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ABSTRACT

Atmospheric reanalyses have been widely used to study large-scale atmospheric circulation and its links to
local weather and to validate climate models. Only little effort has so far been made to compare reanalyses
over the Euro-Atlantic domain, with the exception of a few studies analyzing North Atlantic cyclones. In
particular, studies utilizing automated classifications of circulation patterns—one of the most popular
methods in synoptic climatology—have paid little or no attention to the issue of reanalysis evaluation. Here,
five reanalyses [ERA-40; NCEP-1; JRA-55; Twentieth Century Reanalysis, version 2 (20CRv2); and
ECMWF twentieth-century reanalysis (ERA-20C)] are compared as to the frequency of occurrence of cir-
culation types (CTs) over eight European domains in winters 1961–2000. Eight different classifications are
used in parallel with the intention to eliminate possible artifacts of individual classification methods. This also
helps document how substantial effect a choice of method can have if one quantifies differences between
reanalyses. In general, ERA-40, NCEP-1, and JRA-55 exhibit a fairly small portion of days (under 8%)
classified to different CTs if pairs of reanalyses are compared, with two exceptions: over Iceland, NCEP-1
shows disproportionately high frequencies of CTs with cyclones shifted south- and eastward; over the eastern
Mediterranean region, ERA-40 and NCEP-1 disagree on classification of about 22% of days. The 20CRv2 is
significantly different from other reanalyses over all domains and has a clearly suppressed frequency of zonal
CTs. Finally, validation of 32 CMIP5 models over the eastern Mediterranean region reveals that using dif-
ferent reanalyses can considerably alter errors in the CT frequency of models and their rank.

1. Introduction

Atmospheric reanalyses represent a widely used tool in
the research of climate. Reanalyses have evolved over the
last two decades into what the community now accepts
as a quasi-realistic representation of the evolution of the
atmosphere spanning—depending on the dataset—from
several years to more than a century. The reanalyses have
been considered confident particularly in midlatitudes of
the Northern Hemisphere, for which an abundance of
observations were assimilated into reanalyses.

Recently, an increasing number of papers have been
dealing with various aspects of large-scale circulation over
Europe and the North Atlantic, such as its long-term

variability [see Hertig et al. (2015) and references therein],
recent trends (Ku�cerová et al. 2016), and effects of both
on (inter alia) temperature and precipitation variables
(Beck et al. 2007; Beranová and Huth 2008; Casado et al.
2010; Küttel et al. 2011; Plavcová and Kyselý 2012;
Cahynová and Huth 2016). Not only reanalyses but also
global climate model (GCM) and regional climate model
(RCM) output have been scrutinized for various regions:
Europe and the North Atlantic (e.g., Rust et al. 2010;
Pastor and Casado 2012; Perez et al. 2014), Asia (Finnis
et al. 2009b), North America (McKendry et al. 2006;
Finnis et al. 2009a), Australia (Gibson et al. 2016), and
polar regions (Cassano et al. 2006; Lynch et al. 2006). In
this kind of study, reanalyses have been the most prom-
inent source representing the reality. However, little to no
attention has usually been paid to their evaluationCorresponding author: Jan Stryhal, jan.stryhal@natur.cuni.cz
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(against nonassimilated observations or other reanalyses)
and discussion on how their selection may have affected
the results.

Moreover, only few studies aimed to intercompare
reanalyses. Additionally, these studies primarily focused
on regions with large observational uncertainty, such as
the Arctic and the Antarctic (e.g., Bracegirdle and
Marshall 2012; Lindsay et al. 2014; Nygård et al. 2016),
midlatitudes of the Southern Hemisphere (Bromwich
and Fogt 2004), and the tropics (Stickler and Brönnimann
2011; Kumar et al. 2013). Global studies indicate that the
agreement among reanalyses is closest over regions with
densest data coverage, such as Europe and North
America (Greatbatch and Rong 2006; Wang et al. 2006),
and claim that reanalyses agree fairly well on the wave
activity in the synoptic and low frequencies in the
northern extratropics after 1980 (Dell’Aquila et al. 2016).
As far as atmospheric circulation over the Euro-Atlantic
domain is concerned, only a handful of studies compared
selected circulation features—mostly cyclones and storm
tracks—in two or more reanalyses. Trigo (2006) analyzed
North Atlantic cyclones in ERA-40 and NCEP-1 (for the
explanation of abbreviations and more information on
the reanalyses, see Table 1) and found discrepancies that
were primarily attributed to different spatial resolution of
assimilation models. Hanson et al. (2004) found out that
there were only weak correlations between time series
of cyclone frequency—in particular for low-intensity
cyclones—derived from NCEP-1 and a slightly ex-
tended variant of ERA-15. Kouroutzoglou et al. (2011)
corroborated the crucial effect of grid resolution in their
analysis of Mediterranean cyclones in ERA-40 data. For
more information on cyclone representation by re-
analyses and GCMs, readers are also referred to Ulbrich
et al. (2009) and Wang et al. (2016). Comparisons of re-
analyses in the Euro-Atlantic domain were also con-
ducted for the North Atlantic Oscillation, which was
shown to differ only negligibly between NCEP-1 and
ERA-40 (Greatbatch and Rong 2006). Unlike cyclones,
no study has so far utilized circulation classifications

(classifications of atmospheric circulation patterns) to-
ward evaluating reanalyses.

