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ABSTRACT

Earth’s temperature variability can be partitioned into internal and externally forced components. Yet, underlying mechanisms and their rel-
ative contributions remain insufficiently understood, especially on decadal to centennial timescales. Important reasons for this are difficulties
in isolating internal and externally forced variability. Here, we provide a physically motivated emulation of global mean surface temperature
(GMST) variability, which allows for the separation of internal and external variations. To this end, we introduce the “ClimBayes” software
package, which infers climate parameters from a stochastic energy balance model (EBM) with a Bayesian approach. We apply our method to
GMST data from temperature observations and 20 last millennium simulations from climate models of intermediate to high complexity. This
yields the best estimates of the EBM’s forced and forced + internal response, which we refer to as emulated variability. The timescale-dependent
variance is obtained from spectral analysis. In particular, we contrast the emulated forced and forced + internal variance on interannual to
centennial timescales with that of the GMST target. Our findings show that a stochastic EBM closely approximates the power spectrum and
timescale-dependent variance of GMST as simulated by modern climate models. Small deviations at interannual timescales can be attributed
to the simplified representation of internal variability and, in particular, the absence of (pseudo-)oscillatory modes in the stochastic EBM.
Altogether, we demonstrate the potential of combining Bayesian inference with conceptual climate models to emulate statistics of climate
variables across timescales.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0106123

Understanding the statistical properties and sources of the
Earth’s surface temperature variations is of great importance
in climate science. To this end, we analyze the variability of
global mean surface temperature (GMST) with a simple stochas-
tic energy balance model (EBM). With Bayesian methods and
spectral analysis, we separate internally generated and externally
forced contributions to GMST variations on different timescales
in state-of-the-art climate model simulations. Our results show
that a stochastic EBM can emulate the variability of more

complex climate models. The combined use of Bayesian inference
and conceptual climate models, therefore, provides a versatile
tool to advance the understanding of the internal and forced
variability in the Earth’s dynamical system.

I. INTRODUCTION

Climate variability describes the spatial and temporal variations
in the mean and higher order statistics of climate parameters and
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is of vital importance for living conditions on the Earth.1 While
many sources of natural variability exist, anthropogenic influences
clearly dominate the recent trend in global mean surface tempera-
ture (GMST). To characterize variability, it is typically partitioned
into internal and external components. Internal variability arises
from intrinsic climate system processes such as oceanic and atmo-
spheric circulation. External sources include changes in radiative
forcing, for example, from solar irradiance, volcanic eruptions, and
greenhouse gases. Despite a general agreement of the total simu-
lated and observed GMST variability over the Common Era (0–2000
CE),2,3 uncertainties remain about the mechanisms and magni-
tude of internal and external variations,4–6 especially on decadal to
centennial timescales.3,7

Simple mathematical models help understand climate
variability8–10 and can be used to emulate climate variables from
more complex model simulations. Most general, the time evo-
lution of a forced climate parameter X(t) is described by Ẋ(t)
= A (t, X(t), F(t)) for an arbitrary operator A and external driver
F(t). We consider X as the GMST, for which many studies have
formulated physically motivated approximations of A . One piv-
otal approach is centered around the idea of balancing incoming
and outgoing radiations,8,9 later extended to a stochastic energy bal-
ance model (EBM) by Hasselmann.10 This approach assumes the
climate system close to equilibrium, showing a linear and station-
ary response to perturbations. Then, A can be approximated by a
linear stochastic operator8,9

C
d

dt
T(t) = −λ̃T(t) + F(t) + ε(t). (1)

Formula (1) describes the GMST anomaly T(t) with respect
to the equilibrium state, given the Earth’s effective heat capacity
C, a radiative forcing anomaly F(t), and a term ε(t), represent-
ing stochastic dynamics such as weather fluctuations. The response

parameter λ:=λ̃/C is the reciprocal of the characteristic timescale
1/λ. The response to radiative forcing F(t) determines forced tem-
perature variations. The response to the stochastic term ε(t) approx-
imates internal variability.

The stochastic EBM (1) is too simplistic to accurately rep-
resent long-term responses and, therefore, has been extended to
the so-called multibox EBMs.11–15 The latter are based on multiple
ocean layers, referred to as boxes. The layers serve to approx-
imate the vertical heat transfer and the integrated response to
forcing over long periods. The EBM (1) laid the basis for attribut-
ing anthropogenic warming.16,17 It was applied and modified to
study climate sensitivity,14,18–20 climate and ice cap stability,21–24

regional temperatures,25–27 glacial/interglacial cycles,22,28 and future
projections.29,30 Key advantages of EBMs are their computational
efficiency and comparatively easy interpretation.

To estimate uncertain parameters of conceptual climate mod-
els from data, Bayesian frameworks have become increasingly
popular.31–35 In comparison to other methods for inferring cli-
mate parameters, such as maximum likelihood estimation, Bayesian
approaches have the advantage of providing full posterior distri-
butions. The methods compute the posterior means and credible
intervals (CIs) of uncertain parameters θ conditioned on target data
y while including prior knowledge on θ . Central to this framework

is applying the Bayes theorem

p(θ |y) =
p(y|θ)p(θ)

p(y)
, (2)

with likelihood p(y|θ), prior p(θ), marginal p(y), and posterior
p(θ |y). We denote all probability densities by p and distinguish them
by their arguments. Combining Bayesian inference with conceptual
climate models typically also yields the posterior of the model’s fit to
the data.

With the ability to quantify fluctuations across timescales,
power spectral analysis has improved the understanding of cli-
mate variability.3,36–39 Simple climate models have been combined
with spectral analysis to explain timescale-dependent variability. For
example, Fredriksen and Rypdal15 use a multibox EBM to study
temporal scaling of temperature time series. Related works exam-
ine future projections29 and climate sensitivity.40 Soldatenko and
Colman41 study the sensitivity of the power spectrum on uncer-
tainties in the parameters of a two-box EBM, considering stochastic
noise but neglecting deterministic forcing. Yet, the potential of com-
bining stochastic multibox EBMs, Bayesian inference and spectral
analysis to study the magnitude of unforced and forced variability
across timescales remains untapped.

Here, we examine and separate timescale-dependent internal
and externally forced contributions to the GMST variations. In par-
ticular, we analyze GMST variability during the last millennium
(850–1850 CE) as simulated by 20 climate models of intermediate
to high complexity. To this end, we combine a stochastic two-box
EBM (Sec. III A) with Bayesian inference (Sec. III B) and spectral
analysis (Sec. III C). We present the “ClimBayes” software package42

for Bayesian inference of climate parameters, which fits the stochas-
tic EBM to GMST data. This results in the best estimate of the forced
and samples of the forced + internal EBM’s temperature response.
First, we demonstrate our analysis on the example of historical
observations (Sec. IV A) and then apply it to the considered set
of last millennium simulations (Sec. IV B). Section IV C contrasts
power spectra of the fitted EBM with and without internal varia-
tions. Comparing the internal and forced variance on interannual to
centennial timescales (Sec. IV D), a stochastic two-box EBM cap-
tures most variations of more comprehensive model simulations.
We summarize and discuss the potential for physics-informed emu-
lation of GMST data and separation of variance contributions across
timescales in Secs. V and VI.

