) 
would increase the median error by more than 15 percent 
points, or 60%. Evidently, the result of a comparison of 
the skill of models over various domains depends on the 
classification method.

Second, differences between methods become even 
more apparent if the biases are compared for individual 
models instead of the ensemble median. The results for 
the large domain (Fig. 7) indicate that the biases can dif-
fer by several hundreds of percent between some classifi-
cations: in the extreme case (IPSL-CM5B-LR, #22), they 
vary between the minimum of about 11.5% for JCT2 and 
the maximum of 59% for GWT, the range being about 48 
percent points. Note that this range was shown for each 
model and domain in Fig. 2 (for frequency) and Fig. 3 
(for persistence) to put it into scale with the overall bias 
based on all CTs. Expectedly, it is not only the bias of 
a model what depends on the choice of the classifica-
tion but also the model’s rank (not shown): for example, 
HadGEM2-CC (#17) ranks 1st based on JCT1 and 6th 
based on GWT, MPI-ESM-P (#29) ranks between 1st and 
13th, and IPSL-CM5B-LR (#22) even between 1st and 
27th. Without doubt, basing GCM rankings on one clas-
sification is very feeble and should be avoided or at least 
appropriately interpreted. Namely, such a ranking is not 
a robust representation of the skill of models to simu-
late the circulation as a whole but only to simulate a few 
specific CTs. To conclude, although some effect of the 
selection of a method on results was expected, it is strik-
ing how substantial this effect can be and how much even 
relatively small changes in the classification procedure 
(compare e.g. JCT1 and JCT2) alter the results.

3.4  Errors in CT frequency in relation to SLP bias

An alternative—and relatively very easy—way to validate 
circulation in a GCM output is to compare simulated and 
reanalysed mean patterns (e.g. compute the bias of the simu-
lated mean SLP pattern). Recently, Wójcik (2015) has shown 
that SLP biases of GCMs introduce considerable biases into 
downscaled temperatures and that the overestimated tem-
perature over Europe in winter is caused by GCMs exagger-
ating the meridional pressure gradient. However, the author 
concludes that multiyear mean GCM (SLP) biases explain 
only part of inter-model variability of temperature biases, 
calling for more in-depth evaluations.

Compared with mean SLP biases, circulation classifica-
tions can definitely provide much deeper insight into errors 
in the simulated circulation. Nevertheless, it seems useful to 
analyse how much of the inter-model variability of the biases 
in CT frequencies can be explained by mean SLP biases and 
whether the classifications are sensitive to the mean SLP 
bias or rather reflect other, more subtle errors in circulation.

The relation between the mean SLP bias (the bias of a 
model is defined as the mean difference across all grid points 
between the two centroids, one for the model and one for 
all reanalyses) and the bias in the frequency of 75 CTs is 
for each model and the three small domains illustrated in 
Fig. 8a. Pearson correlation between the biases in frequency 
and absolute values of the mean SLP bias (absolute values 
are used since the sign of the SLP bias is not expected to 
affect the error in frequency) is relatively low and ranges 
between 0.23 for the large domain and 0.54 for Central 
Europe (Table 4, bottom row). The same analysis, except 
for individual classifications, reveals that the strength of the 
link considerably varies between the methods. In particular, 
over the Eastern Mediterranean, classifications by CA (SAN, 
KMD, CKM) strongly react to the overestimation of SLP 
(Fig. 8b; Table 4) in contrast to the remaining methods: the 
coefficients for CA are not only very high  (rp > 0.85) and 

Fig. 7  GCM biases in CT 
frequency based on eight clas-
sifications for the Euro-Atlantic 
domain. The GCM numeric 
codes are explained in Table 2. 
The GCMs are sorted by their 
overall bias in CT frequency 
shown in Fig. 2a
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significant but also significantly higher than the coefficients 
for the remaining methods (p < 0.001) [the conventional test 
for the equality of correlation coefficients is employed (Huth 
et al. 2006)]. A similar difference between the methods can 
be seen over Central Europe although the coefficients are 
more similar for CA and other methods there. For the Brit-
ish Isles and the large domain, the relation between the two 
biases seems independent of the method.

