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Abstract. The CSIRO Mk3L climate system model is
a coupled general circulation model, designed primarily for
millennial-scale climate simulations and palaeoclimate re-
search. Mk3L includes components which describe the at-
mosphere, ocean, sea ice and land surface, and combines
computational efficiency with a stable and realistic control
climatology. This paper describes the model physics and
software, analyses the control climatology, and evaluates the
ability of the model to simulate the modern climate.

Mk3L incorporates a spectral atmospheric general circula-
tion model, az-coordinate ocean general circulation model,
a dynamic-thermodynamic sea ice model and a land surface
scheme with static vegetation. The source code is highly
portable, and has no dependence upon proprietary software.
The model distribution is freely available to the research
community. A 1000-yr climate simulation can be com-
pleted in around one-and-a-half months on a typical desktop
computer, with greater throughput being possible on high-
performance computing facilities.

Mk3L produces realistic simulations of the larger-scale
features of the modern climate, although with some biases
on the regional scale. The model also produces reasonable
representations of the leading modes of internal climate vari-
ability in both the tropics and extratropics. The control state
of the model exhibits a high degree of stability, with only
a weak cooling trend on millennial timescales. Ongoing de-
velopment work aims to improve the model climatology and
transform Mk3L into a comprehensive earth system model.

Correspondence to:S. J. Phipps
(s.phipps@unsw.edu.au)

1 Introduction

The CSIRO Mk3L climate system model is
a computationally-efficient atmosphere-land-sea ice-ocean
general circulation model, designed for the study of climate
variability and change on millennial timescales. It represents
a new version of the CSIRO climate model, the history of
which is described bySmith (2007). The atmosphere, land
and sea ice models are reduced-resolution versions of those
used by the CSIRO Mk3 coupled model (Gordon et al.,
2002), which contributed towards CMIP3 (Meehl et al.,
2007) and the IPCC Fourth Assessment Report (Solomon
et al., 2007). The ocean model is taken from the CSIRO
Mk2 coupled model (Gordon and O’Farrell, 1997), which
contributed towards CMIP2 (Meehl et al., 2000) and the
IPCC Third Assessment Report (Houghton et al., 2001).
This combination produces a coupled climate system model
that has both a realistic control climatology and very fast
execution times.

The spatial resolution of Mk3L is similar to that of
reduced-resolution versions of other IPCC-class climate
models, including FAMOUS, which is a low-resolution ver-
sion of HadCM3 (Cox et al., 2000; Jones, 2003; Jones
et al., 2005), and low-resolution versions of CCSM3 (Yeager
et al., 2006) and the GFDL coupled climate model (Dixon
et al., 2003). The resolution is also the same as that of
another reduced-resolution version of the CSIRO climate
model (Mk3A;Rotstayn et al., 2007). In contrast to EMICs
(Earth system Models of Intermediate Complexity;Claussen
et al., 2002), such reduced-resolution models retain full at-
mospheric and oceanic physics. They are therefore capa-
ble of producing reasonable representations of the modes of
internal climate variability. However, their computational
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efficiency allows new classes of scientific problems to be
studied. Reduced-resolution models can be used, for ex-
ample, to generate transient simulations of palaeoclimate
epochs, to study the equilibrium response of the climate sys-
tem to external forcings, or to carry out large ensembles of
simulations.

The atmospheric component of Mk3L is a spectral gen-
eral circulation model with a reduced horizontal resolution of
R21. This gives zonal and meridional resolutions of 5.625◦

and ∼ 3.18◦ respectively. A hybrid vertical coordinate is
used, with 18 vertical levels. The model incorporates both
a cumulus convection scheme and a prognostic stratiform
cloud scheme. The radiation scheme simulates the full an-
nual and diurnal cycles of longwave and shortwave radiation,
and is able to calculate the cloud radiative forcings.

The land surface model employs a soil-canopy scheme and
allows for 13 land surface and/or vegetation types and nine
soil types. Prognostic soil and snow models describe the evo-
lution of six soil layers and three snow layers, respectively.
The vegetation types and land surface property distributions
are pre-determined, however, and are therefore static.

The sea ice model includes both ice dynamics and ice ther-
modynamics. A cavitating fluid rheology is used to rep-
resent internal resistance to deformation, while the three-
layer model ofSemtner(1976) is used to represent the ther-
modynamics of ice and snow. Fractional ice cover is per-
mitted, representing the presence of sub-gridscale leads and
polynyas.

The oceanic component of Mk3L is a coarse-resolution,
rigid-lid, z-coordinate general circulation model. The hor-
izontal grid matches the Gaussian grid of the atmosphere
model, and there are 21 vertical levels. The prognostic vari-
ables are potential temperature, salinity, and the zonal and
meridional components of the horizontal velocity. The verti-
cal velocity is diagnosed through the application of the conti-
nuity equation. The scheme ofGent and McWilliams(1990)
is used to parameterise the adiabatic transport of tracers by
mesoscale eddies.

When coupled, the atmospheric and oceanic components
exchange fields every hour, ensuring that the model simu-
lates diurnal cycles of sea surface temperature and salinity.
Flux adjustments are applied to improve the realism of the
control climate, and to ensure that it is stable on millennial
timescales.

The model can be run in three different configurations: (i)
the fully-coupled climate system model, (ii) a stand-alone
atmosphere-land-sea ice model, or (iii) a stand-alone ocean
model. The latter two modes are used primarily for the pur-
pose of spinning up the model.

The source code has been designed to ensure that Mk3L
is portable across a wide range of computer architec-
tures, whilst also being computationally efficient. Depen-
dence on external libraries is restricted to the netCDF and
FFTW libraries, both of which are freely available and open
source, while a high degree of shared-memory parallelism

is achieved through the use of OpenMP directives. On an
Intel Core 2 Duo processor, the coupled climate system
model completes around 22 model years per day of walltime.
Greater throughput can be achieved on high-performance
computing facilities.

Mk3L is freely available to the research community for
non-commercial purposes. A Subversion repository is used
to manage the model distribution.

This paper describes version 1.0 of the CSIRO Mk3L cli-
mate system model, analyses the control climatology, and
evaluates the ability of the model to simulate the modern cli-
mate. Section2 describes the model physics, while Sect.3
describes the model software and evaluates its computational
performance. Section4 describes the procedure used to ini-
tialise the climate system model, and the climatology of the
model is evaluated in Sect.5. The simulated internal variabil-
ity is evaluated in Sect.6, and the drift in the mean climate
state is examined in Sect.7. Plans for future development are
discussed in Sect.8.

A companion paper analyses the response of the model
to external forcings. User documentation, as well as further
information regarding the initial development of Mk3L, is
provided byPhipps(2006a).

2 Model description

2.1 Atmosphere model

The Mk3L atmosphere model is based on the atmospheric
component of the CSIRO Mk3 coupled model (Gordon et al.,
2002), but with the horizontal resolution reduced from spec-
tral triangular T63 to spectral rhomboidal R21. The zonal
and meridional resolutions of the model physics grid are
therefore 5.625◦ and∼ 3.18◦ respectively. The vertical reso-
lution of 18 levels is retained.

The dynamical core of the atmosphere model is based
upon the spectral method, and uses the flux form of the dy-
namical equations (Gordon, 1981). Physical parameterisa-
tions and non-linear dynamical flux terms are calculated on
a latitude-longitude grid, with Fast Fourier Transforms used
to map fields between their spectral and gridded forms. A
fully-conservative semi-Lagrangian transport scheme is used
to advect moisture (McGregor, 1993), while gravity wave
drag is parameterised using the formulation ofChouinard
et al.(1986).

A hybrid vertical coordinate is used, which is denoted as
theη-coordinate. As in theσ -system, whereσ is the ratio of
the pressure to the surface pressure, the Earth’s surface forms
the first coordinate surface. The remaining coordinate sur-
faces then gradually revert to isobaric levels with increasing
altitude. The 18 vertical levels used in the Mk3L atmosphere
model are listed in Table1 (Gordon et al., 2002, Table 1).

The topography is derived by interpolating the 1◦
×1◦

dataset ofGates and Nelson(1975a) onto the model grid.

Geosci. Model Dev., 4, 483–509, 2011 www.geosci-model-dev.net/4/483/2011/



S. J. Phipps et al.: CSIRO Mk3L v1.0 – Part 1: Description and evaluation 485

Table 1. The hybrid vertical levels used within the Mk3L atmo-
sphere model: the value of theη-coordinate, and the approximate
height.

Level η Approximate
(k) height (m)

18 0.0045 36 355
17 0.0216 27 360
16 0.0542 20 600
15 0.1001 16 550
14 0.1574 13 650
13 0.2239 11 360
12 0.2977 9440
11 0.3765 7780
10 0.4585 6335
9 0.5415 5070
8 0.6235 3970
7 0.7023 3025
6 0.7761 2215
5 0.8426 1535
4 0.8999 990
3 0.9458 575
2 0.9784 300
1 0.9955 165

Some adjustments are then made so as to avoid areas of sig-
nificant negative elevation upon fitting to the truncated res-
olution of the spectral model (Gordon et al., 2002). The re-
sulting topography is shown in Fig.1.