Classifications represent a different approach to analyze
atmospheric circulation. This tool has been widely used
in synoptic climatology to describe the highly variable
circulation—usually expressed by daily or monthly mean
sea level pressure (SLP) or geopotential height (GPH)
patterns—by a relatively low number of circulation types
(CTs). Both the definition of CTs and the attribution of
patterns to the CTs can be achieved by various statistical
methods; for their review, see Huth et al. (2008). Only a
few studies have, nevertheless, used more than one re-
analysis to define CTs or compare the circulation statistics
(Rust et al. 2010; Belleflamme et al. 2013; Perez et al. 2014;
Gibson et al. 2016); moreover, the primary goal of these
studies was validation of GCMs and not intercomparison
of reanalyses. Other studies have arbitrarily used either
ERA-40 or NCEP-1 as quasi observations.

For the North Atlantic domain, Perez et al. (2014)
defined 100 CTs by k-means clustering of principal
components based on 3-day averaged SLP anomalies in
NCEP-1 data and, subsequently, projected these CTs
onto ERA-40 and Twentieth Century Reanalysis, ver-
sion 2 (20CRv2), data and a set of GCMs. Although the
authors claimed the distribution of the frequency of
occurrence across the CTs to be ‘‘similar’’ for the three
reanalyses, quantitative indices showed nonnegligible
differences: for annual data, root-mean-square errors of
the relative frequency of CTs in ERA-40 and 20CRv2
relative to NCEP-1 were 0.16% and 0.26%, respectively,
while over 20% of GCMs scored under 0.5%, with the
minimum value being 0.33%. For winter, the respective
values were 0.34% and 0.39%, while the best GCMs
scored slightly over 0.5%. These results suggest that
when evaluating CTs in GCM output, we need to better
assess the observation uncertainty, especially if future
generations of GCMs produce increasingly more reli-
able circulation climatologies. For a similar domain,
Rust et al. (2010) showed that the differences between
ERA-40 and NCEP-1 in shapes of CT centroid patterns

TABLE 1. List of atmospheric reanalyses used in the study. (Expansions of acronyms are available online at http://www.ametsoc.org/
PubsAcronymList.)

Reanalysis Institution
Resolution of

data (lon 3 lat) Reference

ERA-40 European Centre for Medium-Range Weather Forecasts 28 3 28 Uppala et al. (2005)
NCEP-1 National Centers for Environmental Prediction

(NCEP)–National Center for Atmospheric Research (NCAR)
2.58 3 2.58 Kalnay et al. (1996)

JRA-55 Japan Meteorological Agency 1.258 3 1.258 Kobayashi et al. (2015)
20CRv2 NOAA/Earth System Research Laboratory, University of

Colorado CIRES Climate Diagnostics Center
28 3 28 Compo et al. (2011)

ERA-20C European Centre for Medium-Range Weather Forecasts 28 3 28 Poli et al. (2016)
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and CT frequencies depended on the imposed cluster
shape, being a result of both the definition of not well-
separated clusters and suboptimal number of CTs. The
former issue relates to the fact that the atmospheric
circulation is rather a continuum than a set of well dis-
tinguishable states (Philipp et al. 2016). Consequently,
results of synoptic-climatological studies tend to depend
on the selection of classification criteria including the
classification method itself. Therefore, the need for a
parallel usage of more than one method has been
stressed several times (e.g., Huth et al. 2008) in order
that reliable results are obtained and artifacts of indi-
vidual methods not overinterpreted.

In the study, multiple circulation classifications are
used to define CTs in five global reanalyses over the
Euro-Atlantic domain and its seven subdomains. Al-
though CTs in reanalyses undoubtedly differ throughout
the whole year, all analyses are conducted only for
winter (DJF). Winter has been an extensively studied
season because the links between large-scale circulation
(including CT frequencies) and local-scale climatic ele-
ments are strongest in winter over various Euro-Atlantic
regions (see, e.g., Beck et al. 2007; Pasini and Langone
2012; Plavcová and Kyselý 2013; Broderick and Fealy
2015; Cahynová and Huth 2016). Consequently, study-
ing the uncertainty of winter reference circulation data
is of utmost importance, as errors in the data and faulty
assumptions regarding the data could negatively affect
the results of many studies.

The paper is organized as follows: The datasets and
methods are described in section 2. In section 3, the main
results are presented and discussed. The paper seeks an-
swers to the following questions: 1) Do different re-
analyses have notably different CT frequencies over any
of the tested domains? 2) Do the eventual differences
depend on the classification method used to define the
CTs? 3) Can notably different results be obtained in a GCM
validation if different reanalyses are used as a benchmark?
The main conclusions are presented in section 4.

2. Data and methods

a. Reanalysis data

Five global reanalyses are used in the study (Table 1).
The selection was influenced by the choice of the time
period (DJF 1960/61–1999/2000), which in turn respects
the time scale typically used in synoptic-climatological
studies. Although new generations of reanalyses, such
as ERA-Interim, were shown to better represent reality,
inter alia owing to the inclusion of satellite data, their
shorter span considerably limits trend analyses. Therefore,
the original ERA-40 and NCEP–NCAR reanalysis

(NCEP-1), as well as the relatively newer JRA-55, are and
will be widely used. Moreover, the recent reanalyses,
20CRv2 and ECMWF twentieth-century reanalysis (ERA-
20C), are becoming popular in the research of long-term
climate variability; they need to be assessed against
more ‘‘traditional’’ reanalyses as they assimilate only a few
surface variables. This attribute has been proven useful
because the reanalyses are not constrained by inhomoge-
neities in the data type assimilated (upper-air and satellite
observations). Nevertheless, the data are still constrained
by changes in the density of observations, notably over
oceans and farther in the past (Gibson et al. 2016).