II. DATA

Our study relies on annual GMST and corresponding radia-
tive forcing time series. We use full-forced last millennium runs
from climate models of varying complexity (Table I). We analyze
10 simulations with atmosphere-ocean general circulation mod-
els (AOGCMs), considered in the Coupled Model Intercomparison
Project 5 (CMIP5).43 Moreover, we use 10 simulations with Earth
system models of intermediate complexity (EMICs) that are part
of the IPCC’s Fifth Assessment Report (AR5)44 and described by
Eby et al.45 The AR5 EMICs represent single simulations, except for
CLIMBER2 and LOVECLIM V.1.2, which are ensemble means and
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TABLE I. Key forcing specifications and references of considered climate model sim-

ulations. The “Forcing” column gives the abbreviations from the PMIP3 protocol,46

corresponding to the implemented land use, solar, and volcanic forcing reconstruc-

tions. The land use reconstruction PEA is taken from Pongratz et al.49 Solar forcing

reconstructions correspond to DB: Delaygue and Bard,53 VSK: Krivova, Balmaceda,

and Solanki,54 Vieira and Solanki,55 and SBF: Steinhilber, Beer, and Fröhlich.51 They

are calibrated to WLS modern values (1366.14W/m2) and continued by Wang, Lean,

and Sheeley.52Volcanic forcing refers to CEA: Crowley et al.50 andGRA: Gao, Robock,

and Ammann.56 Trace gases are prescribed in all simulations and follow the PMIP3

protocol.46

Climate model Forcing Reference

AR5 EMICs
Bern 3D PEA, DB, CEA 57
CLIMBER-3alpha PEA, DB, CEA 58
CLIMBER2 PEA, DB, CEA 59
DCESS ESM v1 PEA, DB, CEA 60
IGSM 2.2 PEA, DB, CEA 61
LOVECLIM V.1.2 PEA, DB, CEA 62
MESMO 1.0 PEA, DB, CEA 63
MIROC3-lite PEA, DB, CEA 47
UMD PEA, DB, CEA 64
UVic v2.9 PEA, DB, CEA 65

CMIP5 models
BBC-CSM1-1 –, VSK, GRA 66
CCSM4 PEA, VSK, GRA 67
CSIRO-Mk3L-1-2 –, SBF, CEA 68
FGOALS-s2 –, VSK, GRA 69
GISS-E2-R PEA, SBF, CEA 70
HadCM3 PEA, SBF, CEA 71
HadGEM2-ES PEA, SBF, CEA 72
IPSL-CM5A-LR –, VSK, GRA 73 and 74
MIROC-ESM –, DB, CEA 75
MPI-ESM-P PEA, VSK, CEA 76 and 77

denoted by “(mean)” in the following. To compare variability in sin-
gle ensemble members to that of the ensemble mean, we use the five
available ensemble members LOVECLIM V.1.2 (E1–E5).

The transient radiative forcing applied to these simulations fol-
lows the Paleoclimate Modelling Intercomparison Project Phase III
(PMIP3) protocol.46 For AR5 EMICs, we take the total estimated
radiative forcing provided by Eby et al.45 For CMIP5 simulations, we
use the radiative forcing from reconstructions of well-mixed green-
house gases (CO2, CH4, and N2O), volcanic aerosols, total solar
irradiance, and land use changes as provided by Schmidt et al.46 We
neglect orbital forcing, which is assumed to play a negligible role
for GMST variability over the last millennium. To remove potential
unforced drifts of the simulated background climate,47 the simu-
lated GMST is linearly detrended prior to analysis. For consistency,
detrending is also applied to the corresponding forcing time series.
This does not affect our results, as the simulations’ forcing input
exhibits no trend for the last millennium (850–1850 CE). Both tem-
perature and forcing time series are considered as anomalies with
respect to the starting year.

We use the GMST from HadCRUT548 observations (1850–
2000 CE) to demonstrate the developed workflow of our Bayesian
stochastic energy balance framework. As estimates for radiative
forcing during the historical period, we consider the “PEA” land
use (Pongratz et al.49), “CEA” volcanic forcing (Crowley et al.50),
“SBF” solar irradiance reconstruction (Steinhilber et al.51) patched
into Wang et al.,52 and greenhouse gas concentrations from Schmidt
et al.46

III. METHODS

Our analysis combines stochastic multibox EBMs, Bayesian
inference, and spectral analysis. We introduce the approach imple-
mented in “ClimBayes”42 for the most generic case of a stochastic
EBM with N boxes in Sec. III A. All results are obtained from the
special case N = 2.

A. Stochastic two-box energy balance model (EBM)

The stochastic multibox EBM13,15,29 extends the one-
dimensional linear operator from Eq. (1) by multiple vertical layers,
approximating the heat exchange between surface and deep ocean
layers. In matrix notation, the model reads15

C
dT

dt
(t) = KT(t) + F(t) + ε(t). (3)

For N boxes, T(t) is an N-dimensional vector, describing the temper-
ature of each box. By convention, T1 corresponds to the temperature
of the uppermost and TN to the temperature of the lowermost box.
Accordingly, C is a diagonal matrix with the effective heat capac-
ity Cii of each layer (i = 1, . . . , N). K is a N-dimensional tridiagonal
matrix, parameterizing the surface temperature response and verti-
cal heat transfer (Appendix A). The time-dependent radiative forc-
ing F(t) is only applied to the uppermost box, such that F1 = F(t)
and Fk = 0 for k = 2, . . . , N. The stochastic forcing ε(t) is likewise
implemented with non-zero entry ε1(t) = σWξ(t). We motivate the
white noise process ξ(t) with standard deviation (SD) σW by the
found impact of weather fluctuations.10,14,78

Integrating Eq. (3) yields the solution of the surface tempera-
ture T1(t), given by a sum of the forced response T1,F(t) and internal
variations T1,I(t),

T1(t) = T1,F(t) + T1,I(t)

=
∫ t

−∞
R(t − s)

1

C1

F(s) ds +
∫ t

−∞
R(t − s)

σW

C1

dW(s), (4)

where C1 = C11 is the heat capacity of the uppermost box. This
assumes no interaction between forced and internal variability on
a global scale. The response function

R(t) =
N

∑

k=1

wk e−λkt (5)

is uniquely defined13,15 by the response parameters λk and weights

wk (k = 1, . . . , N) with
∑N

k=1 wk = 1, which depend on the entries of
C and K (Appendix A). The internal fluctuations T1,I(t) in formula
(4) represent an Itô-integral over the Wiener process W(s). There-
fore, T1,I(t) can be written as a weighted sum of Ornstein–Uhlenbeck
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(OU) processes, where the kth OU process solves the stochastic
differential equation dU(t) = −λkU(t) dt + σW

C1
dW(t) and receives

weight wk. Accordingly, T1,I(t) is normally distributed with mean
zero. Its covariance matrix is determined by σW, C1, wk, and λk

(Appendix B).