The radiation scheme treats solar (shortwave) and terres-
trial (longwave) radiation independently. The default carbon
dioxide concentration is 280 ppm, and the default ozone con-
centrations are taken from the AMIP II recommended dataset
(Wang et al., 1995). The model does not account for the ra-
diative effects of other anthropogenic greenhouse gases. The
method ofBerger(1978) is used to calculate the Earth’s or-
bital parameters. The default values of the epoch and the
solar constant are 1950 CE and 1365 W m−2, respectively.

Full radiation calculations are conducted every two hours,
allowing for both the annual and diurnal cycles. Clear-sky
radiation calculations are also performed at each radiation
timestep. This enables the cloud radiative forcings to be de-
termined using Method II ofCess and Potter(1987), with the
forcings being given by the differences between the radiative
fluxes calculated with and without the effects of clouds.

The shortwave radiation scheme is based on the approach
of Lacis and Hansen(1974), which divides the shortwave
spectrum into 12 bands. Within each of these bands, the ra-
diative properties are taken as being uniform. The longwave
radiation scheme uses the parameterisation developed by
Fels and Schwarzkopf (Fels and Schwarzkopf, 1975, 1981;
Schwarzkopf and Fels, 1985, 1991), which divides the long-
wave spectrum (wavelengths longer than 5 µm) into seven
bands.

Fig. 1. The topography of the Mk3L atmosphere model: the
elevation of land gridpoints (m).

The planetary boundary layer is described using a mod-
ified version of the stability-dependent scheme ofLouis
(1979). The scheme ofHoltslag and Boville(1993) is used
to incorporate the nonlocal effects of large eddy transport.

The cumulus convection scheme is based on the UK Me-
teorological Office scheme (Gregory and Rowntree, 1990),
and generates both the amount and the liquid water content
of convective clouds. This scheme is coupled to the prog-
nostic cloud scheme ofRotstayn(1997, 1998) andRotstayn
et al.(2000), which calculates the amount of stratiform cloud
using the three prognostic variables of water vapour mixing
ratio, cloud liquid water mixing ratio and cloud ice mixing
ratio.

Time integration is via a leapfrog time integration scheme,
with a Robert-Asselin time filter (Robert, 1966) used to pre-
vent decoupling of the time-integrated solutions at odd and
even timesteps. A semi-implicit treatment of gravity waves
increases the maximum permissible timestep duration. The
main timestepping loop is executed once every 20 min, with
the physics and dynamics calculations being conducted every
timestep. However, full radiation calculations are only con-
ducted once every six timesteps. At each of the intervening
timesteps, the atmospheric heating rates are held constant,
but the upward longwave and downward shortwave fluxes at
the surface are re-calculated in order to smooth the diurnal
cycle of net radiation.

In the stand-alone atmosphere model, four types of surface
gridpoint are employed: land, sea, mixed-layer ocean and sea
ice. The temperatures of the sea gridpoints are determined by
monthly-mean observed sea surface temperatures. Linear in-
terpolaton in time is used to estimate values at each timestep,
with no allowance for any diurnal variation. At high lati-
tudes, sea gridpoints may be converted to mixed-layer ocean
gridpoints, with self-computed temperatures; these can then
evolve into sea ice gridpoints. This is discussed further in the
description of the sea ice model (Sect.2.3).
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Table 2. The thickness of the soil layers used within the Mk3L land
surface model.

Level Thickness
(k) (m)

1 0.022
2 0.058
3 0.154
4 0.409
5 1.085
6 2.872

2.2 Land surface model

The land surface model is an enhanced version of the soil-
canopy scheme ofKowalczyk et al.(1991, 1994). A new
parameterisation of soil moisture and temperature has been
implemented, a greater number of soil and vegetation types
are available, and a multi-layer snow cover scheme has been
incorporated (Gordon et al., 2002). The land surface model
uses the same horizontal grid and timestepping as the at-
mosphere model. The zonal and meridional resolutions are
therefore 5.625◦ and∼ 3.18◦, respectively, with a timestep
of 20 min.

The soil-canopy scheme allows for 13 land surface and/or
vegetation types and nine soil types. The land surface
property distributions are pre-determined, with seasonally-
varying values being provided for the albedo and roughness
length, and annual-mean values for the vegetation fraction.
A seasonally-varying stomatal resistance is calculated by the
model, subject to a specified minimum value. The soil model
has six layers, the thicknesses of which are shown in Table2.
The total depth of the soil column at all gridpoints is 4.6 m.
Soil temperature and the liquid water and ice contents are
calculated as prognostic variables. Run-off occurs once the
surface layer becomes saturated, and is assumed to travel in-
stantaneously to the ocean via the path of steepest descent.

The snow model computes the temperature, snow density
and thickness of three snowpack layers, as well as the snow
albedo. The maximum snow depth is set at 4 m, with any
excess snowfall being converted to run-off. When snow is
present, the model also reduces the vegetation fraction for
some vegetation types, to allow for vegetation being partially
or completely buried by snow. Ice sheets are not explicitly
represented, although there are land surface and soil types
that reflect the presence of perennial ice cover.

2.3 Sea ice model

The sea ice model includes both ice dynamics and ice ther-
modynamics, and is described byO’Farrell (1998). Internal
resistance to deformation is parameterised using the cavitat-
ing fluid rheology ofFlato and Hibler(1990, 1992). The

thermodynamic component is based on the model ofSemt-
ner (1976), which splits the sea ice into three layers, one
for snow and two for ice. Sea ice gridpoints are allowed to
have fractional ice cover, representing the presence of sub-
gridscale leads and polynyas. The sea ice model uses the
same horizontal grid as the atmosphere model, and the zonal
and meridional resolutions are therefore 5.625◦ and∼ 3.18◦

respectively. A timestep of 1 h is used.
Ice advection arises from the forcing from above by atmo-

spheric wind stresses, and from below by oceanic currents.
When running as part of the coupled climate system model,
the currents are obtained from the ocean model; in stand-
alone mode, the currents are determined using a monthly
climatology, with linear interpolation in time being used to
estimate values at each timestep.

The advance and retreat of the ice edge in the stand-
alone atmosphere-land-sea ice model is controlled by using
a mixed-layer ocean model to compute water temperatures
for those sea gridpoints which lie adjacent to sea ice (Gor-
don et al., 2002). The mixed-layer ocean has a fixed depth
of 100 m, and the evolution of the water temperature is de-
termined using the surface heat flux terms and a weak relax-
ation towards the prescribed sea surface temperature. The
relaxation timescale used is 23 days. A mixed-layer ocean
gridpoint can become a sea ice gridpoint either when its tem-
perature falls below the freezing point of seawater, which is
taken as being−1.85◦C, or when ice is advected into it from
an adjacent sea ice gridpoint. When a mixed-layer ocean
gridpoint is converted to a sea ice gridpoint, the initial ice
concentration is set to 4 %. The neighbouring equatorward
gridpoint, if it is a sea gridpoint, is then converted to a mixed-
layer ocean gridpoint.

Surface processes can increase the ice thickness through
the conversion of snow to ice. When the depth of the snow
cover exceeds 2 m, the excess is converted into an equivalent
amount of ice. Alternatively, when the weight of snow be-
comes so great that the floe becomes completely submerged,
any submerged snow is converted into “white” ice. Surface
processes can also reduce the ice thickness through melting
and sublimation.

Lateral and basal ice growth and melt are determined by
the temperature of the mixed-layer ocean. Additional ice can
grow when the water temperature falls below the freezing
point of seawater,−1.85◦C, subject to a maximum allowable
thickness of 6 m. Once the water temperature rises above
−1.5◦C, half of any additional heating is used to melt ice;
once it rises above−1.0◦C, all of the additional heating is
used to melt ice. In the stand-alone atmosphere-land-sea ice
model, a sea ice gridpoint is converted back to a mixed-layer
ocean gridpoint once the sea ice has disappeared. The neigh-
bouring equatorward gridpoint, if it is a mixed-layer ocean
gridpoint, is then converted back to a sea gridpoint.
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Table 3. The vertical levels used within the Mk3L ocean model: the
thickness, the depth of the centre and base of each gridbox, and the
value of the isopycnal thickness diffusivity.

Level Thickness Depth (m) κe
(k) (m) Centre Base (m2 s−1)

1 25 12.5 25 0∗

2 25 37.5 50 70∗

3 30 65 80 180∗

4 37 98.5 117 290∗

5 43 138.5 160 420∗

6 50 185 210 580†

7 60 240 270 770†

8 80 310 350 1000‡

9 120 410 470 1000‡

10 150 545 620 1000‡

11 180 710 800 1000‡

12 210 905 1010 1000‡

13 240 1130 1250 1000‡

14 290 1395 1540 1000‡

15 360 1720 1900 1000‡

16 450 2125 2350 1000‡

17 450 2575 2800 1000‡

18 450 3025 3250 1000‡

19 450 3475 3700 1000‡

20 450 3925 4150 1000‡

21 450 4375 4600 1000‡

∗ These values are fixed.
† These are the maximum allowable values; however, lower values may be specified by
the user.
‡ These are the default values; however, alternative values may be specified by the
user.