The reanalyzed daily mean SLP patterns were in-
terpolated by bicubic splines onto the longitude–latitude
grid of 38 3 28 over the Euro-Atlantic domain (D00) and
18 3 18 over its seven subdomains (Fig. 1): Iceland
(D01), western Scandinavia (D02), northeastern Europe
(D03), British Isles (D04), central Europe (D07), west-
ern Mediterranean (D09), and eastern Mediterranean
(D11). Note that these domains are a subset of domains
defined within the European Cooperation in Science
and Technology Action 733 (COST733). To aid com-
parison with other studies, the spatial extent and codes
of the domains and also the spatial resolution of the
classified patterns and the number of CTs follow con-
ventions introduced in the action. For more information
on the action, refer to editorials of special issues by Huth
et al. (2010) and Tveito and Huth (2016).

b. Circulation classifications

The research method used in the study is that of
classifications of circulation patterns. In this case, the
classified patterns are the reanalyzed gridded daily mean
SLP maps. The general goal of a circulation classifica-
tion is to substitute a wide variety of patterns with a few
CTs (forming a so-called catalog of CTs), which would
simplify the complexity of atmospheric circulation and

FIG. 1. Location of spatial domains over which classifications were
calculated and reanalyses compared.
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thus facilitate its analysis. There are many approaches
how CTs can be defined and the patterns classified to
these CTs (so-called classification methods), each
resulting in a unique classification result. For a detailed
review of classification methods, readers can refer to
Huth et al. (2008) and Philipp et al. (2016).

To obtain reliable results, a total of eight methods were
used in the study (Table 2). The selected methods are
among the most widespread in recent literature, and all
main automated classification approaches are represented
by at least one method. Moreover, all these methods are
included in the COST733 classification software version
1.2, which is freely available online (http://cost733.geo.
uni-augsburg.de/cost733wiki). A brief description of the
methods follows.

GWT, JCT1, and JCT2 represent hybrid (also
threshold based) methods, which subjectively predefine
CTs and, subsequently, automatically assign patterns
using threshold values of certain indices, such as vor-
ticity and direction of airflow. In our case, the catalogs
consist of eight directional types—one for advection
from each directional octant [further referred to as west
(W), northwest (NW), north (N), northeast (NE), east
(E), southeast (SE), south (S), and southwest (SW)]—
one cyclonic CT (C), and one anticyclonic CT (A). The
remaining methods define CTs automatically as part of
the classification process; thus, the resulting classifica-
tion mirrors only the ability of the respective algorithm
to divide the data cloud into clusters. Consequently,
these methods are somewhat more objective, although
multiple more or less subjective choices (such as de-
fining the number of CTs) still have to be made prior to
the classification. LND is the oldest automated method
and one of the so-called leader-algorithm-based classi-
fications. It finds key (leader) patterns that well repre-
sent (i.e., highly correlate with) relatively large groups of
individual patterns. PCT is a method based on principal
component (PC) analysis with the input data matrix in a
T mode [i.e., grid points correspond to columns of the
data matrix and time realizations (days) to its rows],
followed by the direct oblimin rotation of PCs. The

scores of the rotated PCs represent spatial structure
(maps) of CTs, and their loadings are used to assign the
patterns to classes. For more information on rotation of
PCs and modes of PCA, refer to Richman (1986) and
Compagnucci and Richman (2008). CKM, SAN, and
KMD are algorithms of nonhierarchical cluster analysis,
also called optimization methods, since they incorporate
steps that help find a solution closer to the globally op-
timal partitioning (that with minimum within-type var-
iance) for the number of CTs selected in advance.

It is clear that not all results can be shown in the paper
and that a different approach is required to analyze results
than to simply interpret individual classifications. Instead,
the approach we propose uses simultaneously all 75 CTs
(eight catalogs of 9 or 10 CTs each), regardless the classi-
fication. These CTs are plotted and analyzed together, and
differences in their frequency of occurrence in each pair of
reanalyses are quantified in a far more robust way than if
based on a single classification. Furthermore, this ap-
proach makes it possible to group CTs with similar cen-
troid patterns and elicit whether the differences between
reanalyses are common to various classifications (i.e.,
systematic) or rather accidental. To avoid the necessity to
project CT centroids from one reanalysis to another (in
other words, to assign daily patterns from one dataset to
CTs that were sooner defined on another dataset), the
classifications are applied on all five reanalyses together
(i.e., on 18000 daily patterns). In section 3f, nevertheless, a
projection will be utilized for classification of outputs of a
GCM ensemble in order to illustrate the effect of the
choice of the reanalysis on GCM validation. This approach
is highly beneficial since projection is often several orders
of magnitude faster than running classifications on a large
number of datasets.

3. Results and discussion

a. Intercomparison of reanalysis datasets

A straightforward way to assess the congruency of
classifications in different datasets is to compute the

TABLE 2. List of classification methods used in the study.