B. Bayesian inference algorithm

1. Joint emulation of forced and internal variations

To separate the internal and forced contributions to the GMST
variance, we introduce the Bayesian inference algorithm imple-
mented in “ClimBayes.” We fit the linear stochastic two-box EBM to
GMST data (Table I), as illustrated in Fig. 1. The Bayesian inference
algorithm relies on annually resolved temperature and forcing time
series as input data. Moreover, it requires physics-informed prior
information on θ = (λ1, λ2, w1, C1, T0, F0). The parameters λ1, λ2,
and w1 correspond to free parameters of the response function in
Eq. (5). C1 is the heat capacity of the upper ocean box. T0 and F0 are
initial free parameters. T0 allows for small deviations of the EBM
solution to the input data in the starting year and is expected to
be close to zero. Similarly, the additional parameter F0 is needed
to compensate for an initial forcing anomaly with respect to the
equilibrium state.

We infer the posterior distributions of the uncertain parame-
ters θ conditioned on target data y via Bayes theorem (2), using a
Markov chain Monte Carlo (MCMC) algorithm. To this end, we
assume that the target data can be described by a deterministic
model 8F and stochastic measurement or intrinsic noise Z that is
also allowed to depend on θ ,

y = 8F(θ) + Z(θ). (6)

Formula (6) yields the likelihood p(y|θ). Combined with prior infor-
mation p(θ), Bayes theorem (2) defines the posterior distribution
p(θ |y). In our case, the deterministic model 8F(θ) is given by a dis-
cretization of the temperature responses T1,F(t). The noise term Z(θ)

corresponds to the internal fluctuations T1,I(t).
This approach provides a joint estimate of the internal and

externally forced response, based on the same physics-informed
response function and parameters. The best estimates of θ and
the forced response T1,F(t) are defined as their posterior means
E[θ |y] and E[8F(θ)|y]. The SD σI of the internal variability Z(θ)

determines σW (Appendix B) and is approximated by the resid-
uals’ SD, that is, the difference between the target data and the
forced response. Samples of the internal variations T1,I(t) can be
drawn from its covariance matrix, using the best estimates of θ

(Appendix B). The forced + internal variations T1,F(t) + T1,I(t) rep-
resent the full response of the stochastic two-box EBM and, thus,
provide a model for the target variability. To streamline our dis-
cussion, we will refer to the modeled forced and forced + internal
response as emulation.

2. Numerical implementation

The “ClimBayes” package provides the numerical implemen-
tation of our approach (Fig. 1) and allows for straightforward
adjustments via a configuration file. Most importantly, this includes
specifications of the number of boxes, prior distributions, MCMC

FIG. 1. Workflow of our Bayesian inference algorithm to emulate forced and inter-
nal GMST fluctuations. (a) The workflow builds on a linear stochastic two-box
EBM, here in matrix notation. The solution for the surface temperature T1(t) is
given by an integral with exponential response function R(t). (b) Required input
data include annually resolved GMST and time-dependent forcing, as well as
physics-informed prior information p(θ) on uncertain parameters θ . (c) We infer
the parameters of the two-box EBM using a Markov chain Monte Carlo (MCMC)
algorithm and Bayes theorem, assuming that the target GMST can be described
as a deterministic model 8F(θ) and stochastic noise Z(θ). (d) The workflow
yields posterior distributions p(θ |y) of uncertain parameters conditioned on tem-
perature data y and a physically motivated emulation of the forced and internal
variations.

sampling properties, and fixed parameters. We choose N = 2 boxes
(Appendix C) in line with Held et al.12 and Geoffroy et al.13 Our
experiments use independent prior distributions. We choose beta
distributions with shape parameters α = β = 2 for the marginal
priors of λ1, λ2, as well as the initial parameters T0 and F0. This
allows for a physics-informed, fixed parameter range, where the
mean is preferred over boundary values. The algorithm’s conver-
gence is improved compared to uniform priors. The intervals for
the response parameters λ1 : (0.2, 2) yr−1 and λ2 : (0.005, 0.2) yr−1

are similar to those from Fredriksen and Rypdal.15 Tailored to our
goal to emulate interannual to centennial variability from last mil-
lennium simulations, our choice of priors assumes characteristic
response times 1/λk smaller than 200 years. These response times
implicitly set a characteristic depth scale for the two ocean boxes of
our stochastic EBM.

The prior of C1 : (4, 11) W yr m−2 K−1 follows previous
findings.13,15,79 Initial values T0 : (−0.5, 0.5) K and F0 : (−2, 2) W m−2

are centered around zero. The weight w1 : (0, 1) has an uniform
prior. We consider no measurement noise, which is inherently
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fulfilled for simulated GMST. For observed GMST, we assume mea-
surement errors to be small compared to internal fluctuations.48 We
verified that our findings are robust against reasonable variations of
the MCMC and prior specifications.

To obtain the best parameter estimates, “ClimBayes” uses a
Metropolis Hastings (MH) algorithm from the family of MCMC
methods. To this end, we discretize the forward operator and com-
pute annual temperature anomalies relative to the starting point
t = 0 by a midpoint rule29

T1,F(tm) = T0 +
1

C1

N
∑

k=1

wk

m
∑

j=1

e−(m−j+1/2)λk (F(tj) + F0). (7)

Here, the time step tj corresponds to the jth year, and F(tj) are forc-
ing anomalies with respect to the starting point t = 0. F0 represents
an initial forcing anomaly. Discretizing T1,I leads to a normally dis-
tributed weighted sum of AR(1)-processes with covariance matrix
entries depending on λk and wk (Appendix B). The likelihood p(y|θ)

is given by the normal distribution of T1,F(t) + T1,I(t). This requires
the calculation of the covariance matrix for each sample in the
Markov chain. For numerical robustness and computational effi-
ciency, however, we approximate the likelihood function using an
iterative scheme (Appendix B).

The MCMC algorithm uses four chains with 25 000 sam-
ples each, from which the first 5000 are discarded as burn-in.
The proposal distribution is initially set to a normal distribu-
tion with mean zero and variances (0.2, 2, 1, 10, 1, 2) × 10−5 for θ

= (λ1, λ2, w1, C1, T0, F0). After 2500 samples, the proposals are dis-
tributed according to the weighted sum of the initial normal pro-
posal distribution and the empirical covariance matrix of previous
samples.

We check the convergence of the Markov chains following
two performance measures: First, the Gelman–Rubin diagnostics80,81

compares the inter-chain and between-chain variances. It is ≤ 1.1
for most models, complying to recommendations.82,83 Second, we
use the Monte Carlo standard error,84 which constructs an asymp-
totic confidence interval for the posterior mean.84,85 In our experi-
ments, the half-width of this interval is smaller than 5% of the prior
mean. We found that this criterion guarantees robustness of the
parameter estimates when the same run is repeated multiple times
or additional samples are added. DCESS ESM v1 is the only outlier,
showing a tendency for bimodal posterior densities which lead to
less stable estimates with wide CIs. However, we confirmed that con-
vergence can be achieved by fixing the heat capacity to the estimated
parameter.