2.4 Ocean model

The Mk3L ocean model is a coarse-resolution, rigid-lid,z-
coordinate general circulation model, based on the oceanic
component of the CSIRO Mk2 coupled model (Gordon and
O’Farrell, 1997; Hirst et al., 2000; Bi et al., 2001, 2002). The
CSIRO ocean model is, in turn, based on the implementation
by Cox (1984) of the primitive equation numerical model of
Bryan(1969).

The prognostic variables calculated by the model are po-
tential temperature, salinity, and the zonal and meridional
components of the horizontal velocity. The Arakawa B-grid
(Arakawa and Lamb, 1977) is used, in which the tracer grid-
points are located at the centres of the gridboxes and the hor-
izontal velocity gridpoints are located at the corners. The
vertical velocity is diagnosed through application of the con-
tinuity equation, which enforces conservation of mass in an
incompressible fluid.

The model uses a longitude-latitude grid, with walls at
the north and south poles. The horizontal grid matches the
Gaussian grid of the atmosphere model, such that the tracer
gridpoints on the ocean model grid coincide with the grid-

Fig. 2. The bathymetry of the Mk3L ocean model: the depth of
ocean gridpoints (m).

points on the atmosphere model physics grid. The zonal and
meridional resolutions are therefore 5.625◦ and∼ 3.18◦, re-
spectively. There are 21 vertical levels, which are listed in
Table3.

The bottom topography is derived by interpolating the
1◦

×1◦ dataset ofGates and Nelson(1975b) onto the model
grid, with some slight smoothing to ensure that a solution
is achieved when calculating the barotropic streamfunction
(Cox, 1984). The resulting bathymetry is shown in Fig.2.

The land/sea mask used by the ocean model differs from
that used by the atmosphere model. The tips of South
America and the Antarctic Peninsula are removed, ensur-
ing that Drake Passage accommodates three horizontal ve-
locity gridpoints. To ensure adequate resolution of the
Greenland-Scotland sill, Iceland is also removed; likewise,
a re-arrangement of the land/sea mask ensures adequate reso-
lution of the flows through the Indonesian archipelago. Sval-
bard, which occupies a single isolated gridpoint on the at-
mosphere model grid, is not represented in the ocean model.
Any straits that have a width of only one gridpoint on the
tracer grid are closed, as these will not contain any horizon-
tal velocity gridpoints. The Bass, Bering, Gibraltar, Hudson
and Torres Straits, the Mozambique Channel and the Sea of
Japan are therefore removed, while the Canadian archipelago
becomes a land bridge.

The bathymetry defines six basins which have no resolved
connection with the world ocean: the Baltic, Black, Caspian
and Mediterranean Seas, Hudson Bay and the Persian Gulf.
With the exception of the Caspian Sea, each of these basins
exchanges water with the world ocean via straits which are
not resolved on the model grid. The effects of these ex-
changes are parameterised within the model through an im-
posed mixing between the gridpoints which lie to either side
of each unresolved strait.

Time integration is via a leapfrog scheme, with mix-
ing timesteps conducted once every 19 tracer timesteps to
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Table 4. The computational performance of the Mk3L coupled cli-
mate system model: execution rates in model years per day of wall-
time.

Processor type Number of cores
and speed 1 2 4 8

Intel Nehalem 2.93 GHz 15 28 48 74
Intel Xeon 3.0 GHz 14 22 33 50
Intel Core 2 Duo 3.0 GHz 13 22 − −

prevent decoupling of the time-integrated solutions at odd
and even timesteps. Fourier filtering is used to reduce
the timestep limitation arising from the CFL criterion (e.g.,
Washington and Parkinson, 1986) associated with the conver-
gence of meridians at high latitudes, particularly in the Arctic
Ocean (Cox, 1984). Fourier filtering is applied northward of
79.6◦ N in the case of tracers, and northward of 81.2◦ N in the
case of horizontal velocities. The rigid-lid boundary condi-
tion (Cox, 1984) is employed to remove the timestep limita-
tion associated with high-speed external gravity waves. The
ocean bottom is assumed to be insulating, while no-slip and
insulating boundary conditions are applied at lateral bound-
aries.

To reduce the execution time, the stand-alone ocean
model employs an asynchronous timestepping scheme, with
a timestep of 1 day used to integrate the tracer equations, and
a timestep of 20 min used to integrate the momentum equa-
tions. However, asynchronous timestepping distorts the rep-
resentation of time-dependent features such as Rossby Waves
(Bryan, 1984). Within the coupled climate system model
– and during the final stage of spin-up runs, prior to cou-
pling to the atmosphere-land-sea ice model – a synchronous
timestepping scheme is therefore employed, with a timestep
of 1 h used to integrate both the tracer and momentum equa-
tions.

The vertical diffusivity varies as the inverse of the Brunt-
Väis̈alä frequency, following the scheme ofGargett(1984).
The minimum diffusivity is set to 3×10−5 m2 s−1, except in
the upper levels of the ocean, where it is increased to sim-
ulate the effects of mixing induced by surface winds. The
minimum diffusivity between the upper two levels of the
model is set to 2×10−3 m2 s−1, while that between the sec-
ond and third levels is set to 1.5×10−4 m2 s−1. Whenever
static instability arises, the vertical diffusivity is increased
to 100 m2 s−1, simulating convective mixing; convection is
therefore treated as a purely diffusive process.

Diffusion of tracers along surfaces of constant neutral den-
sity (isoneutral diffusion) is represented by the scheme of
Cox (1987). In the default configuration of the model, the
isoneutral diffusivity is set to the depth-independent value of
1000 m2 s−1. No background horizontal diffusion is applied.

The adiabatic transport of tracers by mesoscale eddies is
represented by the scheme ofGent and McWilliams(1990)
andGent et al.(1995). An eddy-induced horizontal transport
velocity is diagnosed, which is added to the resolved large-
scale horizontal velocity to give an effective horizontal trans-
port velocity. The continuity equation can be used to derive
the vertical component of either the eddy-induced transport
velocity or the effective transport velocity. The default values
for the isopycnal thickness diffusivity are shown in Table3.
Note that the values for levels 1 to 5 are fixed, and that up-
per limits are imposed on the values for levels 6 and 7. This
decrease in the isopycnal thickness diffusivity in the upper
layers, with a value of zero at the surface, is required by the
continuity constraint imposed on the eddy-induced transport
(e.g.,Danabasoglu et al., 2008).

In the stand-alone ocean model, the temperature and salin-
ity of the upper layer are relaxed towards prescribed values
for the sea surface temperature (SST) and sea surface salinity
(SSS). The default relaxation timescale is 20 days. Instanta-
neous values for the SST, SSS, and the zonal and meridional
components of the surface wind stress, are determined from
monthly climatologies, with linear interpolation in time be-
ing used to estimate values at each timestep.

2.5 Coupled climate system model

Within the Mk3L coupled climate system model, the
atmosphere-land-sea ice model (AGCM) and ocean model
(OGCM) exchange fields every 1 h. This is in contrast to
the approach employed by many other state-of-the-art cli-
mate system models, whereby fields are exchanged only once
per day (e.g.,Collins et al., 2006). More frequent coupling
allows the model to explicitly resolve diurnal cycles in sea
surface temperature and salinity. In other models, this has
been found to improve the simulated climate in the tropics,
with enhancements that include better representation of dy-
namical processes in the upper ocean, a reduction in the bi-
ases in sea surface temperature, an enhanced seasonal cycle,
and better representations of the Madden-Julian Oscillation
and El Nĩno-Southern Oscillation (Bernie et al., 2007, 2008;
Danabasoglu et al., 2006).

The Mk3L coupled climate system model runs in a syn-
chronous mode. One OGCM timestep (1 h) is followed by
three AGCM timesteps (3×20 min). Four fields are passed
from the OGCM to the AGCM: the sea surface temperature
(SST), sea surface salinity (SSS), and the zonal and merid-
ional components of the surface velocity. Instantaneous val-
ues are passed for the surface velocity, and act as the bottom
boundary condition on the sea ice model for the following
three AGCM timesteps. The OGCM passes two copies of
the SST and SSS fields, however: one containing the values
at the current OGCM timestep, and one containing the values
which have been predicted for the next OGCM timestep. The
AGCM then uses linear interpolation in time to estimate the
SST and SSS at each AGCM timestep.

Geosci. Model Dev., 4, 483–509, 2011 www.geosci-model-dev.net/4/483/2011/



S. J. Phipps et al.: CSIRO Mk3L v1.0 – Part 1: Description and evaluation 489

Four fields are also passed from the AGCM to the OGCM:
the surface heat and salt fluxes, and the zonal and merid-
ional components of the surface momentum flux. The sur-
face fluxes are averaged over the three consecutive AGCM
timesteps, before being passed to the OGCM. There is no
allowance for penetrative solar radiation, with all of the en-
ergy supplied at the surface being added to the surface layer
of the ocean. Mk3L employs a novel scheme to convert the
surface freshwater flux to an equivalent salt flux, using the
actual SSS at each gridpoint to perform the conversion, and
applying a global offset to ensure conservation of freshwater
(Phipps, 2006a).