Over the Eastern Mediterranean, biases in CT frequency 
in different classifications undoubtedly reflect different kinds 
of errors in the simulated circulation and, therefore, require a 

different interpretation. Figure 9 shows selected CTs by SAN 
to illustrate the behaviour of the method over the domain. 
When projecting reanalysis centroids onto GCMs, the simu-
lated daily patterns tend to be assigned to the CTs with the 
highest SLP. In the SAN classification, the circulation type 
#2 (CT02) is overestimated by nearly 300% (see the left 
part of Fig. 9). Conversely, if CTs are defined in GCMs and 
projected onto reanalyses, reanalysed daily patterns tend to 
be assigned to CTs with overall lowest SLP (right part of 
Fig. 9). Relying only on this classification and one direction 
of projection, one could easily arrive at a wrong conclusion 

Fig. 8  The relation between GCM biases in mean SLP and CT fre-
quency and its spatial and methodological variation. a For every 
GCM and three domains, the overall bias in CT frequency (i.e. the 
median error of all 75 CTs) is plotted against the GCM’s mean SLP 
bias. GCM-ensemble mean SLP biases are shown for each domain by 
numeric values. b Same as in a, but only for the Eastern Mediterra-
nean, for absolute values of the SLP bias (horizontal axis), and for 

the CT frequency biases computed and shown for individual classi-
fications instead of all 75 CTs (i.e. eight values are shown for each 
model). The methods are grouped according to their behaviour: CA-
based classifications (SAM, KMD, CKM; red  dots) versus the rest 
(black crosses). Regression line is fitted and and Pearson correlation 
calculated separately for both groups

Table 4  Pearson correlation 
coefficients between absolute 
values of the mean SLP bias 
and median absolute errors of 
CT frequency

*, **The statistical significance of coefficients at the 10% (1%) level (based on one-tailed t-test)

Method/Domain Euro-Atlantic British Isles Central Europe Eastern 
Mediterra-
nean

GWT 0.31* 0.41** 0.32* − 0.07
JCT1 − 0.07 0.43** 0.43** 0.27*
JCT2 0.07 0.42** 0.41** 0.12
LND 0.41** 0.36* 0.30* 0.30*
PCT 0.29* 0.36* 0.48** 0.03
SAN 0.38* 0.45** 0.61** 0.85**
KMD 0.22 0.40* 0.60** 0.85**
CKM 0.34* 0.44** 0.66** 0.87**
75 CTs 0.23 0.41** 0.54** 0.49**
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that the GCMs severely overestimate the frequency and per-
sistence of advection from E and NE, which—as will be 
shown later—is directly opposite to the findings based on 
the remaining methods.

We hypothesize that the reason why the classifications 
based on cluster analysis strongly respond to SLP bias over 
the Eastern Mediterranean—and not over the British Isles 
where the mean SLP bias of the GCM ensemble is simi-
lar except for the opposite sign—is that there are markedly 
weaker SLP horizontal gradients over the Eastern Mediterra-
nean. Therefore, simulated patterns with high mean SLP are 
often closer (in terms of Euclidean distance) to the centroid 
with the highest mean SLP regardless of its shape. Conse-
quently, since the classifications do not account for the shape 

of patterns, errors in CT frequency cannot be interpreted as 
errors in the direction of flow.

The predominantly weak relation between the biases 
in mean SLP and in CT frequency may seem to contradict 
Demuzere et al. (2009) who found that subtracting monthly 
mean SLP biases of ECHAM5-MPI/OM from ERA-40 and 
classifying the bias-corrected patterns instead of the original 
data leads to markedly more realistic CT frequencies. The 
contradiction is clearly caused by differences in methodol-
ogy. Foremost, Demuzere et al. (2009) subtracted the mean 
monthly bias, which is a pattern, and, thus, accounted for the 
spatial structure of the bias. Here, the spatially aggregated 
absolute error disregards the spatial structure; consequently, 
the results illustrate only whether (and how much) the errors 