C. Spectral analysis and variance ratios

Given a temperature time series T(t), the power spectral density
(PSD) at frequency f corresponds to the Fourier transform of the
autocovariance

S(f) =
∫ ∞

−∞
e−2π ifk E

[

(T(t) − µ)
(

T(t + k) − µ
)]

dk, (8)

with lag k = t2 − t1 and mean µ := E[T(t)]. This assumes X(t) to be
weakly stationary, which is reasonably fulfilled after linear detrend-
ing the GMST data. Following Ellerhoff and Rehfeld,3 we use the

multitaper method with three windows to compute the PSD and
χ 2-distributed uncertainties. Mean spectra are obtained after inter-
polation to the lowest resolution and binning into equally spaced
log-frequency intervals.86 The spectra are visualized over periods
τ = 1/f and logarithmically smoothed using a Gaussian kernel of
0.04 dB.

We compare the PSD for three types of time series: (1) the tar-
get temperature data from historical observations or climate model
simulations, AR5 EMIC and CMIP5 models, (2) the emulated forced
variations T1,F(t), and (3) the emulated forced + internal tempera-
ture variations T1,F(t) + T1,I(t) from the stochastic two-box EBM.
To compute the forced + internal PSD, we first sample 1000 real-
izations of the internal response T1,I(t). We add these to T1,F(t) and
compute the PSD for all samples. Mean spectra and 95% confidence
bands are obtained from this ensemble.

Variance ratios are calculated by dividing the emulated by the
target variance. Following Parseval’s theorem, we determine the
timescale-dependent variance by integrating the PSD over frequen-
cies. We consider frequency bands corresponding to interannual
(2–5 yr), decadal (5–20 yr), multidecadal (20–50 yr), and centennial
(50–200 yr) scales.

IV. RESULTS

A. Example application to historical observations

We demonstrate the application of the Bayesian inference
algorithm and our spectral analysis on the example of GMST obser-
vations from HadCRUT5.48 Figure 2(a) shows the forcing and tem-
perature time series together with the best estimate of the forced
response T1,F(t). The forced response follows the global warming
trend and shows cooling periods after volcanic eruptions. Credi-
ble intervals (CIs) capture the uncertainties of the forced response,
but not those due to internal variability. As a result, observations
partly lie outside CIs. Uncertainties of the two-box forced response
are largest at the time series’ start.

Figure 2(b) shows marginal prior and posterior distri-
butions for the free parameters of the stochastic two-box
EBM. The response parameters λ1 = 1.31 (0.71, 1.86) yr−1 and λ2

= 0.09 (0.03, 0.16) yr−1 (Table III) correspond to timescales of
approximately 10 months and 10 years. The corresponding heat
capacity C1 of the upper ocean layer is 8.20 (5.68, 10.43) W yr m−2

K−1. The initial values T0 and F0 are well constrained and close to
zero. The weight w1 = 0.72 (0.46, 0.90) tends to emphasize the fast
response.

The power spectral density [Fig. 2(c)] of the forced response
alone is smaller than that of the target temperature. Conversely, the
magnitude of the emulated forced + internal PSD agrees with the
target PSD within uncertainties, except for the interannual scale.
While the emulated PSD constantly increases from interannual to
multidecadal scales, HadCRUT5 shows a modulation with increased
power on periods of two to ten years, which is not captured by the
emulated response.

Figure 2(d) compares the variance on interannual to mul-
tidecadal timescales. The variance ratios are formed by dividing
the emulated forced or forced + internal variance by the variance
obtained from the HadCRUT5 target. The forced variance is smaller
than the target variance on all timescales. Incorporating internal
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FIG. 2. Example application of our developed approach to historical GMST observations from HadCRUT5. (a) Target data y, forcing F(t) (taken from Schmidt et al.,46

Pongratz et al.,49 Crowley et al.,50 Steinhilber et al.,51 Wang et al.52), and the best estimate of the forced response T1,F(t), that is the posterior mean E[8F(θ)|y]. Shaded
areas correspond to 95% CIs of T1,F(t). (b) Marginal prior and posterior densities for uncertain parameters θ . (c) PSD of the GMST observations, the forced response (both
with χ 2-distributed confidence bands) and the sampled forced + internal variations. The sampled forced + internal PSD represents the mean and 95% confidence bands
obtained from an ensemble of T1,F(t) + T1,I(t) using 1000 realizations of T1,I(t). (d) Ratios of the emulated to observed GMST variance, computed by integration of the
PSD on the multidecadal (20–100 yr), decadal (5–20 yr), and interannual (2–5 yr) scales. Uncertainties (95% CI) are calculated from a F-distribution based on the degrees
of freedom of the variance estimate.

variability reduces this mismatch strongly, yet, is not enough to
capture all fluctuations on interannual and multidecadal scales. On
decadal scales, the emulated forced + internal variability agrees well
with the observations.

B. Parameters estimated from last millennium

simulations

We use Bayesian inference to fit the stochastic two-box EBM to
GMST simulations from CMIP5 models and AR5 EMICs (Sec. II).
Table II shows the best estimates that are the posterior means and
95% CIs of θ = (λ1, λ2, w1, C1, T0, F0) as well as the SD σI of the
internal variability T1,I(t). Across all simulations, the short-term
response parameter λ1 varies between 1.91 and 0.31 yr−1, spanning
the full prior range between 6 months and 5 years. The long-term

response λ2 varies between 0.19 and 0.01 yr−1, corresponding to
characteristic timescales of approximately 5–100 years.

Differences between AR5 EMICs and CMIP5 models are most
pronounced for λ1. CMIP5 simulations exhibit larger CIs and inter-
model differences, while AR5 EMICs show similar λ1, except for
CLIMBER 2 (mean) and LOVECLIM (E1 and mean). The weight
w1 > 0.5 is typically larger than w2 = 1 − w1, emphasizing the rela-
tive importance of the fast compared to the slow response. w1 often is
closer to unity for AR5 EMICs than for CMIP5 models. CLIMBER2
(mean) shows exceptionally large λ1 and small w1. The heat capac-
ity C1 varies from 4.7 to 10.96 W yr m−1 K−1. It spans the full prior
range for both AR5 EMICs as well as CMIP5 models and shows no
strong dependence on other parameters. The initial temperature T0

is well constrained and close to zero. Inter-model differences are also
large for F0 and linked to varying temperature amplitudes at the
beginning of the time series with respect to the mean (Fig. 7). The
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TABLE II. Posterior means and 95% CIs of uncertain parameters θ for the stochastic two-box EBM fitted to GMST from climate model simulations. The SD σ I of the internal

variability equals the residual of the forced response (Appendix B) and is, therefore, given without CIs. Ensemble means are denoted by “(mean).” We exemplary show the

LOVECLIM ensemble member “E1” as there are no major differences across the ensemble. Models with GRA56 volcanic forcing are marked with an asterisk (*), all others use

the CEA reconstruction50 (Table I). The weight w2 = 1−w1 (not shown) is uniquely defined by w1.