Method abbreviation Method name No. of CTs Reference

GWT Grosswettertypes 10 Beck et al. (2007)
JCT1 Jenkinson–Collison 10 Jones et al. (1993)
JCT2
LND Lund 9 Lund (1963)
PCT T-mode PCA obliquely rotated 9 Huth (1993)
CKM k-means by dissimilar seeds 9 Enke and Spekat (1997)
SAN Simulated annealing and diversified

randomization (SANDRA)
9 Philipp et al. (2007)

KMD k-medoids 9 Kaufman and Rousseeuw (1990)
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relative frequency of days that are classified with dif-
ferent CTs by a pair of reanalyses. A more common
approach is to compare CT frequencies; however, even a
near-perfect fit of the frequencies does not rule out the
possibility that a certain amount of days is classified
differently if the classes are not unambiguously con-
strained, which is rarely the case in the atmosphere. One
would expect that differences in assignment would be
relatively rare events related to circulation patterns far
from CT centroids, at least over regions with enough
integrated observations. The percentages for all pairs of
reanalyses and domains are shown in Fig. 2a; the results
are composites of all classifications. There is indeed a
good agreement among ERA-40, NCEP-1, and JRA-55
(less than 8% of days classified differently) except for
D01 and D11. Over D01, ERA-40 and NCEP-1 disagree
on about 11% of days. Over D11, ERA-40 and JRA-55
are alike; however, NCEP-1 differs from both ERA-40
and JRA-55 in about 22% of days. The two twentieth-
century reanalyses show different behavior. ERA-20C
seems to be very consistent with ERA-40 and JRA-55,
even over D01 and D11. On the other hand, 20CRv2
leads to considerably differing classifications compared

to all four remaining reanalyses. This suggests that
ERA-20C might be closer to reality and, therefore,
more appropriate to be used to classify CTs should the
recent-climate reanalyses have too limited a time span.
However, it is not possible to test the validity of this
hypothesis for the period prior to 1957 using the tradi-
tional reanalyses such as ERA-40. Moreover, it has to be
remembered that an accord among reanalyses does not
necessarily mean that the reanalyses are not biased from
reality.

While Fig. 2a provides a robust estimate of the ac-
cordance between reanalyses by showing the average of
eight classifications, Fig. 2b illustrates to what extent the
accordances can differ between individual classifica-
tions. The values show the range (in percentage points)
between the classification with the highest accordance
and the classification with the lowest accordance. For
example, the range of accordances between NCEP-1
and 20CRv2 over D03 is about 23 percentage points
with the minimum of 67% in KMD and the maximum of
90% in LND. Such a wide range indicates that there is
some kind of difference between the two datasets that only
cluster analysis methods detect. In general, the wider the

FIG. 2. Differences of classifications in reanalyses: (a) percent of days classified with the same
CT; each value is an average of eight classifications for the respective domain. (b) As in (a), but
for the range of classifications (in percentage points). (c) Number of classifications with sig-
nificantly different CT frequencies based on the chi-square test and the 5% level. Cases with
collective significance of 0.01 are in boldface.
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range is, the stronger the need for more classifications, for
example, to assess the significance of differences between
two reanalyses. The differences between classifications will
be analyzed in detail in section 3e.

Figure 2c shows how many classifications (out of
eight) have statistically different frequencies of CTs.
The significance is tested separately for each domain
and each pair of reanalyses using the chi-square test at
the 5% level. More than 40% of these tests (640 tests in
total) detect a significant difference. ERA-40, NCEP-1,
and JRA-55 usually do not significantly differ, except for
D11 and D01. On the other hand, significant differences
are much more numerous when 20CRv2 and D11 are
involved in comparisons (75% and 79%, respectively).
There are several cases in which the frequencies signif-
icantly differ only in one classification (e.g., JCT2 over
D07 between ERA-40 and NCEP-1). However, to de-
clare circulation in two reanalyses significantly different,
one positive chi-square test out of eight is not enough;
see, for example, the multiplicity problem for in-
dependent tests by Wilks (2006). With eight tests at
the 5% level, declaring collective significance at the
10% (1%) level requires at least two (three) local tests
to be positive.

The following sections further analyze the most sig-
nificant differences between the reanalyses. First, in
section 3b, the somewhat striking difference between
reanalyses over D01 is further analyzed and discussed.
We focus on ERA-40 and NCEP-1 since these two re-
analyses are most widespread in studies of North At-
lantic and since D01 is the only domain where CT
frequencies of these two reanalyses significantly differ
(except D11, which will be shown in a separate section).
Second, in sections 3c and 3d, respectively, results
obtained for 20CRv2 and D11 are analyzed. Third,
section 3e focuses on differences between classifica-
tion methods, and, finally, section 3f illustrates how the

choice of reanalysis can influence results of GCM
validation.

b. ERA-40 and NCEP-1 over Iceland

The difference in CT frequency in NCEP-1 relative to
ERA-40 is, on average, about 12% over D01; however,
some CTs—including several rather frequent ones—
deviate considerably more (Fig. 3a). Among all classi-
fications, PCT detects the most profound differences.
The most frequent CT in ERA-40—PCT circulation
type 5 (CT05), depicted in Fig. 3b—has in NCEP-1
about half the frequency compared to ERA-40. When
patterns assigned to PCT CT05 are assigned differently
in NCEP-1, the latter favors either CT04 with the low
shifted southward and a ridge over and east of Green-
land (Fig. 3c) or one of two CTs that place the cyclone
farther eastward, closer to Iceland (not shown). The
latter deviation concurs with an increased frequency of
CTs with the cyclone close to the center of the domain in
NCEP-1 (see, e.g., Fig. 3d).