Where there are mismatches between the positions of the
coastlines on the AGCM and OGCM grids, spatial interpo-
lation is used to estimate values of fields for locations where
these fields are not defined on the source grid. Uniform off-
sets are applied to the interpolated fields to ensure that the
global integrals are conserved.

Flux adjustments are applied within the coupled model for
two reasons: to improve the realism of the simulated cli-
mate, and to minimise drift. Without them, the rate of climate
drift is too large for the model to have utility on millennial
timescales. The flux adjustments have a fixed annual cycle,
and thus do not act to suppress internal variability. However,
they arguably do limit the suitability of the model for study-
ing climate states that represent large perturbations relative
to the control state (Cubasch et al., 1992).

Following the approach ofSausen et al.(1988), adjust-
ments are applied to each of the fluxes passed from the
AGCM to the OGCM, and also to the SST and SSS. The
need to apply adjustments to the surface velocities is avoided
by employing a suitable spin-up procedure for the AGCM,
whereby climatological values diagnosed from the OGCM
are used.

3 Software and computational performance

The source code for Mk3L has been designed to ensure that
the model is portable across a wide range of computer archi-
tectures. It is written entirely in Fortran, with a high degree of
shared-memory parallelism being achieved through the use
of OpenMP directives. Dependence on external libraries is
restricted to the netCDF and FFTW libraries, both of which
are freely available and open source. It has been verified that
the model will compile and run correctly on a wide variety
of Intel-based architectures, as well as on the Compaq Alpha
and SGI Origin scalar architectures, and on the CRAY SV1
and NEC SX6 vector architectures.

To maximise the computational performance of the model,
Mk3L is compiled and executed as a single program, with the
coupling routines integrated into the source code for each of
the component models. This approach eliminates the inef-
ficiencies that can arise from load imbalances and the over-
heads associated with communication between different ex-

Table 5. Annual-mean surface air temperature (◦C): Mk3L (av-
erage for years 201–1200), NCEP2 (1979–2003 average), and the
model discrepancy (Mk3L minus NCEP2).

Mk3L NCEP2 Discrepancy

Globe 13.62 14.41 −0.79
Land 8.10 8.59 −0.49
Ocean 15.91 16.73 −0.82

ecutables. However, it contrasts with the more modular ap-
proach employed by some other models (e.g.,Collins et al.,
2006), which compile and execute each component as a sep-
arate program.

Table 4 shows the computational performance of the
Mk3L coupled climate system model on typical state-of-the-
art architectures for high-performance computing facilities
(Intel Nehalem), servers (Intel Xeon) and desktop computers
(Intel Core 2 Duo). The use of shared-memory parallelism,
rather than distributed-memory parallelism, limits the num-
ber of cores on which the model can be run. However, very
fast execution times can still be achieved, with a 1000-yr cli-
mate simulation able to be completed in as little as 13 days.

The Subversion revision control system is used to manage
the model distribution. Mk3L is freely available to the re-
search community, subject to the restriction that the model
can only be used for non-commercial research purposes. Re-
searchers can gain access to the Subversion repository by
completing the online application form athttp://www.tpac.
org.au/main/csiromk3l/.

4 Spin-up procedure

A multi-stage spin-up procedure is used to initialise the
Mk3L climate system model: (i) the atmosphere-land-sea ice
and ocean models are integrated separately until they reach
equilibrium, (ii) the surface fluxes diagnosed from each spin-
up run are used to derive flux adjustments, (iii) the final states
of each spin-up run are used to initialise the components of
the climate system model, and (iv) the coupled climate sys-
tem model is then integrated until it recovers from any initial
adjustment. This section describes each stage of the proce-
dure in detail.

As Mk3L is intended primarily for palaeoclimate studies,
the pre-industrial climate is used as the control state of the
model. To enable participation in model intercomparison
projects and direct comparison with other climate system
models, the spin-up procedure for Mk3L is consistent with
PMIP2 experimental design (http://pmip2.lsce.ipsl.fr/).
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Fig. 3. The annual-mean values of the flux adjustments applied within the Mk3L coupled climate system model:(a) the surface heat flux,
(b) the surface salt flux,(c, d) the zonal and meridional components of the surface wind stress, respectively,(e) the sea surface temperature,
and(f) the sea surface salinity. For the surface fluxes, positive values indicate a downward flux.

4.1 Ocean model

The ocean model is first integrated to equilibrium. The
model is initialised using the long-term annual-mean tem-
peratures and salinities from the World Ocean Atlas 1998
dataset (Ocean Climate Laboratory, 1999), which is derived
from observations spanning the period 1900–1997. It is then
forced with climatological wind stresses derived from the
NCEP-DOE Reanalysis 2 (Kanamitsu et al., 2002, hereafter
referred to as NCEP2), while the temperature and salinity of
the upper layer of the model are relaxed towards the World
Ocean Atlas 1998 seasonal climatologies. The relaxation
timescale used is 20 days.

The model is integrated for 4500 yr, using asynchronous
timestepping for the first 4000 yr and synchronous timestep-
ping thereafter. Between the penultimate and final centuries
of the simulation, the magnitudes of the changes in the mean
temperature and salinity on each model level do not ex-
ceed 1.9×10−3 K or 1.8×10−4 psu, respectively. The final
100 yr are used to diagnose climatological surface fields for
the purposes of deriving flux adjustments.

4.2 Atmosphere-land-sea ice model

The atmosphere-land-sea ice model is integrated to equilib-
rium for pre-industrial conditions, using an atmospheric car-
bon dioxide concentration of 280 ppm, a solar constant of
1365 W m−2, and modern (1950 CE) values for the Earth’s
orbital parameters. World Ocean Atlas 1998 (Ocean Climate
Laboratory, 1999) sea surface temperatures are applied as the
bottom boundary condition, while the climatological ocean
currents required by the sea ice model are diagnosed from
the ocean model spin-up run.

The model is initialised from a previous spin-up run, and
is integrated for 50 yr. The final 40 yr are used to diagnose
climatological surface fields for the purposes of deriving flux
adjustments.

4.3 Coupled climate system model

The coupled climate system model is initialised from the fi-
nal states of the atmosphere-land-sea-ice and ocean model
simulations. For the purposes of this evaluation, it is then
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integrated for 4000 yr. The atmospheric carbon dioxide con-
centration and solar constant are held constant at 280 ppm
and 1365 W m−2, respectively, while modern values are used
for the Earth’s orbital parameters. Flux adjustments are ap-
plied.

The first 200 yr of the simulation represent a spin-up pe-
riod, and allow the model to recover from any initial adjust-
ment. Years 201–1200 are used to characterise the control
state of the model, and are analysed in Sects.5 and6. Later
years are excluded from this analysis, so that it is not ex-
cessively affected by any long-term trends exhibited by the
model. The full 4000-yr simulation is used to characterise
any drift in the mean climate state, and is examined in Sect.7.

4.4 Flux adjustments

The flux adjustments applied within the coupled climate sys-
tem model are derived by subtracting the climatological sur-
face fields diagnosed from the ocean model spin-up run from
those diagnosed from the atmosphere-land-sea ice model
spin-up run. The resulting adjustments have a fixed annual
cycle.

Figure3 shows the annual-mean values of the adjustments
that are applied within the coupled climate system model.
Over the open ocean, the values of the adjustments are gen-
erally small. Along the coastlines, heat flux adjustment terms
arise from deficiencies in the representation of marine stra-
tocumulus with the atmosphere model, and from the diffuse
representation of the western boundary currents within the
ocean model. Salt flux adjustment terms arise from discrep-
ancies in the simulated rates of outflow for the major river
systems, particularly the Amazon River. In the Southern
Ocean, heat flux adjustment terms arise from the positioning
of filaments of the Antarctic Circumpolar Current within the
ocean model. Zonal wind stress adjustment terms arise from
discrepancies between the strength of the Southern Hemi-
sphere westerlies within the atmosphere model and within
NCEP2, which is used to spin up the ocean model. Sea sur-
face temperature and salinity adjustment terms arise from er-
rors in the climatology of the ocean model; the use of the
relaxation surface boundary condition to spin up the model
means that the simulation must differ from the prescribed cli-
matology in order for the model to simulate non-zero values
for the surface fluxes (Phipps, 2006b).

5 Mean climate

In this section, the control climatology of the model is anal-
ysed, and the simulated mean climate is evaluated against ob-
servational and reanalysis datasets. These datasets document
the modern state of the climate, and discrepancies between
the model and observations may therefore arise from the use
of a pre-industrial scenario as the control state of the model.
Discrepancies may also arise from the assumption that the

Table 6. Annual-mean total cloud cover (percent): Mk3L (average
for years 201–1200) and the Warren climatology.