Climate
model λ1 (yr−1) λ2 (yr−1) w1 (unitless) C1 (W yr m−2 K−1) T0 (K) F0 (Wm−2) σ I (K)

AR5 EMICs
Bern 3D 0.74 (0.62,0.81) 0.08 (0.06,0.15) 0.91 (0.88,0.95) 4.76 (4.54, 5.43) −0.09 (−0.50,0.04) 0.18 (−0.15, 1.48) 0.02

CLIMBER-
3alpha 0.76 (0.72,0.80) 0.06 (0.05,0.07) 0.91 (0.90,0.93) 6.18 (5.99, 6.35) −0.02 (−0.05,0.02) −0.04 (−0.13, 0.04) 0.01

CLIMBER2
(mean) 1.43 (0.25,1.97) 0.19 (0.17,0.20) 0.05 (0.00,0.19) 10.96 (10.89,11.00) 0.01 (−0.11,0.13) −0.19 (−0.45, 0.07) 0.05

DCESS ESM
v1 0.31 (0.21,1.18) 0.08 (0.03,0.18) 0.64 (0.00,0.92) 10.25 (9.95,10.52) 0.02 (−0.05,0.08) −0.18 (−0.27,−0.05) 0.03

IGSM 2.2 0.64 (0.57,0.73) 0.10 (0.07,0.15) 0.89 (0.82,0.93) 6.68 (6.38, 6.98) 0.01 (−0.08,0.11) −0.10 (−0.36, 0.15) 0.03

LOVECLIM
(E1) 1.32 (0.99,1.69) 0.13 (0.07,0.18) 0.90 (0.85,0.94) 6.03 (4.95,7.29) −0.01 (−0.22,0.19) 0.28 (−0.58,1.21) 0.09

LOVECLIM
(mean) 1.12 (0.93,1.34) 0.14 (0.09,0.19) 0.88 (0.84,0.92) 6.74 (6.06,7.42) 0.04 (−0.08,0.16) −0.50 (−1.03,0.01) 0.04

MESMO 1.0 0.52 (0.49,0.56) 0.03 (0.02,0.04) 0.90 (0.88,0.92) 7.96 (7.72, 8.19) 0.02 (−0.03,0.06) −0.32 (−0.39,−0.24) 0.02

MIROC-lite 0.44 (0.41,0.47) 0.02 (0.01,0.04) 0.96 (0.94,0.97) 6.75 (6.56, 6.96) 0.01 (−0.05,0.08) −0.34 (−0.49,−0.25) 0.03

UMD 0.72 (0.68,0.77) 0.01 (0.01,0.01) 0.99 (0.99,0.99) 8.81 (8.46, 9.15) 0.00 (−0.04,0.02) −0.09 (−0.21, 0.08) 0.02

UVic v2.9 0.45 (0.41,0.51) 0.05 (0.03,0.08) 0.88 (0.81,0.93) 10.88 (10.68,10.98) −0.01 (−0.06,0.05) −0.05 (−0.19, 0.09) 0.02

CMIP5 models
BCC-
CSM1-1* 1.91 (1.76,1.99) 0.06 (0.04,0.10) 0.94 (0.91,0.96) 10.49 (9.78,10.92) −0.05 (−0.13,0.06) 1.31 (0.53, 1.87) 0.10

CCSM4* 1.62 (1.27,1.90) 0.12 (0.08,0.16) 0.88 (0.83,0.92) 4.70 (4.12, 5.60) −0.06 (−0.34,0.18) 0.17 (−0.60, 1.05) 0.14

CSIRO-
Mk2L-1-2 0.48 (0.29,1.12) 0.15 (0.07,0.19) 0.65 (0.31,0.96) 10.49 (9.78,10.92) 0.02 (−0.17,0.21) −0.23 (−0.76, 0.30) 0.08

FGOALS-s2* 1.49 (1.13,1.88) 0.03 (0.01,0.10) 0.94 (0.89,0.97) 8.41 (6.71,10.38) −0.05 (−0.20,0.11) −0.58 (−1.42,−0.06) 0.14

GISS-E2-R 0.56 (0.50,0.65) 0.03 (0.01,0.15) 0.99 (0.96,1.00) 6.53 (5.94, 7.07) 0.12 (−0.43,0.32) −1.19 (−1.77, 0.48) 0.09

HadCM3 0.49 (0.34,0.73) 0.13 (0.05,0.19) 0.76 (0.52,0.96) 7.99 (7.15, 8.86) −0.06 (−0.31,0.20) 0.89 (0.27, 1.48) 0.12

HadGEM2-ES 0.64 (0.39,1.28) 0.14 (0.05,0.19) 0.74 (0.53,0.95) 7.79 (6.52, 8.81) −0.06 (−0.30,0.19) 0.97 (0.36, 1.58) 0.12

IPSL-
CM5A-LR* 1.69 (1.36,1.95) 0.09 (0.06,0.14) 0.85 (0.78,0.91) 9.49 (7.89,10.73) −0.16 (−0.34,0.00) −0.99 (−1.77,−0.14) 0.15

MIROC-
ESM 1.49 (1.04,1.90) 0.14 (0.09,0.19) 0.71 (0.60,0.81) 9.62 (8.01,10.78) −0.02 (−0.25,0.22) 0.10 (−0.83, 1.03) 0.11

MPI-ESM-P 0.66 (0.45,0.97) 0.14 (0.07,0.19) 0.77 (0.61,0.93) 6.11 (5.42, 6.80) 0.04 (−0.22,0.29) −0.57 (−1.15,−0.01) 0.11

SD σI of the internal variability from CMIP5 models lies between
0.09 and 0.15 K and is larger than for AR5 EMICs (0.01–0.09 K).

C. Emulation of power spectral density

Figure 3 compares the target PSD to the emulated forced and
forced + internal PSD. For most simulations, the emulated forced
+ internal PSD agrees with the target within uncertainties. AR5

EMICs show no major differences between forced and forced + inter-
nal PSD above decadal scales, except for the LOVECLIM ensemble
members. Hence, the forced response is sufficient to emulate the
long-term variability of most AR5 EMIC simulations. On interan-
nual scales, considering internal variability in the emulation com-
pensates for the mismatch between the forced and target PSD. Dif-
ferences between emulated and target PSD are most pronounced for
CLIMBER2 (mean), showing an overestimation on multidecadal to
centennial scales by the emulation.
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FIG. 3. Target and emulated forced and forced + internal power spectral density (PSD) and 95% confidence bands for AR5 EMICs [top: (a)–(k)] and CMIP5 models [bottom:
(l)–(u)], as Fig. 1(c). Shaded intervals highlight examples of overestimation (pink) and underestimation (green) of the emulated PSD compared to the target, which are
discussed in the main text. We show the PSD for LOVECLIM V.1.2 (mean) and the first ensemble member LOVECLIM V.1.2 (E1), as there are no major differences across
ensemble members.

For CMIP5 simulations, the emulated forced PSD underes-
timates the target PSD on all timescales. Conversely, the forced
+ internal variability matches the target well for almost all mod-
els. Minor differences are found on interannual scales [Figs. 3(l)
and 3(q)–3(u)]. Here, the target PSD of MPI-ESM-P and HadCM3
exhibit increased power on periods of 2–8 years. CCSM4, FGOALS-
s2, and IPSL-CM5A-LR overestimate the PSD on the shortest
timescales of approximately 2 years. The emulated forced + inter-
nal PSD for BCC-CSM1-1 deviates from that of the target by
showing increased power on interannual and decreased power on
multidecadal to centennial scales.