The described differences between ERA-40 and
NCEP-1 over Iceland seem to concur with Trigo (2006),
who found considerable differences in the ability of
these reanalyses to capture the frequency and spatial
distribution of cyclogenesis and the location where cy-
clones reach minimum SLP during winter. While the
maxima were localized southwest of Iceland in NCEP-1,
they extended over the whole Denmark Strait and along
the eastern coast of Greenland in ERA-40—compare
Figs. 1 and 2 in Trigo (2006). The differences were at-
tributed primarily to the coarser horizontal resolution of
the NCEP-1 integration model. Although circulation
pattern classifications should theoretically be less af-
fected by reanalysis model resolution than cyclone-
tracking algorithms, the results suggest that in some
cases CT frequencies do differ over D01. It is, however,
debatable what the effect of resolution in this case is

FIG. 3. Comparison of ERA-40 and NCEP-1 over D01: (a) relative frequency of CTs in ERA-40 and respective NCEP-1 anomalies (in
percent of ERA-40); (b)–(d) centroids of selected CTs. The three values denoted by ‘‘b,’’ ‘‘c,’’ and ‘‘d’’ in (a) refer to the respective CTs
depicted in (b)–(d). Note that in (a) all CTs are plotted together regardless the classification.
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since the finer-resolution JRA-55 produces results sim-
ilar to NCEP-1; moreover, a coarser-resolution version
of ERA-40 was used in the present study, which should
obliterate the benefits of the finer resolution if there are
any. To conclude, the differences between ERA-40 and
NCEP-1 CTs over D01 seem to reflect real biases rather
than artifacts of the classification methodology.

c. 20CRv2

Figure 2 indicates that classifications in 20CRv2 de-
viate from the remaining datasets considerably more
than any other reanalysis and that this behavior is spa-
tially consistent. Excluding 20CRv2, reanalyses classify
differently, averaged over all pairs of reanalyses and all
domains, about 7.7% of days. On the other hand,
20CRv2 classifies differently, on average, about 15.5%
of days; that is, twice as many. The ratio grows larger to
2.4 if ERA-20C is excluded, owing to the overall good
agreement between ERA-40, NCEP-1, and JRA-55.
These results document that using classifications based
(only) on the 20CRv2 ensemble mean is problematic
even for regions with relatively dense observation net-
works such as central Europe. It seems, therefore, ad-
visable to utilize the whole set of ensemble runs (a
unique feature of the reanalysis is that it also includes a
56-member ensemble) instead of using only the en-
semble mean in synoptic-climatological studies re-
stricted to 20CRv2 data, in order to account for the
observation uncertainty.

Consequent to its anomalous behavior is the question
whether 20CRv2 is biased in favor of CTs with certain
properties (e.g., strong vorticity or direction of flow). To
answer this question, 20CRv2 is compared in detail with
ERA-40. Note that substituting ERA-40 with JRA-55 or
NCEP-1 would lead to very similar results. Over D00,
the difference in the CT frequency in ERA-40 and
20CRv2 is, on average, 14%; individual CTs are plotted
in Fig. 4a. The highlighted CTs show that there is a
tendency in 20CRv2 data—independent of the classifi-
cation method—toward a lower frequency of W and NW

CTs, such as PCT CT03 (Fig. 4b), and a higher frequency
of CTs with high SLP over the continent, especially over
northeastern Europe, such as PCT CT05 (Fig. 4c) and
SAN CT06 (Fig. 4d). Note that the codes used here to
describe the CTs (e.g., W for western advection) are
analogous to codes of 10 CTs defined by hybrid methods
(see section 2b). The attribution of CTs to the 10 groups
is based on the shape of CT centroids and is a result of
authors’ expert judgement guided by pattern correla-
tions of individual CTs with the CTs defined by hybrid
methods.

Results for D02 and D03 (Fig. 5) corroborate those for
D00. The 20CRv2 clearly underestimates the frequency
of CTs with cyclones along the western and northern
coast of Scandinavia, over the White Sea, and Karelia.
On the contrary, anticyclonic CTs are more frequent
over both domains in 20CRv2. Higher SLP over north-
eastern Europe increases the frequency of southerly
advection over Scandinavia, as well as advection from
the whole eastern (southeastern) quadrant over D07
(D09). Zonal advection from over the North Atlantic is
suppressed over D02, D07, and D09 in 20CRv2. All
these differences are, on average, at the rate of ap-
proximately 15%–25% of respective ERA-40 values
and are apparent in all classifications, although indi-
vidual values vary depending on the method. Groups of
CTs with consistent differences in frequency in 20CRv2
and ERA-40 are highlighted in Fig. 5 for D02, D03, D07,
and D09 by filled and open circles.

d. Eastern Mediterranean

Among the evaluated domains, reanalyses differ the
most over D11. Only ERA-40, JRA-55, and ERA-20C
have relatively similar CT statistics. The best agreement
is between ERA-40 and JRA-55: the mean absolute
difference of CT frequency in JRA-55 relative to ERA-
40 is less than 5% (see Fig. 6a), about 8% of days differ
in their classification (Fig. 2a), and significance testing
failed to return a positive test in any classification
(Fig. 2c). NCEP-1 disagrees with other reanalyses on

FIG. 4. As in Fig. 3, but comparing ERA-40 with 20CRv2 over the Euro-Atlantic domain (D00). In (a), filled circles highlight zonal CTs
with W and NW advection, and open circles highlight CTs with high pressure over the continent.
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classification of more than 20% of daily patterns.
Figure 6 compares CT frequencies in selected pairs of
reanalyses. There is a clear difference in the frequency
of CTs with advection from the SE quadrant (low
pressure over the central Mediterranean region) and
from N and NE quadrants (low pressure to the east of
the domain): the former (latter) direction is less (more)
frequent in NCEP-1 and especially in 20CRv2 data,
compared to ERA-40, ERA-20C, and JRA-55. The
averages of relative differences in CT frequency for
pairs of reanalyses shown in Figs. 6b–d are in turn about
17%, 22%, and 29%.