Mk3L Warren∗

Globe 67.48 62.33
Land 55.43 56.41
Ocean 72.49 65.01

∗ The Warren climatology only covers 98.0 % of the Earth’s surface.

pre-industrial climate was in equilibrium with the contempo-
rary boundary conditions. In reality, the large thermal iner-
tia of the deep ocean, in combination with the time-varying
nature of boundary conditions such as the Earth’s orbital pa-
rameters, ensures that the climate system can only ever be in
a state of quasi-equilibrium (Weaver et al., 2000).

5.1 Atmosphere

5.1.1 Surface air temperature

Figure 4a,b shows the simulated annual-mean surface air
temperature, and compares it with NCEP2. The root-mean-
square error is 1.90 K, with the model agreeing with the re-
analysis to within 1 K over 56 % of the Earth’s surface, and to
within 2 K over 85 % of the Earth’s surface. The only large-
scale discrepancy is over Western Antarctica, where it is too
cold.

Figure4c–f shows the simulated mean surface air temper-
atures for December-January-February (DJF) and June-July-
August (JJA), and the discrepancies relative to NCEP2. The
simulated winter temperatures over both polar regions are too
cold, but otherwise the model is in good agreement with the
reanalysis. The excessively warm winter temperatures over
Hudson Bay are associated with the failure by the model to
form sufficient sea ice cover in this region (Sect.5.2).

The global-mean temperatures, and the means over land
and over the ocean, are shown in Table5. Although Mk3L
is slightly cooler than NCEP2, the model was integrated for
pre-industrial conditions while the NCEP2 values represent
the 1979–2003 climatology. Indeed, the global-mean dis-
crepancy of−0.79 K is consistent with the observed global-
mean surface air temperature increase of 0.76±0.19 K be-
tween 1850–1899 and 2001–2005 (Trenberth et al., 2007).

5.1.2 Cloud

Figure 5 shows the simulated annual-mean cloud cover,
and compares it with the observed climatology of
Warren et al.(1986, 1988) andHahn et al.(1995), hereafter
referred to as the Warren climatology. The simulated cloud
cover is in good agreement with observations over land and
over the high-latitude oceans. However, the model has ex-
cessive cloud cover over the tropical oceans, particularly in
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Fig. 4. Surface air temperature (◦C), for Mk3L (average for years 201–1200) and NCEP2 (1979–2003 average):(a, c, e)Mk3L, annual, DJF
and JJA means, respectively, and(b, d, f) Mk3L minus NCEP2, annual, DJF and JJA means, respectively.

Fig. 5. Annual-mean total cloud cover (percent):(a) Mk3L (average for years 201–1200),(b) Warren climatology,(c) zonal mean over land,
and(d) zonal mean over the ocean.
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Fig. 6. Annual-mean precipitation (mm/day):(a) Mk3L (average
for years 201–1200), and(b) Legates and Willmott climatology
v2.01.

the Western Pacific Ocean. The model also fails to reproduce
the marine stratocumulus which is encountered in the north-
eastern and south-eastern Pacific Ocean, and in the south-
eastern Atlantic Ocean. These clouds are often poorly sim-
ulated by climate models and yet, through reflection of sun-
light, have a strong influence on the surface heat fluxes in
these regions (Terray, 1998; Bretherton et al., 2004).

The global-mean cloud cover, and the means over land and
over the ocean, are shown in Table6. The model is in good
agreement with the observed climatology over land, but the
excess in the simulated cloud cover over the ocean is appar-
ent.

5.1.3 Precipitation

Annual-mean precipitation is shown in Fig.6 for Mk3L
and version 2.01 of the observed climatology ofLegates
and Willmott (1990). The model is able to reproduce the
large-scale features of the global distribution of precipita-
tion, including the monsoonal precipitation associated with
the South Pacific Convergence Zone.

Table 7. Annual-mean heat fluxes (W m−2, positive downward) at
the top of the atmosphere, for Mk3L (average for years 201–1200)
and ERBE (1985–1990 average).

Flux Mk3L ERBE

Outgoing shortwave radiation (60◦ S–60◦ N)

Net −102.14 −100.20
Clear sky −51.78 −49.81
Cloud forcing −50.36 −50.41

Outgoing longwave radiation (60◦ S–60◦ N)

Net −246.31 −242.90
Clear sky −279.49 −274.30
Cloud forcing +33.18 +31.39

However, there are some regional-scale biases. Over the
Western Tropical Pacific and Indian Oceans, where the sim-
ulated cloud cover is excessive, the simulated precipitation
is also excessive. Over the Eastern Tropical Pacific, Indian
and Atlantic Oceans, however, the simulated precipitation
is deficient. The model is also too dry over the Indonesian
archipelago and Central and Southwestern Australia.

5.1.4 Atmospheric temperature and winds

Figure 7 shows the zonal means of the simulated annual-
mean atmospheric temperature and zonal wind speed, and
compares them with NCEP2.

The model simulates the vertical distribution of temper-
ature well, with both the temperature and height of the
minimum at the tropical tropopause being correctly simu-
lated. However, there is a cool bias throughout the tropo-
sphere, and a warm bias throughout the stratosphere. These
biases are most pronounced over Antarctica, where the tropo-
sphere is up to 8.9 K too cool and the stratosphere up to 5.4 K
too warm. In the tropics, the biases in the simulated vertical
profile of temperature do not exceed 3.7 K in magnitude.

Records derived from radiosondes and satellite-borne mi-
crowave sounders indicate cooling of the stratosphere be-
tween 1958 and 2004 of∼1.5 K, accompanied by a warm-
ing of the troposphere of less than 0.5 K (Trenberth et al.,
2007). This suggests that the warm bias in the simulated
stratosphere is largely due to the use of pre-industrial green-
house gas concentrations in the model, while the cool bias in
the simulated troposphere is largely due to deficiencies in the
model physics.

The model also simulates the features of the zonal-mean
circulation well, including both the strengths and positions
of the atmospheric jets, and the net westerly winds in the
tropical stratosphere. In the Southern Hemisphere, however,
the cores of both the subtropical and polar jets are located
slightly too far to the north.
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Fig. 7. The zonal means of annual-mean temperature (K) and annual-mean zonal wind speed (m s−1): (a, c)Mk3L (average for years 201–
1200), temperature and zonal wind speed, respectively, and(b, d) Mk3L minus NCEP2, temperature and zonal wind speed, respectively.

5.1.5 Radiation

Figure8a shows the zonal means of the annual-mean fluxes
of shortwave and longwave radiation at the top of the atmo-
sphere, for Mk3L and ERBE (the Earth Radiation Budget
Experiment;Barkstrom, 1984). The model can be seen to
simulate the zonal distribution of the radiative fluxes very
well.

The zonal means of the annual-mean shortwave and long-
wave cloud forcing are shown in Fig.8b. The simulated long-
wave cloud forcing is in good agreement with observations at
all latitudes. There are discrepancies in the simulated short-
wave cloud forcing at high latitudes, although it should be
noted that the ERBE dataset is potentially unreliable over sea
ice (Lubin et al., 1998).

Table7 shows the annual-mean fluxes of outgoing short-
wave and longwave radiation at the top of the atmosphere.
Because of the potential biases in the ERBE dataset at high
latitudes, the comparison is restricted to the region 60◦ S–
60◦ N. The model slightly overestimates the magnitudes of
both the net outgoing fluxes of shortwave and longwave ra-
diation at the top of the atmosphere. The excess of outgoing
longwave radiation is due to deficient longwave absorption
under clear-sky conditions. This is likely related, at least in
part, to the use in the model of an atmospheric CO2 concen-
tration appropriate for pre-industrial conditions. The magni-
tude of the simulated shortwave cloud forcing is in excellent

agreement with observations, while the model slightly over-
estimates the longwave cloud forcing.

5.2 Sea ice

The simulated seasonal cycles in the Northern and Southern
Hemisphere sea ice extents and volumes are plotted in Fig.9.
Sea ice extents derived from the NOAA Optimum Interpola-
tion (OI) sea surface temperature analysis v2 (Reynolds et al.,
2002) are also shown; this analysis combines satellite ob-
servations with in situ observations from ships and buoys.
The conventional definition of sea ice extent (e.g.,Parkinson
et al., 1999) is employed, namely that the sea ice extent is de-
fined as the area over which the ice concentration is greater
than or equal to 15 %.

The simulated annual cycle in ice extent is well simulated
in both hemispheres. However, too much ice persists through
the summer in the Northern Hemisphere, while too much ice
forms in winter in the Southern Hemisphere. The simulated
annual-mean sea ice extents in the Northern and Southern
Hemispheres are 12.8×1012 m2 and 13.6×1012 m2, respec-
tively. These values are in good agreement with the observed
extents of 12.2×1012 m2 and 13.2×1012 m2, respectively.

Figures 10 and 11 compare the simulated March and
September ice concentrations, for the Northern and South-
ern Hemispheres, respectively, with those derived from the
NOAA OI analysis v2. In the Northern Hemisphere, the ex-
tent of sea ice cover in March is in good agreement with
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Fig. 8. The zonal means of the annual-mean heat fluxes (positive
downward) at the top of the atmosphere for Mk3L (black, average
for years 201–1200) and ERBE (red, 1985–1990 average):(a) net
shortwave, net longwave and total radiation, and(b) shortwave and
longwave cloud forcing.

observations. However, the ice concentration is too low in
Hudson Bay. In September, although the extent of the sea ice
cover in the Arctic Ocean is again in good agreement with
observations, the ice in Hudson Bay fails to melt. It is this
deficiency that accounts for the excessive Northern Hemi-
sphere sea ice extent in summer.