D. Separating internal and externally forced variance

Figure 4 shows the mean and spread of variance ratios on
interannual to centennial scales for the considered model types.
Variance ratios smaller than one indicate less emulated forced
or forced+internal than target variance. We add a comparison of

the variance from the five LOVECLIM V.1.2 ensemble members
(E1–E5) [Fig. 4(b)] to that of the remaining AR5 EMICs [Fig. 4(a)]
and CMIP5 models [Fig. 4(c)]. Here, AR5 EMICs explicitly include
the LOVECLIM ensemble mean, but not its members. For all model
types, the relative contribution of internal variability decreases with
increasing timescale, as the ratios for forced and forced + inter-
nal variance become more similar. The contribution of internal
variability is larger in LOVECLIM ensemble members and CMIP5
simulations compared to AR5 EMICs.

The emulated variance of AR5 EMICs [Fig. 4(a)] is dom-
inated by forced variations and matches the target variance on
interannual and decadal scales. On longer timescales, the emulated
variance tends to overestimate the target variance. This is mostly due
to outliers, which correspond to CLIMBER2 (mean), in line with the
overestimated PSD in Fig. 3(b). Members of the LOVECLIM V.1.2.
ensemble [Fig. 4(b)] exhibit more internal contributions to the vari-
ance on all timescales compared to AR5 EMICs. The ensemble’s
emulated forced + internal variance approximates the target well on
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FIG. 4. Ratios of the emulated forced and forced + internal to the target variance for AR5 EMICs [panel (a)], LOVECLIM ensemble members [panel (b)], and CMIP5
simulations [panel (c)] on centennial (50–200 yr), multidecadal (20–50 yr), decadal (5–20 yr), and interannual (2–5 yr) scales [as Fig. 1(d)]. Bars indicate the mean variance
ratio over the considered simulations for one model type. Circles correspond to individual simulations. Confidence bands for individual ratios (as in Fig. 2) are not shown for
better visibility.

the interannual and decadal scale. On larger timescales, we find an
overestimation of the target variance.

The mean emulated forced + internal variance of CMIP5 sim-
ulations [Fig. 4(c)] is close to one on all timescales. The relative
contribution of internal compared to forced variations is similar to
that of LOVECLIM ensemble members on interannual and decadal
timescales. However, there is a larger spread of variance ratios.
Moreover, we find a small tendency of the emulation to overes-
timate the interannual and centennial variance of CMIP5 models.
BCC-CSM1-1 represents an outlier, with the uppermost variance
ratio on the shorter and lowermost on the longer timescales, in line
with the spectral analysis [Fig. 3(l)].

V. DISCUSSION

We demonstrate the emulation of GMST variability as sim-
ulated by state-of-the-art climate models using a linear stochastic
two-box EBM and Bayesian inference. Our analysis builds on the
same, physically motivated response function for internal and exter-
nal processes and allows for consistent separation of internal and
externally forced variability. Estimates of the timescale-dependent
variance show that the relative contribution of internal variability
increases with model complexity and decreases with timescale.

Building on previous studies,29,31 the strength of our Bayesian
framework is that it yields the posterior means and CIs for the
uncertain parameters of the stochastic two-box EBM fitted to GMST
simulations. Due to our choice of priors and the convergence of the
fit, the estimated heat capacity C1 agrees by construction with previ-
ous findings.13,15,79 Our response parameters λ1 and λ2 are consistent
with results from Fredriksen and Rypdal,15 estimated from obser-
vational data. However, the estimates differ from those obtained in
4 × CO2 experiments.13,79 This is because our framework accounts
for high-frequency pulses and, thus, estimates response parameters
associated with faster dynamics. Furthermore, our findings reveal
a dependence of the estimated response parameters on the imprint
of intermittent volcanic eruptions on simulated temperatures. This

is reflected in consistently high values for w1, emphasizing the fast
feedback. The inter-model spread of λ1 in CMIP5 simulations sug-
gests a link to the implemented volcanic forcing: CMIP5 simulations
driven by a comparatively weak reconstruction (“GRA”) tend to
show higher values for λ1 compared to those driven by “CEA”
(Table I), which has greater forcing amplitudes. λ1 and w1 are par-
ticularly high for BCC-CSM1-1, indicating a fast and weak forced
response of the fitted EBM (Fig. 7). This is consistent with a weak
forced response in BCC-CSM1-1.87 The parameter estimates for
CLIMBER2 (mean) differ from the remaining AR5 EMICs. In par-
ticular, λ1 is poorly constrained, as CIs span the full prior range.
We find that the temperature response to volcanic eruptions in
CLIMBER2 (mean) is delayed. The estimated λ1 and w1 can be rec-
onciled with those of the other AR5 EMICs if the temperature data
were shifted by 1 yr. Altogether, the sensitivity of the fit to inter-
mittent volcanic forcing suggests that high-frequency forcing plays
a crucial role for simulating temperature variability across scales
correctly.

Different methods have been developed to isolate forced
and internal variations based on detrending,88 single-model
ensembles,5,89–91 and deterministic EBMs,92,93 among others. The
application of a Bayesian energy balance framework to the
timescale-dependent quantification of forced and internal variance
is novel. Our method provides a robust and joint separation of the
variations at every step in time in a statistically sound way. Using
data from the CESM Large Ensemble Community project,94 we ver-
ify the robustness of our forced response (Fig. 8). The latter agrees
well with the ensemble mean, which shows higher variability due to
remaining internal variations that have not been averaged out over
the 13 members. Hence, our method provides a robust tool to esti-
mate the forced response when large ensembles are not available.
Moreover, we find a wide agreement of the emulated forced + inter-
nal variance with that from CMIP5 simulations. The fact that the
stochastic two-box EBM mimics the temperature variations well is
in line with previous findings on a linear relation between external
forcing and GMST.3,13,15,95
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Small differences between the emulated forced+internal and
target PSD for CMIP5 models on interannual timescales can be
attributed to the simplified representation of internal variability
as a weighted sum of AR(1) processes by the stochastic EBM.
The latter cannot represent (pseudo-)oscillatory climate modes or
modulations of internal variability by external forcing,96,97 which
could result in the observed underestimation of the PSD by the
emulation on these timescales. For HadCM3 and MPI-ESM
[Figs. 3(s) and 3(u)], deviations on the interannual scale are sim-
ilar to those in HadCRUT5 and likely due to the spectral imprint
of the El Niño–Southern Oscillation.3,98 Moreover, our approach
assumes that the covariance structure of the internal variations
is determined by the estimated feedback parameters. In CMIP5
simulations with “GRA” volcanic forcing, particularly high values
for the fast response parameter λ1 and the weight w1 lead to inter-
nal variations with autocorrelations on short timescales. This can
cause an overestimation of the emulated PSD [Figs. 3(l), 3(q), 3(r),
and 3(t)]. Similarly, the overestimation of the target PSD on longer
timescales [Fig. 3(b)] in CLIMBER 2 can be explained by its esti-
mated slow response. The latter is due to the biased delay between
forcing and temperature time series (Table II). Additionally, mis-
matches on short timescales can propagate to longer timescales, as
in the case of BCC-CSM1-1 [Fig. 3(l)]. Hence, explaining spectral
properties of temperature time series not only requires consider-
ation of stochastic noise,41 but also precise knowledge of its cor-
relation structure and the forced response. This highlights a need
for simple, stochastic dynamical models99 to simulate temperature
fluctuations on long timescales.