Fig. 9  Two classifications by SAN for the Eastern Mediterranean dif-
fering in the direction of projection. In rows a–e, selected CTs are 
shown. Columns I and II and the pair of boxplots on the left illustrate 
the projection from reanalyses onto GCMs, columns III and IV and 
the pair of boxplots on the right illustrate the projection from GCMs 
onto reanalyses. The results for the the projection from reanalyses 
onto GCMs read as follows: The centroids (shown in I) are computed 

from all reanalysed patterns classified with the particular CTs. These 
centroids are projected onto GCMs and the centroids computed from 
all simulated patterns that are assigned to the particular CT are shown 
in II. The pairs of leftmost and rightmost graphs show the relative 
frequency (in percent, left in the pair) and persistence (in days, right 
in the pair) of the CT in the GCM ensemble (boxplot) and in the 
median reanalysis (red cross)
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in CT frequency relate to the overall overestimation or 
underestimation of SLP. Hypothetically, computing correla-
tions between biases in SLP and CT frequencies might be an 
efficient and simple enough method to test how differences 
in CT frequencies between datasets should (not) be inter-
preted. However, these results should be seen as prelimi-
nary and requiring verification. For now, to avoid erroneous 
interpretations, one has to resort to arduous—and therefore 
usually neglected—steps such as those adopted in this paper: 
comparing results of multiple classification methods (which 
itself might not be sufficient should these methods be too 
similar) and comparing projections in opposite directions.

3.5  GCM‑ensemble biases in regional circulation

In this section, the ability of the GCM ensemble median to 
simulate properties of individual CTs and of main types of 
circulation (defined by the quadrant of airflow and vorticity) 
over the four domains is analysed. The results are organised 
as follows:

First, two indexes are calculated for the centroid of each 
CT, namely the direction of flow and vorticity, using the 
algorithm identical to that of the JCT1 classification [refer 
to Jones et al. (2013) for the formulae of the indexes]. The 

indexes are calculated separately for the output of all rea-
nalyses and the output of all GCMs.

Second, these indexes are used to “meta-classify” CTs 
into five to six groups: three to four for directional CTs 
(approximately based on the quadrant of flow), one for 
cyclonic (C), and one for anticyclonic (AC) CTs. Note that 
the boundaries of these groups are not purely objective but 
were slightly modified to group similar (both in terms of 
their centroids and if possible also errors in circulation) 
CTs together. Consequently, they slightly vary between the 
domains. Based on a visual assessment of CT centroids, the 
border vorticity of (anti)cyclonic CTs was set to (−)11 hPa 
for the small domains and (−)20 hPa for the large domain. 
Figure 10 indicates the boundaries of the groups and shows 
the GCM biases in CT frequency as a function of the two 
indexes.

Third, the following statistics are computed for each 
group and domain: the number of CTs pertaining to a group 
(regardless of the classification), the range of relative fre-
quencies that a group has in individual classifications, the 
range of errors in CT frequency across all CTs pertaining 
to a group, and the median of these errors (bias of CT fre-
quency). In the same way, also the bias of persistence is 
computed. All these results are shown in Table 5.

Fig. 10  Biases in CT frequency (GCM median minus reanalysis 
median; shown in colour: underestimation in blue, overestimation 
in red) as a function of vorticity (vertical axis) and direction of flow 

(horizontal axis). All 75 CTs are plotted for the domains shown in 
a–c. In d, CTs by clustering methods (SAN + CKM + KMD) are not 
included. Note that the scale of the vertical axes is not uniform
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Last, separately for each domain, Fig. 11, 12, 13 and 14 
show reanalysis centroids for all CTs, biases of the GCM 
ensemble in frequency, persistence, and horizontal SLP 
gradient, and two measures quantifying the correspondence 
between the reanalysis and GCM centroids (Pearson spatial 
correlation coefficient and Euclidean distance). The cen-
troids are organised according to their mutual similarity in 
a two-dimensional array (a “meta-map”). The organisation 
is subjective, nevertheless, guided by the direction of flow, 
vorticity, and mutual spatial correlation. Note that since the 
biases in GCMs found in the classifications by CA for the 
Eastern Mediterranean cannot be interpreted as errors in the 
direction of flow (see Sect. 3.4), the three CA-based clas-
sifications are excluded from the assessment for this domain.