In the Southern Hemisphere, the extent of the sea ice cover
is in reasonable agreement with observations. However, in
September the ice cover extends slightly too far out from the
coast at most longitudes, accounting for the excessive hemi-
spheric sea ice extent in winter. The ice concentrations are
also too low in both the Weddell and Ross Seas, with the re-
sult that too little ice persists in these seas through the sum-
mer.

The simulated March and September sea ice thicknesses
are shown in Fig.12. Observational datasets of ice thick-
ness are limited in both spatial and temporal coverage. How-
ever,Wadhams(2000), summarising the available data, in-
dicates that ice thicknesses in the Arctic range from∼ 1 m
in the sub-polar regions, such as Baffin Bay and the South-
ern Greenland Sea, to∼ 7–8 m along the northern coasts of

Fig. 9. Sea ice extent (1012m2) and volume (1012m3): (a) sea
ice extent for Mk3L (black, average for years 201–1200) and the
NOAA OI analysis v2 (red, 1982–2003 average), and(b) sea ice
volume for Mk3L.

Greenland and the Canadian archipelago. In Hudson Bay,
the model forms excessively thick ice that persists through-
out the year. As the ice concentration here is too low in win-
ter, the model therefore appears to grow ice preferentially
downwards, rather than outwards, in this region. However,
the sea ice that forms elsewhere is much thinner. Compared
to observational estimates, the simulated Arctic sea ice cover
is therefore generally too thin.

Worby et al.(2008), combining data from 83 ship voy-
ages and 2 helicopter flights for the period 1980–2005, de-
rive mean summer and winter sea ice thicknesses for the
Antarctic of 1.17±1.12 m and 0.66±0.60 m, respectively.
Compared to these estimates, the simulated Antarctic sea ice
thickness is reasonable in winter, but too thin in summer.
This suggests that the model underestimates the proportion
of multi-year ice. As the ice extent is too great in winter,
this indicates a preference to grow ice outwards, rather than
downwards, in the Southern Ocean.
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Fig. 10. Northern Hemisphere sea ice concentration (percent):(a, b) Mk3L (average for years 201–1200), March and September, respec-
tively, and(c, d), the NOAA OI analysis v2 (1982–2003 average), March and September, respectively. Values are only shown where the
concentration is greater than or equal to 15 %.

5.3 Ocean

5.3.1 Water properties

The vertical profiles of potential temperature and salinity are
shown in Fig.13, for both Mk3L and the World Ocean Atlas
1998. The potential temperature represents the temperature
that a volume of seawater would have if raised adiabatically
to the surface. While the model prognoses the potential tem-
perature, the World Ocean Atlas 1998 dataset contains in situ
temperatures. These are therefore converted to potential tem-
perature, using the multivariant polynomial method ofBry-
den(1973).

The model ocean is too warm above 1400 m, but too
cold at depth. It also has a consistent fresh bias, with the
magnitude of the model discrepancy increasing with depth.
Taking the average over the bottom five model levels, which
span the depth range 2350–4600 m, the model is too cold by
1.09 K and too fresh by 0.27 psu.

Figure14 shows the simulated zonal-mean potential tem-
perature and salinity, and compares them with the World
Ocean Atlas 1998. The model is too warm in the Arctic
Ocean, and in the tropical and mid-latitude upper ocean. In
contrast, it is too cold in the Southern Ocean and at depth.
The simulated zonal-mean salinity exhibits a modest nega-
tive bias at most latitudes and depths. A slight positive bias
in the upper ocean in the Southern Hemisphere arises from
the failure by the model to adequately simulate the formation
of Antarctic Intermediate Water.

The cold and fresh bias of the deep ocean is consistent
with the biases exhibited by other ocean models with com-
parable physics and spatial resolutions (e.g.,Moore and Rea-
son, 1993; England and Hirst, 1997; Hirst et al., 2000; Bi,
2002). These deficiencies in the simulated climate can be at-
tributed, at least in part, to the use of the relaxation surface
boundary condition, as a result of which the model is unable
to adequately simulate the peak winter density and salinity
of high-latitude surface waters (Phipps, 2006b).

Geosci. Model Dev., 4, 483–509, 2011 www.geosci-model-dev.net/4/483/2011/



S. J. Phipps et al.: CSIRO Mk3L v1.0 – Part 1: Description and evaluation 497

Fig. 11. Southern Hemisphere sea ice concentration (percent):(a, b) Mk3L (average for years 201–1200), March and September, respec-
tively, and(c, d), the NOAA OI v2 (1982–2003 average), March and September, respectively. Values are only shown where the concentration
is greater than or equal to 15 %.

5.3.2 Thermohaline circulation

The meridional overturning streamfunctions for the world
ocean, and for the Atlantic and Pacific/Indian Oceans, are
shown in Fig.15; the rate of overturning is calculated by
integrating both the large-scale and eddy-induced transport
components. The rates of formation of North Atlantic Deep
Water (NADW) and Antarctic Bottom Water (AABW) are
14.7 Sv and 11.8 Sv, respectively.

Observationally-based estimates of the rate of NADW for-
mation lie within the range 15–20 Sv (Gordon, 1986), while
those for the rate of AABW formation lie within the range
5–15 Sv (e.g.,Gill , 1973; Carmack, 1977). The observed
distribution of dissolved chlorofluorocarbons has also been
used to produce estimated rates of NADW and AABW for-
mation of ∼ 17.2 Sv (Smethie and Fine, 2001) and ∼ 8.1–
9.4 Sv (Orsi et al., 1999), respectively. The simulated rate of
NADW formation is therefore slightly too weak, while the
rate of AABW formation may be too strong.

Similar biases in the simulated rate of NADW forma-
tion are encountered in other ocean models with compara-
ble physics and spatial resolutions (e.g.,England and Hirst,
1997; Hirst et al., 2000; Bi, 2002). As AABW is ∼ 2 K colder
than NADW (Orsi et al., 2001), the biases in the rate of deep
water formation provide a possible explanation for the cold
bias in the simulated deep ocean. This hypothesis is consis-
tent with the fact that the cold bias arises from those regions
of the world ocean that are ventilated by AABW (Fig.14b).

5.3.3 Barotropic circulation

The annual-mean barotropic streamfunction is shown in
Fig. 16. The Antarctic Circumpolar Current is evident, as
are the mid-latitude gyres in the Atlantic, Pacific and Indian
Oceans.

The simulated rate of transport through Drake Passage is
147 Sv, which agrees well with observational estimates.Cun-
ningham et al.(2003), using the data from six hydrographic
sections conducted across Drake Passage between 1993 and
2000 as part of the World Ocean Circulation Experiment
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Fig. 12. Sea ice thicknesses for Mk3L (average for years 201–1200, cm):(a, b) Northern Hemisphere, March and September, respectively,
and(c, d) Southern Hemisphere, March and September, respectively. The values shown are the mean thickness of sea ice where present, and
are not weighted by the concentration. Values are only shown where the concentration is greater than or equal to 15 %.

(WOCE), estimate that the rate of transport is 136.7±7.8 Sv.
Stammer et al.(2003), using an ocean global circulation
model to assimilate WOCE data over the same period, es-
timate that the rate of transport through Drake Passage is
124±5 Sv. The agreement between Mk3L and observations
is particularly good when it is considered that other global
ocean models simulate rates of transport through Drake Pas-
sage which range from less than 100 Sv to more than 200 Sv
(Olbers et al., 2004).

The simulated western boundary currents, however, are
too weak and too diffuse. The maximum strength of the sim-
ulated Gulf Stream, for example, is 24.4 Sv, whereas the ob-
served strength is∼ 30.5 Sv (Schott et al., 1988). This prob-
lem is encountered in coarse-resolution ocean models (e.g.,
Moore and Reason, 1993; Bi, 2002), and arises from the large
horizontal viscosity which is required to ensure resolution
of viscous boundary layers at the lateral walls (Bryan et al.,
1975). For the configuration of the model analysed herein,
the horizontal viscosity was set to 9×105 m2s−1.

6 Climate variability

In this section, the internal variability within the control
simulation is analysed, and the simulated climate variabil-
ity is evaluated against observational and reanalysis datasets.
Analogously to the evaluation of the mean climate (Sect.5),
discrepancies may arise because of differences between the
characteristics of modern natural climate variability and the
natural climate variability that prevailed during the pre-
industrial era.