The components of AR5 EMICs show a reduced number of
scales compared to the AOGCMs, which simplifies the complexity
of the processes contributing to variability. Therefore, the relatively
strong forced variability in EMICs [Figs. 4(a) and 4(b)] is not a main
deficiency but serves to explore the long-term coupling between
different Earth system components in response to radiative forc-
ing. Compared to other AR5 EMICs, LOVECLIM V.1.2 features
a more complex, three-layered atmosphere, which likely explains
increased internal variations in the ensemble members. However,
this variability is predominately short-term correlated. Due to the
EBM’s covariance structure, this can lead to an overestimation of the
emulated forced+internal variability [Fig. 4(b)] on longer timescales.
On interannual and decadal scales, the variance ratios based on the
emulated forced and forced + internal variability from the LOVE-
CLIM ensemble members [Fig. 4(b)] are similar to CMIP5 simula-
tions [Fig. 4(c)]. The similarity indicates that EMICs with a more
realistic representation of atmospheric variability might better cap-
ture the relative contribution of forced and internal temperature
variations on these timescales.

The contributions of internal variations on multidecadal scales
and longer remain the largest in CMIP5 models, likely due to long-
term variability mechanisms from the comprehensive ocean dynam-
ics of AOGCMs. Compared to observations [Fig. 2(d)], however,
internal variability on decadal and multidecadal scales is smaller in
CMIP5 simulations [Fig. 4(c)]. This is particularly interesting given
the agreement of observed and simulated total GMST variability
on these scales.2,3 Smaller low-frequency internal variability in cli-
mate models than in observations100 could be offset by enhanced
forced variability in response to volcanic eruptions,101,102 such that

the overall variance is largely conserved. We suspect that an incor-
rect ratio between internal and external variability could impact
the long-term variability of simulated local temperatures. How-
ever, uncertainties in the interpretation of our HadCRUT5 findings
arise due to the comparatively short time-span of the instrumental
record and a possible change of the forced response under global
warming.103 Further investigating the spatial variability structure104

and the link between local and global variability across climate states
could help resolve mismatches between observed and simulated
local variability on decadal and multidecadal scales.

One limitation of our study arises from the fact that the devel-
oped framework targets interannual to centennial timescales and is,
therefore, designed for annually resolved GMST and forcing data.
As a result, it cannot be readily applied to much shorter or longer
timescales. Investigating the immediate effects of radiative forcing,
for example, necessitates an extension to sub-annual resolution,
and treatment of the seasonal cycle. An extension to coarser
resolutions could be beneficial to study long-term changes such
as millennial-scale variability. However, such applications require
careful examination of the underlying assumptions of the cur-
rent framework, and an extension and validation of the estimation
algorithm. The forced response is likely sensitive to model-specific
rapid adjustments105 and uncertainties in the forcing. Applying the
workflow to paleoclimate reconstructions could, therefore, be chal-
lenging. On the one hand, “ClimBayes” does not yet run at the
best possible speed, as there are faster Bayesian algorithms.29 On the
other hand, “ClimBayes” represents an accessible, transparent, and
well-documented numerical framework that can be easily adapted
and extended, for example, by integrating “Rstan”106 or multilevel
delayed acceptance MCMC.107 Similar to Fredriksen and Rypdal,15

we use a response function of exponential form, solving the ordi-
nary differential equation (1). Future research could investigate the
potential of Bayesian methods to find response functions describing
the effects of climate forcing on different observables.108,109 Further-
more, future studies could test our findings with more advanced
climate models including better representation of, for example, land
surface processes, atmospheric dynamics and chemistry, and sea
ice. The presented framework can be also applied to single forc-
ing experiments71 for quantifying the contribution of single forcings
to the spectrum. This will help better understand the climate sys-
tem’s response and interplay of intrinsic and external components
in driving climate variability.

VI. CONCLUSION

We presented a physically motivated emulation of GMST data
using Bayesian inference and a stochastic energy balance model.
Analyzing AR5 EMICs and CMIP5 simulations for the last millen-
nium, we found that the power spectral density of the combined
forced + internal response approximates the target spectrum well.
We show that our emulation can be used to separate internal and
forced contributions to GMST variability across timescales. The rel-
ative contribution of internal dynamics increases with model com-
plexity and decreases with timescale. While AR5 EMICs predom-
inately exhibit forced variations, simulations from CMIP5 models
and the LOVECLIM ensemble members exhibit major contribu-
tions from the forced and internal response. This suggests that
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EMICs with more realistic atmospheric variability can simulate sta-
tistical properties of interannual to decadal climate fluctuations
more reliably. Our results show that precise knowledge of the
forced response and correlation structure of internal variability
is necessary to explain variability across scales, needed to assess
future variability and potentially associated risks with long-term
projections. Our developed framework is robust and readily avail-
able and can thus be widely applied to describe, emulate, and
diagnose observed and simulated temperature variability.
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APPENDIX A: SOLUTION TO THE MULTIBOX EBM

The tridiagonal matrix K of the multibox EBM in matrix
notation (3) is given by

K =

























−(λ̃ + κ2) κ2 0 · · · 0

κ2 −(κ2 + κ3) κ3

. . .

0 κ3

. . .
. . .
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. . .
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κN

0 · · · κN −κN,

























.

The parameter λ̃ controls the feedback of the surface layer. The coef-
ficients κ2, . . . , κN > 0 describe the vertical heat transfer between
ocean layers. The full solution to the multibox EBM15 reads

T =
∫ t

−∞
e(t−s)C−1

K
C

−1
F(s) ds.

K is symmetric and negative definite, and, thus, diagonalizable. Mul-
tiplication with the positive diagonal matrix C

−1 does not change
this property. Accordingly, the matrix exponential

eC
−1

K = V
T











e−λ1 0 0 · · · 0
0 e−λ2 0 · · · 0

0
. . .

. . .
. . . 0

0 · · · · · · 0 e−λN











V

exists for an orthonormal matrix V and eigenvalues −λk of C
−1

K.
Since only the first component of the forcing vector F(t) is non-zero,

the matrix entry (eC
−1

K)11 defines the surface temperature response.
The response function reads

R(t) = (etC−1
K)11 =

N
∑

k=1

wk e−λkt.
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FIG. 5. HadCRUT5 target observation, the posterior mean of the forced response
of the stochastic two-box EBM, and three example realizations of the emulated
forced + internal variability.

The normalization of the weights results from
∑N

k=1 wk

=
∑N

k=1 (Vk1)
2 = 1 for any orthonormal matrix V.