The range of CT errors in frequency (Table 5) and persis-
tence (not shown) is quite wide for most groups, and the sign 
of these errors is rarely uniform. Over all domains, westerly 
CTs tend to occur more often in GCMs (indicated by red col-
our in the “freq bias” column of Table 5) and the bias of the 
Wq group increases southeastwards from 7% over the British 
Isles to almost 70% over the Eastern Mediterranean. Nev-
ertheless, not all of these CTs are overestimated. First, over 
the British Isles, westerly anticyclonic types obtained by CA 
methods are underestimated whereas westerly cyclonic types 
obtained by CA methods are underestimated (as an example, 
compare two CTs by SAN: anticyclonic #66 versus cyclonic 
#50; Fig. 12). Second, over Central Europe, CTs in classifi-
cations by CA with approximately southwesterly advection 
are slightly underestimated contrary to other quasi-zonal 
patterns, the frequency of which is overestimated (Fig. 13; 

compare CTs by SAN: #51 versus #34, #42, and #48). Third, 
over the large domain, some CTs with a ridge extending 
from SW and lows centred over or north of Scandinavia are 
underestimated (Fig. 11; e.g. #54 by GWT); moreover, the 
underestimation of westerly CTs with the polar front farther 
to the north (bottom row in Fig. 11; grouped with AC CTs) 
corresponds well with the underestimation of similar CTs 
over the British Isles. On the contrary, the underestimation 
of some northwesterly CTs over the large domain (Fig. 11; 
e.g. #46, #54, and #61) is not apparent over Central Europe 
where northwesterly directional CTs are among the most 
overestimated in GCMs (Fig. 13; e.g. #31–33). This is a 
clear warning not to infer errors in regional-scale circula-
tion from classifications—and especially single CTs—con-
structed for very large domains. Last, the most frequent CT 
by LND is slightly underestimated over all domains. Since 
the method tends to classify all patterns highly correlating 
with the climatological mean with one CT (see the boxplots: 
#73 in Fig. 11, #51 in Fig. 12, #73 in Fig. 13, and #40 in 
Fig. 14), the underestimation of this CT in GCMs could 
mean that the simulations tend to yield patterns more distant 
from the mean. However, it might also be an artifact of the 
LND method as similar (in terms of shape and frequency) 
CTs by GWT and PCT have positive biases of frequency.

Furthermore, groups of easterly CTs (see Fig.  10; 
Table 5, and patterns with black frames in Figs. 11, 12, 13, 
14) have negatively biased frequency over all domains (by 
about 30–40%) and persistence over the British Isles (14%) 
and Central Europe (8%). Unlike the westerly CTs, which 
have a wide range of errors, all easterly CTs are strongly 

Table 5  Groups of CTs: frequency and biases in simulated frequency and persistence

Euro-Atlantic domain British Isles 

group 
No of 
CTs freq1

freq 
errors2

freq 
bias3

pers 
bias4 group 

No of 
CTs freq1 freq errors2

freq 
bias2

pers 
bias4

W 28 38–71% -38/+99% 13% -0% W 15 27–53% -17/+26% 7% -3%
N 4 0–5% -32/+8% -21% -1% N 15 8–28% -15/+23% 6% 0% 
E 16 0–18% -51/-12% -29% 1% E 11 5–9% -52/-24% -36% -14%
S 8 0–25% -41/+5% -12% -4% S 9 9–23% -14/+10% -9% -9%
C 2 0–14% +48/+70% 59% 24% C 12 4–21% +23/+126% 45% 3% 

AC 17 4–31% -59/+2% -31% -6% AC 13 2–18% -47/-13% -36% -7%
Central Europe Eastern Mediterranean 

group 
No of 
CTs freq1

freq 
errors2

freq 
bias2

pers 
bias4 group 

No of 
CTs freq1 freq errors2

freq 
bias2

pers 
bias4

W 27 48–65% -7/+107% 21% 4% NW 15 13–45% +23/+271% 69% 14%
N 9 0–14% -19/+32% 5% 7%
E 15 7–19% -48/-26% -38% -8% NE 11 13–18% -57/+8% -34% -0% 
S 6 0–21% -33/+6% -18% -11% S 17 34–56% -40/+85% -7% 7%
C 3 0–5% +34/+46% 44% 2% C 5 4–15% -49/-18% -39% -8% 

AC 14 4–22% -63/+27% -33% -3%

Groups with a non-random (at α = 0.1) number (x) of CTs having either underestimated (bold) or overestimated (italics) frequency/persistence 
in GCMs. The test is as follows: The number of CTs that have an error of the same (and prevailing) sign is a random variable X, which follows a 
binomial distribution with parameters n equal to the number of CTs in the group and p = 0.5 (under  H0, positive and negative errors are assumed 
to be symmetrically distributed around zero).  H0 is rejected when P(X ≥ x) is less than the test level
1 The range of the relative frequency of days classified with a group in individual classifications
2 The range of errors of CT frequency across all CTs pertaining to a group
3,4 The bias is defined as the median of errors of frequency (persistence) of all CTs pertaining to a group
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underestimated, except for a few CTs over the Eastern Medi-
terranean (see the well-simulated #2 and #4 by JCT1 and #5 
by LND in Fig. 14).