The overall worse correspondence of reanalyses over
D11 relative to other domains is somewhat expectable
owing to generally weaker horizontal pressure gradi-
ents. Even minor (in absolute terms) differences in SLP
patterns can be expected to have a relatively profound
impact on the classification of the patterns. Several
conclusions can be drawn from these results. First, cir-
culation classifications can be seen as a powerful tool in
investigating and quantifying differences between re-
analysis datasets. Second, bearing in mind these differ-
ences, one should be careful when using classifications

for synoptic-climatological studies of both the real cli-
mate and its model simulations.

e. Differences between classification methods

The differences between reanalyses shown in previous
sections are to a large extent present in all classifications.
There are, however, several cases with an interesting
variability of results if these differences are quantified
and significance tested. Three pairs of reanalyses are
selected as examples: 20CRv2 versus ERA-40, NCEP-1
versus ERA-40, and ERA-20C versus JRA-55. Note
that CTs defined by methodologically similar methods
are grouped together since they produce catalogs that
(in this case) tend to behave similarly.

The results in Fig. 7a show a spatial pattern similar to
those in Fig. 2, with a better agreement between 20CRv2
and ERA-40 over D01 and D04 and worse over D11.
However, the values obtained by different groups of
methods—in particular by hybrid (GWT1JCTs) and clus-
ter analysis (SAN1KMD1CKM) methods—considerably
vary, especially over D01, D03, D09, and D11.
Figures 7b and 7c illustrate how the frequency of indi-
vidual CTs differs in the two datasets over D01 and D03,

FIG. 5. Comparison of ERA-40 and 20CRv2 over selected subdomains (a) D02, filled circles: CTs with N and NW advection and C CTs
(N1NW1C; see text for further explanation) and open circles: S1SW1A; (b) D03, filled circles: C and open circles: A1N1NE1E;
(c) D07, filled circles: W1C and open circles: A1NE1E1SE1S; and (d) D09, filled circles: W1NW1N and open circles: S1SE1E.

FIG. 6. (a)–(d) Comparison of CT frequency in reanalyses over D11, whereEach panel shows a different pair of reanalyses. In (b)–(d),
filled circles highlight SW1S1SE CTs, and open circles highlight N1NE CTs. One and three outlying CTs (with frequency under 5% and
overestimation of 105%–190%) are not shown in (c) and (d), respectively.

7854 J O U R N A L O F C L I M A T E VOLUME 30



respectively. Over D01, the cluster analysis methods
define CTs that have fairly similar frequencies in both
reanalyses—note the mean difference in Fig. 7a being
only a fraction of the values obtained by the remaining
methods and CT frequencies being significantly in-
different based on chi-square test. Over D03, cluster
analyses yield far greater discrepancies between the
datasets compared to other methods, while hybrid
methods lead to indifferent CT frequencies. By re-
peating the same analysis for all remaining reanalysis
pairs and domains (two more examples are shown in
Figs. 7d,e), it becomes evident that no method gives
systematically either too small or too large a difference
between two reanalyses. The results agree with and
enhance what Rust et al. (2010) showed for ERA-40 and
NCEP-1, that is, that the difference in CT frequencies in
two datasets depends on the shape of clusters of daily

fields within the phase space imposed by the classifica-
tion method. Here, the intercomparison of multiple
methods shows that this dependence is spatially in-
consistent and reflects the spatially varying ability of
classification methods to separate the rather continuous
data space into classes. Consequently, whether a certain
method is or is not able to recognize existing differences
is highly unpredictable. In reality, the clusters are
functions of several factors, some being independent of
the classification method (such as character of circula-
tion), others chosen by the researcher or directly im-
posed by the method (e.g., number of CTs, method used
to define CTs, and measure of similarity used to assign
patterns). Undoubtedly, the measure of similarity (here,
the Euclidean distance for clustering methods versus
pattern correlation for LND and PCT versus various
flow indices for hybrid methods) strongly influences

FIG. 7. The effect of classification methods on the difference of the CT frequency in reanalyses. (a) Spatial variability of the dependence
of the mean absolute difference of the CT frequency in 20CRv2 and ERA-40 on classification methods. Note that methodologically similar
methods were grouped together: hybrid (GWT1JCTs), LND, PCT, and cluster analysis (SAN1KMD1CKM). One and two asterisks
indicate classifications with significantly different CT frequencies at 10% and 1% levels, respectively. (b) Differences in the relative
frequency of individual CTs for D01 between 20CRv2 and ERA-40; filled (open) circles highlight CTs by cluster analysis (hybrid)
methods. (c) As in (b), but for D03. (d) As in (a), but for NCEP-1 and ERA-40. (e) As in (a), but for ERA-20 and JRA-55.
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which differences will be captured and which ignored.
For instance, while spatial correlation cannot distinguish
between patterns that have the same structure of isobars
but differ in mean SLP, the Euclidean distance makes it
possible to find differences in the mean SLP but may fail
to detect differences in structure. A more in-depth
analysis into which factors cause the particular differ-
ences between methods shown here would be beyond
the scope of the paper.