Mk3L employs flux adjustments to improve the realism of
the simulated climate. Flux adjustments influence the inter-
nal variability within climate models, both via their influence
on the mean state and via their influence on the coupling be-
tween the atmosphere and the ocean (e.g.Kitoh et al., 2007).
Although the flux adjustments applied within Mk3L consist
of a fixed annual cycle, it is nonetheless possible that they
determine the structure of the simulated climate variability
(Weaver and Hughes, 1996). In other models, it has been
shown that flux adjustments can influence the characteristics

Geosci. Model Dev., 4, 483–509, 2011 www.geosci-model-dev.net/4/483/2011/



S. J. Phipps et al.: CSIRO Mk3L v1.0 – Part 1: Description and evaluation 499

Fig. 13.The zonal- and meridional-mean potential temperature and
salinity for Mk3L (black, average for years 201–1200), and the
World Ocean Atlas 1998 (red):(a) potential temperature, and(b)
salinity.

of the simulated present-day El Niño-Southern Oscillation,
as well as the response to changes in the seasonal cycle of
insolation (Kitoh et al., 2007; Brown et al., 2008). While a
full analysis of the role of flux adjustments within Mk3L is
beyond the scope of this paper, it is important to bear these
caveats in mind when evaluating the simulated climate vari-
ability.

6.1 Tropics

Figure17shows the leading principal component (PC) of the
monthly sea surface temperature anomalies within the region
45◦ S–45◦ N, for Mk3L and for the HadISST1 observational
analysis (Rayner et al., 2003).

In both the model and the analysis, El Niño-Southern Os-
cillation (ENSO; Philander, 1990) is the leading mode of
variability in tropical sea surface temperatures. While the
model successfully captures the overall spatial structure of
the SST anomalies associated with ENSO, the location of
greatest SST variability is located too far to the west. In
the model, the largest anomalies in the equatorial Pacific
Ocean occur at 163◦ W whereas, in the analysis, they occur
at 113◦ W.

The simulated ENSO variability is also too weak. In the
model, the standard deviations of the monthly SST anoma-
lies in the Nĩno 3.4 (170◦–120◦ W, 5◦ S–5◦ N) and Nĩno 3
(150◦–90◦ W, 5◦ S–5◦ N) regions are 0.51 K and 0.40 K, re-
spectively. In contrast, the standard deviations for the period

1871–2003 according to the HadISST1 analysis are 0.76 K
and 0.79 K, respectively. Thus the amplitude of the sim-
ulated ENSO variability is 33 % weaker than the observed
variability in the Nĩno 3.4 region, and 50 % weaker than the
observed variability in the Niño 3 region. As the region of
greatest SST variability is located too far to the west in the
model, the simulated variability is particularly deficient in
the Niño 3 region.

The wavelet power spectra of the Niño 3.4 SST anomaly,
for both the model and for HadISST1, are shown in Fig.18.
Wavelet spectra were calculated using the method ofTor-
rence and Compo(1998), modified following Liu et al.
(2007) to ensure a physically consistent definition of energy.
The observed power spectrum has peak variability at 3.6 yr,
with a weak secondary maximum at 13.1 yr. The simulated
power spectrum, however, has peak variability at 6.0 yr, with
a secondary maximum of almost equal magnitude at 20.2 yr.
The simulated ENSO has less power than observations at pe-
riods shorter than 6 yr, and more power than observations on
interdecadal timescales.

Within Mk3L, the simulated ENSO is therefore too weak,
too slow, and characterised by excessive modulation on in-
terdecadal timescales. The region of greatest SST variability
is also located too far to the west. Such failings are typical of
low-resolution coupled climate system models, such as those
which participated in the Coupled Model Intercomparison
Project (AchutaRao and Sperber, 2002). Higher-resolution
models, such as those which contributed to the IPCC Fourth
Assessment Report, are able to simulate ENSO variability
more realistically (Guilyardi, 2006; Guilyardi et al., 2009).
The deficiencies in the simulated ENSO variability within
Mk3L are therefore likely to be a consequence of the reduced
spatial resolution.

6.2 Extratropics

Figure 19a,b shows the leading principal component of
the monthly 500 hPa geopotential height anomalies for the
Northern Hemisphere extratropics, defined here as the region
20◦–90◦ N, for Mk3L and for NCEP2. The Northern Annular
Mode (NAM, also known as the Arctic Oscillation;Thomp-
son and Wallace, 1998, 2000) is the leading mode of vari-
ability in both the model and the analysis, with PC1 (PC2)
explaining 13.3 % (10.4 %) and 14.2 % (9.7 %) of the vari-
ance in Mk3L and NCEP2, respectively. The model cap-
tures the zonally-symmetric nature of the NAM, with neg-
ative geopotential height anomalies in the polar region sur-
rounded by positive anomalies at mid-latitudes. However, the
largest negative anomaly is located over Alaska in the model,
whereas it occurs over the North Atlantic in the reanalyis. In
the Atlantic sector, the simulated variability therefore con-
sists of a north-sorth dipole, in contrast to the more tripolar
structure seen in the reanalysis. Over the Pacific Ocean, the
simulated variability is too weak, with the maximum geopo-
tential height anomaly located too far to the south and west.

www.geosci-model-dev.net/4/483/2011/ Geosci. Model Dev., 4, 483–509, 2011



500 S. J. Phipps et al.: CSIRO Mk3L v1.0 – Part 1: Description and evaluation

Fig. 14. The zonal-mean potential temperature (◦C) and salinity (psu) for the world ocean:(a, c)Mk3L (average for years 201–1200), and
(b, d) Mk3L minus the World Ocean Atlas 1998.

Figure 19c,d shows the leading principal component of
the monthly 500 hPa geopotential height anomalies for the
Southern Hemisphere extratropics, defined here as the region
20◦–90◦ S, for Mk3L and for NCEP2. The Southern An-
nular Mode (SAM, also known as the Antarctic Oscillation;
Thompson and Wallace, 2000; Marshall, 2003) is the leading
mode of variability in both the model and the analysis, with
PC1 (PC2) explaining 23.4 % (8.3 %) and 17.6 % (10.8 %)
of the variance in Mk3L and NCEP2, respectively. Although
the model is able to capture the annular nature of the SAM,
the simulated variability exhibits an excessive zonal symme-
try. The largest negative geopotential height anomalies lie
over Eastern Antarctica, with the model failing to resolve the
dipole in variability in the Southern Pacific Ocean.

7 Climate drift

In a climate system model that is designed primarily for
millennial-scale climate simulations, the rate of drift in the
control state should be negligible. Mk3L employs fixed
annual-cycle flux adjustments to minimise the rate of drift,
as well as to improve the realism of the simulated climate.
The adjustments are intended to prevent the mean states of
the atmosphere, land surface, sea ice and ocean from drift-
ing away from the states of the stand-alone models (Phipps,
2006b). This section examines the rate and nature of any
residual drift that remains.

7.1 Surface air temperature

The evolution of the simulated global-mean surface air tem-
perature (SAT) is shown in Fig.20a. The model exhibits
a slow but steady cooling trend, which becomes well es-
tablished after year 1200. The global-mean SAT decreases
0.61 K by the end of the simulation, with the average rate
of cooling being 0.015 K per century. There is no difference
between the rates of change over land and over the ocean.

7.2 Sea ice

Figure20b,c shows the evolution of the sea ice extent and
volume in each hemisphere. Some initial adjustment during
the first century of the simulation is apparent. In the Northern
Hemisphere, this consists of the expansion of ice cover into
Hudson Bay and the Labrador Sea (not shown), bringing the
simulated ice cover into better agreement with observations.
Thereafter, the Northern Hemisphere ice extent is relatively
stable, increasing from 12.0 to 12.9×1012 m2 between the
second and final centuries. The sea ice extent in the South-
ern Hemisphere, however, exhibits a steady upwards trend
after year 500. Between the second and final centuries of the
simulation, the extent increases from 12.5 to 16.6×1012 m2.

The sea ice volumes in each hemisphere exhibit simi-
lar behaviour to the sea ice extent. The Northern Hemi-
sphere ice volume is relatively stable, increasing from 12.8
to 15.2×1012 m3 between the second and final centuries of
the simulation. This increase occurs at around year 1500,
when the global cooling trend causes ice cover to form in
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Fig. 15. Meridional overturning streamfunctions for Mk3L (aver-
age for years 201–1200, Sv):(a) the world ocean,(b) the Atlantic
Ocean, and(c) the Pacific/Indian Oceans.

the Caspian Sea for the first time (not shown). The Southern
Hemisphere sea ice volume exhibits a steady upwards trend
after year 500, increasing from 5.1 to 7.9×1012 m3 between
the second and final centuries.

7.3 Sea surface temperature and salinity

The evolutions of the simulated global-mean sea surface tem-
perature (SST) and sea surface salinity (SSS) are shown in
Fig. 21. The drift in the simulated SST is similar to that in
the simulated surface air temperature, with a steady cooling
trend becoming established by year 1200. The global-mean
SST decreases 0.44 K by the end of the simulation, with the
average rate of cooling being 0.011 K per century. The simu-
lated global-mean SSS exhibits a slow but steady freshening
trend, decreasing 0.11 psu over the course of the simulation.