The agreement in the errors in frequency of meridional 
CTs is less clear. Northerly (southerly) CTs usually occur 
more (less) often over the British Isles and Central Europe. 
Over the large domain, both groups are slightly underes-
timated, and the errors in southerly CTs suggest that in 
GCMs, maritime air masses are more frequently advected 
into Europe from S to SW at the expense of advection of 
continental air masses from S to SE (Fig. 10a). This is also 
apparent over Central Europe where GCMs simulate some-
what stronger flow (#17, #44, #52, and #53 in Fig. 13a, e, f) 
and lower SLP in southerly CTs, which can also be linked to 
a vast overestimation of cyclonic CTs over the British Isles 
(“C” in Fig. 10b).

Not only cyclonic CTs but all CTs with strong vorticity 
of either sign are poorly captured by GCMs. Anticyclonic 
CTs are underestimated by more than 30% over all domains 
except the Eastern Mediterranean where no anticyclonic CTs 
occur. The only anticyclonic CTs with a correctly simulated 
frequency are CTs by CA classifications in Central Europe 
with an anticyclone over or near the Alps (Fig. 13: #54, #61, 
and #68), although they exaggerate the meridional SLP gra-
dient. Conversely, cyclonic CTs are about half more frequent 
in simulations except for the Eastern Mediterranean where 
they have an opposite bias of a similar size. This exception 
is likely caused by the overestimated SLP in GCMs over 
the whole Mediterranean region and the considerably more 
frequent, persistent, and also markedly stronger zonal circu-
lation than in reanalyses (median error of the horizontal SLP 
gradient in CTs in the NW group is about 30%; see Fig. 14e). 
The underestimation of CTs with cyclones or troughs over 
the eastern Mediterranean Sea, Red Sea, and the Middle 
East has a potential to influence not only local climate, as 
positive vorticity over southeastern Europe is an important 
factor of cold spells over central Europe (Buehler et al. 2011; 
Pfahl et al. 2014). Consequently, the marked underestima-
tion of easterly CTs over Central Europe by GCMs could be 
interpreted as a result of both the erroneous simulation of 
Mediterranean circulation and the exaggerated zonality of 
circulation over the North Atlantic.

Previous study by Pastor and Casado (2012) suggested 
an overestimation of frequency of occurrence of an AC type 
with high pressure over western and central Europe and a 
SW directional CT at the expense of a W directional CT. 
This is not in agreement with the results here and the dis-
crepancy is likely due to the correction of SLP bias that 
Pastor and Casado (2012) did and, in particular, of the nega-
tive SLP bias over central Europe that they said was present 
in most of the validated CMIP3 GCMs. Contrariwise, the 
more frequent and somewhat stronger westerly zonal (and 
cyclonic) circulation over European domains found here 

corroborates results of other studies that utilised diverse 
other approaches to validate circulation in GCMs, such as 
analyses of the position and intensity of storm tracks and 
cyclones (Zappa et al. 2013) and the jet stream (Cattiaux 
et al. 2013a), atmospheric blocking (Vial and Osborn 2012; 
Dunn-Sigouin and Son 2013), mean patterns (van Ulden and 
van Oldenborgh 2006; Brands et al. 2013; Wójcik 2015) and 
circulation indices (Plavcová and Kyselý 2012; Davini and 
Cagnazzo 2014).