APPENDIX B: COVARIANCE OF THE

ORNSTEIN–UHLENBECK AND AR(1) PROCESS

1. Covariance matrix

The noise term in Eq. (4) is a weighted sum of Ornstein-
Uhlenbeck (OU) processes. Consequently, its covariance structure

FIG. 6. HadCRUT5 target observation (grey), the forced response from the one-,
two-, and three-box EBM fit to the data. We show their posterior means and the
CIs (shaded) as well as their root mean square errors (RMSEs).

results in

Cov(T1,I(t), T1,I(t + s)) =
σ 2

W

C2
1

N
∑

k=1

N
∑

l=1

wkwl

e−λl|s|

λk + λl

. (B1)

In the special case of N = 1, the covariance reduces to the covariance

of a single OU process40 Cov(T1,I(t), T1,I(t + s))N=1 = σ 2
W

2C2
1λ1

e−λ1|s|.

Formula (B1) follows from a generalization of this special case
to arbitrary N. Discretizing the noise term in Eq. (4) results in
a weighted sum of AR(1) processes. This sum Z is normally dis-
tributed with mean zero and covariance matrix

Cov(Z)ij:=Cov(Zi, Zj) =
σ 2

W

C2
1

N
∑

k=1

N
∑

l=1

wkwl

e−λl|i−j|

λk + λl

. (B2)

For given λk, wk, and C1, the SD of the stochastic forcing, σW,
uniquely defines the SD of the internal variations σI:=

√
Cov(Zi, Zi)

and vice versa. It is possible to estimate σI within the Bayesian frame-
work. However, additional uncertainties arise from the fact that the
covariance matrix in Eq. (B2) is only an approximation to the true
correlation structure of the residuals. As a result, the Bayesian esti-
mation of σI might not preserve the total variance. Therefore, we
determine σI from the residuals, that is, the data minus the estimated
forced response.

2. Iterative computation of the likelihood

Theoretically, the likelihood is given by a normal distribution
with mean T1,F and covariance matrix Cov(Z), depending on θ .
However, computing the covariance matrix dynamically for each
sample in the Markov chain can lead to difficulties. In particular,
Cov(Z) needs to be inverted for every sample, which is computation-
ally expensive. Moreover, the determinant det(Cov(Z)) can be close
to zero, which can make numerical calculations unstable. Potential
biases include decreasing goodness of fit and accuracy of estimated
posteriors.

To solve this problem, we propose an iterative approach. This
keeps λk and wk in the covariance matrix fixed for each itera-
tion of the algorithm. The first iteration uses the prior means for
λk and wk as well as a starting value for the ratio σW/C1. It is
not necessary to consider σW and C1 separately, since Eqs. (B1)
and (B2) depend only on their ratio. This ratio is chosen such that
σI = 0.1 K for CMIP5 simulations and LOVECLIM ensemble mem-
bers, and σI = 0.05 K for AR5 EMICs. For the second iteration, the
estimated posterior means of λk and wk define the covariance matrix
entries. Additionally, σI is set to the SD of the residuals, which
defines σW/C1. The results of this second iteration are the posterior
distributions for λ1, . . . , λN, weights w2, . . . , wN, heat capacity C1,
initial forcing F0, and initial temperature T0. These iterations can be
repeated and adjusted with “ClimBayes.” We find that two iterations
are enough to fit the forced + internal response to the considered
data well, and that further iterations do not improve the goodness
of fit.

3. Sampling from internal variability

Sampling internal variations T1,I(t) requires the values of λk, wk,
and σW in Cov(Z) [Eq. (B1)]. λk and wk are set to the posterior
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TABLE III. Posterior means and 95% CI of estimated feedback parameters and weights for the 1-, 2-, and 3-box EBM fitted to the HadCRUT5 GMST.

Number of boxes λ1 (yr−1) λ2 (yr−1) λ3 (yr−1) C1 (W yr m−2 K−1) w1 (unitless) w2 (unitless)

1-box 0.35 (0.21,0.63) . . . . . . 9.08 (6.83,10.68) . . . . . .
2-box 1.31 (0.71,1.86) 0.09 (0.03,0.16) . . . 8.20 (5.68,10.43) 0.72 (0.46,0.9) . . .
3-box 1.29 (0.70,1.86) 0.11 (0.04,0.18) 0.01 (0.01,0.02) 8.46 (5.86,10.57) 0.74 (0.46,0.90) 0.22 (0.02,0.53)

FIG. 7. Emulated forced response T1,F(t), that is the posterior mean, of the stochastic two-box EBM fitted to the GMST target data from AR5 EMICs [panels (a)–(j)],
LOVECLIM V.1.2 ensemble members [panels (k)–(0)], and CMIP5 simulations [panels (p)–(y)].
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means. We calculate σW from σI, which we assume to equal the SD
of the residuals. As an example, Fig. 5 shows realizations of T1,I(t)
drawn from the estimated covariance of HadCRUT5 observations.

APPENDIX C: COMPARISON OF ONE-, TWO- AND

THREE-BOX EBM

We have verified that our results are robust against rea-
sonable variations of the number of boxes. Here, we exam-
ine the difference between N ∈ (1, 2, 3) boxes on the example
of the HadCRUT5 GMST (Fig. 6). We choose the priors of
the response parameters to cover the same overall range as
for the two-box model [N = 1 : λ1 ∈ (1/200, 2) yr−1 and N = 3 :
λ1 ∈ (1/5, 2) yr−1, λ2 ∈ (1/50, 1/5) yr−1, λ3 ∈ (1/200, 1/50) yr−1].

The stochastic two-box EBM fits the data more accurately
(root mean square error: RMSE = 0.114 K) than the one-box EBM
(RMSE = 0.133 K) (Fig. 6). The three-box EBM yields only minor
improvements (RMSE = 0.0111 K). This pattern is consistent for
AR5 EMICs and CMIP5 simulations and reflected in similar forced
responses and power spectral densities for N ∈ (1, 2, 3). Adding
boxes, however, increases the risk of overfitting due to increas-
ing degrees of freedom. This is reflected in increasing CIs for the
forced response and parameters (Table III) with more boxes. That is
why N = 2 represents the best compromise between goodness of fit,
identifiability of parameters, and number of free parameters in our
experiments.

APPENDIX D: EMULATED FORCED TEMPERATURE

RESPONSE FOR CONSIDERED SIMULATIONS

Figure 7 shows the best estimate of the EBM’s forced response,
fitted to the target simulations from all considered models. CIs

FIG. 8. Ensemble mean of the CESM Large Ensemble110 (13 members) and the
emulated forced response T1,F(t) of the stochastic two-box EBM fitted to GMST
target data from one of the ensemble members (E1). The corresponding radiative
forcing time series is shown in green.

are much narrower and almost vanishing compared to HadCRUT
[Fig. 2(a)]. This is due to the fact that with increasing length of
the time series the posterior uncertainties of the parameters and the
forced response decrease.

Figure 8 compares the emulated forced response against simu-
lation data from the Last Millennium Ensemble of the Community
Earth System Model (CESM).110 Forming the ensemble mean over
the available 13 members serves to average out uncorrelated internal
variability. Our emulated forced response, fitted to the first ensem-
ble member (E1), shows a large overlap with the ensemble mean
despite remaining internal variability that has not been averaged
out.
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