7.4 Oceanic circulation

Figure22 shows the evolution in the rates of North Atlantic
Deep Water (NADW) and Antarctic Bottom Water (AABW)
formation, and in the rate of volume transport through Drake
Passage. After some initial adjustment, the rates of deep
water formation stabilise. Excluding the first century of the
simulation, the mean rates of NADW and AABW formation
are 14.4 and 11.9 Sv, respectively. The Antarctic Circumpo-
lar Current (ACC), however, exhibits a slight strengthening
trend, with the mean strength increasing from 146 to 160 Sv
between the second and final centuries of the simulation. In
the CSIRO Mk2 coupled model, the strength of the ACC has
been shown to be sensitive to changes in the density struc-
ture of the ocean interior (Bi, 2002). Such density changes,
arising from the cooling trend in the Southern Ocean, may
explain the ACC trend encountered here.

7.5 Summary

The control climate of the Mk3L coupled climate system
model exhibits a high degree of stability on millennial
timescales. Over the course of a 4000-yr control simulation,
the global-mean surface air temperature cools at an average
rate of just 0.015 K per century. This cooling trend is much
smaller than that exhibited by the majority of models with
comparable physics and spatial resolutions (Bell et al., 2000;
Lambert and Boer, 2001). The drift exhibited by Mk3L is
less, typically by between one and two orders of magnitude,
than that exhibited by all seven of the non-flux-adjusted mod-
els which participated in the Coupled Model Intercomparison
Project (Lambert and Boer, 2001, Table 7), and by all but one
of the eight models which employed flux adjustments. The
only model to exhibit a smaller rate of drift was CSIRO Mk2,
on which Mk3L is partly based.

The cooling trend exhibited by Mk3L is slow but con-
sistent, and therefore respresents a source of concern. If
the trends were to continue at the same rate as during the
simulation presented here then, during a 10,000-yr simula-
tion, global-mean surface air temperature would be expected
to cool by ∼1.5 K, Southern Hemisphere sea ice volume
would be expected to increase by∼140 %, and the Antarc-
tic Circumpolar Current would be expected to strengthen by
∼25 %. Such rates of change would restrict the utility of the
model for experiments which require very long integrations,
such as the simulation of a full glacial cycle or a glacial-
interglacial transition.

Further analysis of the drift (Phipps, 2006b) reveals that
it is a consequence of the initial adjustment during the first
century of the simulation, during which the Northern Hemi-
sphere sea ice cover expands into Hudson Bay and the
Labrador Sea. The consequent cooling in the North Atlantic
results in a decrease in the temperature of North Atlantic
Deep Water, which leads to a slow but ongoing cooling of the
ocean. It is therefore possible that the drift could be avoided
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Fig. 16. The annual-mean barotropic streamfunction for Mk3L (average for years 201–1200, Sv).

Fig. 17. The leading principal component of the monthly sea sur-
face temperature anomalies (K) for(a) Mk3L, years 201–1200, and
(b) the HadISST1 analysis, 1871–2003.

by modifying the spin-up procedure, such that the coupled
climate system model is initialised with more realistic sea
ice cover.

Fig. 18. The wavelet power spectrum of the Niño 3.4 sea surface
temperature anomaly for Mk3L (black, years 201–1200) and the
HadISST1 analysis (red, 1871–2003). Units are fraction of total
power.

8 Future development

Future development work will address the deficiencies in the
model climatology that have been identified herein. These
deficiencies include both the biases in the control climatol-
ogy, and the drift that is encountered within the coupled cli-
mate system model.

Biases in the mean state that are particularly significant
include the excessive cloud cover and precipitation over the
tropical oceans, deficiencies in the Northern Hemisphere
sea ice cover, and the cold and fresh nature of the deep
ocean. The simulated cloud cover and precipitation could
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Fig. 19. The leading principal component of the monthly 500 hPa geopotential height anomalies (m) for(a) Mk3L (years 201–1200, 20◦–
90◦ N), (b) NCEP2 (1979–2003, 20◦–90◦ N), (c) Mk3L (years 201–1200, 20◦–90◦ S), and(d) NCEP2 (1979–2003, 20◦–90◦ S).

be improved through enhancements to the model physics,
while the simulated sea ice cover and deep ocean could be
improved through the use of better spin-up procedures.

The deficiencies in the simulated El Niño-Southern Os-
cillation should also be addressed. Although this could be
achieved through an increase in the spatial resolution, this
would impact upon the computational performance. Expe-
rience with other models has shown that a better represen-
tation of ENSO can alternatively be achieved through im-
provements to the parameterisation of atmospheric convec-
tion (Neale et al., 2008), or through reductions in the hor-
izontal viscosity (Large et al., 2000) or vertical diffusivity
(Meehl et al., 2001) used in the ocean.

Mk3L has a very stable control climatology, but there is
a residual cooling trend that should be minimised. It is possi-
ble that this could be achieved by initialising the model with
more realistic sea ice cover. Furthermore, the stability of the
control climatology is achieved partly through the use of flux
adjustments. This is inherently undesirable, and future de-
velopment efforts will seek to produce a non-flux-adjusted
version of the model that nonetheless has a stable and realis-
tic control climatology.

Ongoing development work also seeks to upgrade physical
schemes within the model, and to incorporate representations
of additional components of the earth system. Future ver-
sions of Mk3L will include the CABLE land surface model
(Kowalczyk et al., 2006), the CLM-DGVM dynamic global
vegetation model (Levis et al., 2004), the ocean biogeochem-
istry model ofMatear and Hirst(2003), and the tropospheric
aerosol scheme ofRotstayn et al.(2007). A dynamic ice
sheet model (e.g.,Rutt et al., 2009) and simulation of stable
isotopes (e.g.,Noone and Simmonds, 2002) are also being
considered for incorporation. These developments will trans-
form Mk3L from aclimatesystem model into anearthsys-
tem model. This will allow it to be used to address a whole
new class of scientific questions, such as the role of vegeta-
tion and carbon cycle feedbacks within the climate system,
or the role of abrupt climate change.

9 Conclusions

The CSIRO Mk3L climate system model has been de-
scribed and evaluated. The model is designed primar-
ily for millennial-scale climate simulations, and includes
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Fig. 20. The drift in annual-mean surface air temperature, sea ice extent and sea ice volume:(a) surface air temperature, anomaly relative to
the initial state,(b) sea ice extent, and(c) sea ice volume. The values shown are five-year running means.

Fig. 21. The drift in annual-mean sea surface temperature and salinity:(a) sea surface temperature, and(b) sea surface salinity. The values
shown are five-year running means, and are expressed as anomalies relative to the initial state.
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Fig. 22.The rates of deep water formation, and the strength of the Antarctic Circumpolar Current:(a) the rates of formation of North Atlantic
Deep Water (red) and Antarctic Bottom Water (green), and(b) the rate of volume transport through Drake Passage. The values shown are
five-year running means.

representations of the atmosphere, ocean, sea ice and land
surface. The model distribution is freely available to the re-
search community.

The simulated surface air temperature, sea ice, cloud cover
and precipitation exhibit broad agreement with observations.
However, there are deficiencies in the Northern Hemisphere
sea ice cover, associated with surface air temperatures which
are too warm over Hudson Bay in winter. Other discrepan-
cies in the simulated climate include excessive cloud cover
over the tropical oceans, poor representation of marine stra-
tocumulus, and regional biases in precipitation.

The simulated oceanic circulation is reasonable, with the
strength of the Antarctic Circumpolar Current being in good
agreement with observations. However, the rate of North At-
lantic Deep Water formation is slightly too weak, the rate
of Antarctic Bottom Water formation may be slightly too
strong, and the western boundary currents are too weak and
diffuse. The deep ocean is also too cold and too fresh.

The model produces reasonable representations of the
leading modes of internal climate variability. The domi-
nant mode of tropical climate variability is El Niño-Southern
Oscillation, although the simulated ENSO is too weak, too
slow, and characterised by excessive modulation on inter-
decadal timescales. The dominant modes of extratropical
climate variability are the Northern and Southern Annular
Modes. The geopotential height anomalies associated with
each of these modes are reasonably well represented, al-
though the simulated Southern Annular Mode exhibits an ex-
cessive zonal symmetry.

The model is found to exhibit a high degree of stability,
with the global-mean surface air temperature cooling at a rate
of just 0.015 K per century over the course of a 4000-yr con-
trol simulation. This drift arises from changes in the North-
ern Hemisphere sea ice cover during the first century, and
could potentially be avoided through improvements to the
spin-up procedure. The strength of the thermohaline circu-
lation exhibits no long-term trend.

Overall, the model has considerable utility for studying the
behaviour of the larger-scale features of the climate system
on millennial timescales. However, the reduced spatial res-
olution leads to some regional scale biases and some defi-
ciencies in the nature of the simulated interannual climate
variability. The residual long-term drift also limits the utility
of the model for very long climate simulations. Future devel-
opment work will seek to address deficiencies in the model
climatology and to incorporate representations of additional
components of the earth system.

Appendix A

The coupled climate system model simulation analysed
herein is experiment d73. Years 201–1200 of this experiment
have been submitted to the PMIP2 database under experi-
ment pmip20k oa, with the model name CSIRO-Mk3L-1.0.
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Supplementary material related to
this article is available online at:
http://www.geosci-model-dev.net/4/483/2011/
gmd-4-483-2011-supplement.pdf.
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