Last, as can be seen in Figs. 11f, 12f, 13f and 14f, CTs 
for the same domain can considerably differ in their mean 
SLP bias. Notably, there are differences based on the type of 
circulation [see e.g. AC CTs in Fig. 13, which overestimate 
SLP despite their markedly underestimated frequency and 
although most models underestimate SLP over the domain 
(Fig. 8a)]. Furthermore, there are also differences between 
the methods. For example, over the British Isles, CTs by 
CA methods have almost identical mean SLP in GCMs and 
reanalyses (the bias is less than 0.7 hPa in absolute value in 
all 27 CTs), whereas half of CTs by the remaining methods 
have a negative bias exceeding 2 hPa with the maximum 
of almost 6 hPa (Fig. 12: #12). On the contrary, correla-
tion coefficients between reanalysis and GCM centroids are 
generally lower for classifications by CA than the correla-
tions for methods that classify patterns based on correlation 
(not shown). Therefore, while the latter methods are more 
suited to investigate how SLP (GPH) differs between CTs 
in different datasets, the former are better for example for 
comparisons of SLP gradients.

3.6  Limitations of the study

Despite our effort to obtain as robust a validation result as 
possible, classifications have some limitations as for their 
relevance and usefulness; additional limitations stem from 
subjective choices that were made prior to the study.

Number of circulation types The study is based on a pre-
selected number of circulation types, which is 9–10. This 
number is enough to include for example all octants of flow 
and two vorticity types (as in the case of hybrid methods) 
and at the same time avoid defining types with negligible 
occurrences, which have generally very large errors in simu-
lations and thus affect the validation to a degree that exceeds 
their climatological relevance. However, the approach may 
fail to define CTs with rare occurrences but potentially high 
impacts on society. Therefore, the results have to be seen 
as too coarse for applications such as statistical downscal-
ing of weather extremes. Previous studies indicated that the 
number of CTs is an important factor; its effect on validation 
was not tested here.

Climatological relevance of CTs and GCM errors 
The climatological relevance of individual CTs and thus 
the significance of errors in these types were not tested. 
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Instead, the results represent a robust estimate of GCM 
biases in the synoptic-scale circulation as a whole and one 
has to keep in mind that model rankings built for specific 

synoptic-climatological case studies may differ from those 
presented here if additional variables were included and, 
for example, different weights were assigned to individual 
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classifications based on their ability to stratify the given 
variables. Furthermore, only the most obvious weaknesses 
of the used methods are discussed, for example those stem-
ming from clustering of raw SLP data.

Selection of methods The sensitivity of validation to the 
choice of the method implies that our results are to some 
extent affected by the choice of the ensemble of classifica-
tion methods. The selection was primarily constrained by the 
time-consuming nature of producing, analysing, and inter-
preting classifications. Furthermore, methods of hierarchical 
CA were excluded since they do not allow for projection 
(Huth 2000). Self-organizing maps (SOMs) were omitted for 
two reasons: first, presumably the main benefits of SOMs—
visualisation of CTs and their organisation into a rectangular 
array (see e.g. Sheridan and Lee 2011)—would not have 
been utilised owing to the amount of other classifications 
included in the study and the way how results are presented. 
Second, Philipp et al. (2016) documented that SOMs tend 
to lead to classifications very similar to SANDRA, a method 
that was used here.

Projection of CTs The utilization of projection consider-
ably increased the effectivity of the validation as projection 
circumvents the necessity to define CTs in all datasets com-
bined. However, it also disregards any existing differences 
in the structure of the two compared datasets. We accounted 
for this drawback by two-way projections. Nevertheless, in 
the combined output of all GCMs, it was not possible to 
compute the classifications by LND due to excessive RAM 
requirements and KMD due to excessive computation time; 
therefore, only PCT, SAN, and CKM were verified this way.

The choice of the variable and the type of data The study 
validated only SLP patterns. Somewhat different results 
may have been obtained for other circulation variables, for 
example 500 hPa GPH. Furthermore, only raw SLP data 
were classified; another option would be to classify SLP 
anomalies instead. Arguably, classifying anomalies would 
have weakened or even removed the issue found for clus-
tering of Eastern-Mediterranean patterns that caused the 
classifications to respond to errors in mean SLP rather than 
errors in the shape of patterns. Since over-/underestimation 

of SLP over a larger region can be interpreted as an error 
in planetary-scale rather than synoptic-scale circulation, 
clustering of raw data provides a qualitatively different kind 
of validation than clustering of anomalies or bias-corrected 
patterns. Consequently, validation of SLP anomalies might 
be less sensitive to the choice of the method than what we 
found for raw data. Similarly, validation of GPHs might be 
less sensitive to the choice of the method as well, because 
SLP patterns are far more complex and different statistical 
approaches very likely vary in their response to this com-
plexity. Additional research will be necessary do address the 
issue of the choices of circulation variable and data type in 
validation studies.