To conclude, it is evident that using a single classifi-
cation to compare two datasets and to analyze the spa-
tial patterns of their mutual relationship (i.e., to say
where the differences between reanalyses are smaller
and where larger) cannot provide reliable results. Re-
lying on one classification will likely cause two studies
that utilize the same data but different classification
methods to arrive at different or even contradictory
conclusions.

f. Case study: Validation of GCM output

There is no doubt that the presented differences be-
tween reanalyses will to some extent influence the re-
sults of any analysis and that the extent will depend on
the selection of (classification) methods, domains, and
likely also on the research objective. To illustrate this
issue, the following analysis tests the influence of the
choice of reanalysis on validation of GCM winter cir-
culation over D11. This analysis is one part of a broader
ongoing research on the applicability of circulation
classifications to validation of historical climate runs and
interpretation of future climate runs by GCMs.

An ensemble of historical runs by 32 CMIP5 GCMs
(Table 3) was accessed online (http://cmip-pcmdi.llnl.
gov). See Taylor et al. (2012) for more information on
the CMIP5 experiment. The simulated winter 1961–
2000 daily mean SLP patterns were interpolated onto
the same grid as the reanalyses. Subsequently, each
catalog of CTs defined from reanalyses was projected
onto the model data, resulting in eight classifications for
each model. Finally, for each of the classifications, the
relative frequencies of CTs and their errors with respect
to the relative frequencies of the same CTs in each
reanalysis were computed. The model errors are further
evaluated in the same manner as were the differences
between reanalyses in previous sections of the text;
that is, errors of all 75 CTs are analyzed together.
Medians of absolute values of the errors are used as a
basis for model rankings, and since five reanalyses
are used to compute the errors, five different rankings
are created.

In Fig. 8, five median absolute errors and five rankings
are shown for each model. There are several models that
rank among the best or worst regardless the reanalysis

(e.g., EC-EARTH, CMCC-CM, and MIROC4h on
one hand, and BCC_CSM1.1, GFDL-ESM2M, and
MIROC-ESM on the other). However, about one-third
of the models display a high variability of the median
errors and, consequently, also the rankings; note, for
example, HadGEM-CC, MRI-CGCM3, and MRI-
ESM1 for which the rankings differ extremely even
between ERA-40 and NCEP-1. In the analysis, medians
were used rather than averages to limit the effect of
outliers; CTs occurring rarely in reanalyses can be vastly
overestimated by some models. Basing the model
rankings on mean errors or on fewer classifications can
lead to considerably different results for some models
(not shown). Therefore, one ought to be cautious when
evaluating circulation in GCM output as relatively minor
changes in the experiment setup—such as replacing one
classification method or one reanalysis for another—can
potentially lead to diverging results.

4. Conclusions

The main goal of the paper was to compare daily SLP
patterns produced by five global reanalyses for the
Euro-Atlantic region. We aimed at the winter season
since during winter the links between the large-scale
circulation and climatological elements are strongest
over the domain, and, therefore, synoptic-climatological
studies have preferably focused on this season. So far,
studies have compared reanalyses over regions with
large observation uncertainty, since it has been pre-
sumed that differences between reanalyses are negligi-
ble, and so not worth looking at, over regions with
abundant observations. The present study suggests that
both the differences between reanalyses and the effect
of the choice of reanalyses on results may have been
underestimated in synoptic climatology.

The article aimed to address three questions: 1) Does
the CT frequency differ between reanalyses over
Europe and the North Atlantic? 2) Do the differences
between reanalyses depend on the classification
method? 3) Does the choice of reference reanalysis in-
fluence results of GCM validation? The questions are
answered in the following three paragraphs.

ERA-40, NCEP-1, and JRA-55 agree on classification
of most days relatively well (less than 8% of days are
classified with different classes if pairs of reanalyses are
compared) except for Iceland (D01) and the eastern
Mediterranean (D11). Over D01, NCEP-1 differs from
ERA-40 in the frequency of cyclonic CTs; cyclones seem
to be displaced southward and eastward in NCEP-1
relative to ERA-40. Over D11, NCEP-1 differs from
both ERA-40 and JRA-55 in the classification of about
22% of days: relative frequency of CTs with advection
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from the north and northeast tends to be higher in
NCEP-1, while advection from the southern quadrant
tends to be less frequent. Classifications in ERA-20C are
quite consistent with those in ERA-40 even over D01
and D11. The 20CRv2, on the other hand, leads to
considerably—and often significantly—different classi-
fications; relative to the four remaining reanalyses and
averaged over all eight domains, it classifies differently
over 15% of days. Furthermore, over the Euro-Atlantic
domain (D00), it is biased in favor of CTs with high SLP
over the continent, whereas the frequency of CTs with
zonal advection is underestimated. These biases were
further shown to correspond with differences in the
frequency of CTs defined for individual geographical
domains. This case demonstrates that recently produced

reanalyses that stretch farther and farther into the past
should be used with utmost caution.

Eight classification methods were used in the study.
This choice makes it possible to select and describe only
those differences between reanalyses that are present in
multiple classifications, therefore being very likely re-
lated to real features and not statistical artifacts of par-
ticular methods. It is evident that profound differences
between two datasets are detected in multiple classifi-
cations. Nevertheless, if the differences between the
datasets are quantified, one can get considerably di-
verging results if one uses different classification
methods, which can lead to even completely contradic-
tory interpretations in some cases. Therefore, one
should avoid relying not only on one reanalysis but also

TABLE 3. List of GCMs used in the study.