4  Summary and conclusions

Winter daily SLP patterns over the Euro-Atlantic region in 
1961–2000 were analysed in historical runs of 32 CMIP5 
GCMs by means of automated circulation classifications. 
Previous research made clear that the choice of the classifi-
cation method is an important factor in any synoptic-clima-
tological study. Therefore, eight classifications (each com-
prising 9–10 CTs, making up 75 CTs in total) were produced 
in five atmospheric reanalyses (ERA-40, NCEP-1, JRA-55, 
20CRv2, and ERA-20C) for the large Euro-Atlantic domain 
and three smaller domains within its range (British Isles, 
Central Europe, and Eastern Mediterranean) to minimize the 
risk of wrong assessments and provide robust estimates of 
biases in circulation in GCMs. The main results and conclu-
sions are as follows:

The reference dataset was defined as a “median reanaly-
sis”, that is, by computing the median of all reanalyses for 
each CT property [frequency of occurrence, persistence, 
and mean map (centroid)]. Subsequently, the bias of each 
model was quantified relative to the median reanalysis as 
the median absolute error of frequency of all the 75 CTs 
regardless of the classification. Based on this bias, only 
HadGEM2-CC, MIROC4h, and CNRM-CM5 appear among 
the best ten models over all four domains. Over each domain, 
a different model ranks first (HadGEM2-CC over the large 
domain, GFDL-ESM2G over the British Isles, CMCC-CM 
over Central Europe, and EC-EARTH over the Eastern 
Mediterranean). Rankings for the British Isles and Central 
Europe relatively highly covariate with the ranking for the 
large domain and also with a ranking computed by Perez 
et al. (2014) for the northeastern Atlantic Ocean, while the 
skill of GCMs over the Eastern Mediterranean is relatively 
independent of the skill over the other domains. Further-
more, the skill of models considerably varies: the bias of the 
best model for each domain is nearly the same as the median 
deviation of the 20CRv2 reanalysis from the median rea-
nalysis, which alone could be considered a very good result; 

Fig. 11  Characteristics of CTs and their errors in the Euro-Atlantic 
domain. a Centroids of 75 CTs by eight classifications are organ-
ised into a “meta-map” based on the similarity of their patterns. The 
groups of CTs (as shown in Fig. 10; Table 5) are highlighted here by 
coloured frames with solid (dashed) lines indicating overestimated 
(underestimated) frequency of CTs in GCMs. b Boxplots of CT fre-
quency in GCMs and CT frequency in the median reanalysis (red 
crosses). c GCM-ensemble bias in CT frequency (difference between 
the median frequency of the GCM ensemble and the median fre-
quency of the reanalysis ensemble). d Same as c, but for persistence. 
e Same as c, but for the horizontal SLP gradient. f Correspondence 
of reanalysis and GCM CT centroids expressed as pattern correlation 
(numbers) and mean SLP bias (colours). The panels are split in half 
to improve readability

◂
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Fig. 12  Same as in Fig. 11, but for the British Isles
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Fig. 13  Same as in Fig. 11, but for Central Europe
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however, some CTs can occur as much as twice more often 
than in reanalyses even in the best models. In contrast, the 
worst models have a bias in CT frequency of 50% and more. 
The persistence of CTs is simulated considerably better by 
the GCMs, most CTs having errors smaller than 15% of the 
median reanalysis.

Based on all eight classifications combined, the GCM 
ensemble simulates the CT frequency best over the British 
Isles (the bias is less than 25%) and worst over the East-
ern Mediterranean (40%). However, using the methods 

separately, one would arrive at contradictory conclusions, 
which illustrates that the assessment of the skill of models 
depends on the choice of the method. Moreover, the influ-
ence of the method is even stronger on the ranking of mod-
els; in the extreme case, IPSL-CM5B-LR ranks first based 
on one classification and only twenty-seventh (out of 32) 
based on another. Therefore, it must be remembered that a 
single classification provides one with only a feeble image of 
reality and this image must not be overinterpreted. Compar-
ing multiple classifications, on the other hand, helps create 

Fig. 14  Same as in Fig. 11, but for the Eastern Mediterranean. Classifications based on cluster analysis (SAN, KMD, CKM) are excluded
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robust estimates of GCM biases, select best GCMs, identify 
suboptimal classifications, and recognize statistical artifacts.

Demuzere et al. (2009) showed that subtracting mean 
SLP bias of GCMs leads to considerably more realistic 
CT frequencies. Here, the link between models’ mean SLP 
biases and median absolute CT frequency errors appears 
significant in most classifications, except for the Euro-
Atlantic domain, arguably due to its size. Over the Eastern 
Mediterranean, CT frequency biases in classifications by 
cluster analysis—which use the Euclidean distance as the 
similarity measure—strongly depend on the mean SLP bias 
of the models. Consequently, the errors in CT frequencies 
cannot be interpreted as errors in the direction of flow since 
it is not similarity in the shape of patterns but rather in the 
mean SLP what governs the assignment of patterns to CTs. 
This issue, already investigated by Belleflamme et al. (2013), 
should theoretically be minimized by classifying patterns of 
SLP anomalies instead of SLP patterns and/or subtracting 
SLP bias prior to classification. However, further research 
seems necessary to verify this and to shed more light on the 
interpretability of differences between classifications in two 
datasets if Euclidean distance based methods are used. Here, 
a simple measure was proposed that consists in computing 
correlations between biases in CT frequency and mean SLP 
bias, which should be able to identify the cases when the 
classification disregards the shape of patterns.

The link between model horizontal resolution and model 
errors in CT frequency and persistence was investigated. It 
is mostly weak; it is significant only for the frequency of CTs 
over the Eastern Mediterranean, where resolution explains 
about 20% of the inter-model variability of errors. In all 
other cases, less than 10% of the inter-model variability can 
be explained by resolution.

Regarding the regional circulation, GCM biases depend 
on the direction and vorticity of airflow. First, we demon-
strate that westerly circulation is overestimated over all 
domains; the bias ranges from about 7% over the British 
Isles to almost 70% over the Eastern Mediterranean. The 
frequency of only a few westerly CTs is underestimated; this 
concerns CTs with a ridge extending from the Azores across 
Europe and those with the polar front farther in the north 
over the large domain, the CTs with marked anticyclonic 
vorticity over the British Isles, and some CTs with southwest 
advection over Central Europe. Second, easterly circulation 
is less frequent in the ensemble than in reanalyses by about 
30–40% over all domains and significantly less persistent 
over the British Isles and Central Europe. Third, northerly 
circulation tends to be more frequent over the British Isles 
and Central Europe, while southerly types occur less often in 
simulations there. Over the large domain, meridional circula-
tion is slightly underestimated and models tend to prioritise 
zonal advection of maritime air masses onto the continent. 
Last, circulation with strong vorticity—both cyclonic and 

anticyclonic—is poorly simulated by the GCM ensemble. 
Anticyclonic CTs are underestimated by more than 30% over 
all domains whereas cyclonic CTs are about half more fre-
quent in simulations than in reanalyses. The only exception 
is the Eastern Mediterranean where anticyclonic CTs do not 
occur and the frequency of cyclonic CTs is underestimated, 
probably on account of models considerably overestimating 
SLP and the meridional SLP gradient over the region.

The present study enhances previous research into vali-
dation of circulation in GCM simulations mainly by using 
multiple methods. One has to keep in mind that in spite of 
this enhancement model errors (and rankings) are sensitive 
to various factors (such as number of CTs, selection of meth-
ods, reference dataset, spatial and temporal domains, and 
variables), some of which were not tested here. Furthermore, 
the validation is carried out for a period of time that is short 
relative to some natural oscillations (e.g. Atlantic Multi-
decadal Oscillation). Additionally, only CT frequency and 
persistence are validated; further research is necessary to 
address the simulation of the link between CTs and surface 
weather. Considering all these limitations, neither the model 
rankings presented here nor the ability of the pinpointed 
best models to produce reliable projections of future climate 
should be overrated. The results may nevertheless be used 
to weigh projections by multi-model ensembles or guide the 
selection of a subset of GCMs for dynamical downscaling.
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