Model name
Institution

abbreviation
Ensemble
member Modeling center or group

BCC_CSM1.1 BCC r1i1p1 Beijing Climate Center, China Meteorological Administration
CanESM2 CCCma r1i1p1 Canadian Centre for Climate Modelling and Analysis
CCSM4 NCAR r1i2p1 National Center for Atmospheric Research
CESM1(CAM5) NSF–DOE–NCAR r1i1p1 Community Earth System Model contributors
CMCC-CESM CMCC r1i1p1 Centro Euro-Mediterraneo per I Cambiamenti Climatici
CMCC-CM CMCC r1i1p1
CMCC-CMS CMCC r1i1p1
CNRM-CM5 CNRM–

CERFACS
r1i1p1 Centre National de Recherches Météorologiques–Centre Européen

de Recherche et de Formation Avancée en Calcul Scientifique
CSIRO-Mk3L-1.2 CSIRO–QCCCE r1i2p1 Commonwealth Scientific and Industrial Research Organisation in

collaboration with the Queensland Climate Change Centre
of Excellence

EC-EARTH EC-EARTH r1i1p1 EC-EARTH consortium
FGOALS-g2 LASG–CESS r1i1p1 LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences,

and Center for Earth System Science, Tsinghua University
GFDL CM3 NOAA/GFDL r1i1p1 NOAA/Geophysical Fluid Dynamics Laboratory
GFDL-ESM2G NOAA/GFDL r1i1p1
GFDL-ESM2M NOAA/GFDL r1i1p1
HadGEM2-AO NIMR/KMA r1i1p1 National Institute of Meteorological Research/Korea Meteorological

Administration
HadCM3 MOHC r1i1p1 Met Office Hadley Centre
HadGEM2-CC MOHC r1i1p1
HadGEM2-ES MOHC r5i1p1
INM-CM4.0 INM r1i1p1 Institute of Numerical Mathematics
IPSL-CM5A-LR IPSL r6i1p1 L’Institut Pierre-Simon Laplace
IPSL-CM5A-MR IPSL r3i1p1
IPSL-CM5B-LR IPSL r1i1p1
MIROC4h MIROC r1i1p1 Atmosphere and Ocean Research Institute (The University of Tokyo),

National Institute for Environmental Studies, and Japan Agency for
Marine-Earth Science and Technology

MIROC5 MIROC r1i1p1

MIROC-ESM MIROC r1i1p1 Japan Agency for Marine-Earth Science and Technology, Atmosphere
and Ocean Research Institute (The University of Tokyo), and
National Institute for Environmental Studies

MIROC-ESM-CHEM MIROC r1i1p1

MPI-ESM-LR MPI-M r1i1p1 Max Planck Institute for Meteorology
MPI-ESM-MR MPI-M r1i1p1
MPI-ESM-P MPI-M r1i1p1
MRI-CGCM3 MRI r1i1p1 Meteorological Research Institute
MRI-ESM1 MRI r1i1p1
NorESM1-M NCC r1i1p1 Norwegian Climate Centre
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on one classification. Using several statistically similar
methods, such as several algorithms of cluster analysis,
does not seem to have a tangible effect, since the cata-
logs of CTs produced by similar methods are very sim-
ilar. Contrariwise, using a relatively small set of distinct
classifications based on different families of algorithms
is much more advisable as it can identify various kinds of
differences between datasets. Our results corroborate
conclusions of previous studies that relying on one
classification (method) in synoptic-climatological stud-
ies is dangerous. We suggest that it is used with utmost
caution and is reserved only for special situations. In the
context of the present study, such situations might be,

for example, theoretical studies such as an in-depth
analysis of causes of differences between datasets
(which would help us interpret these differences cor-
rectly in the future) and how factors such as the defini-
tion of the spatial domain and the number of CTs
influence these differences.

Utilizing output of historical runs of an ensemble of 32
CMIP5 GCMs, it was illustrated that the choice of dif-
ferent reanalyses can have a profound effect in GCM
validation over D11 in winter. The rank of several
models heavily depends on the benchmark reanalysis; in
some cases even changing ERA-40 for NCEP-1 can lead
to shifts in rankings by as many as 10–15 positions out of

FIG. 8. Validation of 32 CMIP5 GCMs according to their ability to simulate the frequency of winter CTs over
D11. (a) The symbols show the dependence of the median error in CT frequency of the respective model on the
reference reanalyses. Each median is computed from absolute values of errors in the frequency of 75 CTs, the errors
being expressed in percent of the CT frequency in the respective reanalysis. (b) As in (a), but for rank based on the
median errors.
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32 (e.g., HadGEM2-CC, MRI-CGCM3, and MRI-
ESM1). For other European domains, the effect can
be expected to be less substantial than for D11; however,
for most regions around the globe it will likely be much
stronger. To conclude, the uncertainty intrinsic to at-
mospheric reanalyses must not be neglected, not only
for those parts of Earth for which we have a minimum of
in situ measurements but even for regions with an
abundance of observations. All presented results sug-
gest that 20CRv2 should not be used as a reference
dataset. However, to say which of the remaining re-
analyses is closest to reality is not possible without a
direct comparison with independent observations. If
such a comparison is not available, using an ensemble of
reanalysis datasets should become a norm. This recom-
mendation seems not only relevant for CT-based studies
but also needs to be addressed by the downscaling
community. The choice of reanalysis data in downscal-
ing was shown to be significant at lower latitudes and in
regions with sparse observation networks (e.g., Brands
et al. 2012; Manzanas et al. 2015). In light of the results
presented here, it should be reassessed also over mid-
latitude regions over which perfect agreement of re-
analyses has been taken for granted.
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