
1 3

DOI 10.1007/s00382-015-2531-3
Clim Dyn (2015) 45:3169–3181

Weighting climate model ensembles for mean and variance 
estimates

Ned Haughton · Gab Abramowitz · Andy Pitman · 
Steven J. Phipps 

Received: 17 July 2014 / Accepted: 13 February 2015 / Published online: 20 February 2015 
© Springer-Verlag Berlin Heidelberg 2015

1 Introduction

It is common to evaluate climate models against twentieth 
century data Randall et al. (2007) and Flato et al. (2013). 
Evaluations of this kind are based on the view that skil-
ful twentieth century hindcasts by climate models are an 
important basis for judging the value of these models in 
projecting the climate of the twenty-first century. However, 
there are many reasons why no single model simulation 
is an adequate representation of the true Earth’s climate. 
These include: a limited understanding of the physics of 
the climate system; imperfect numerical schemes to simu-
late known components of the climate system; limitations 
in computational resources, which restrict both the com-
pleteness and resolution of climate models; a lack of pre-
cision in observationally-based initial conditions for simu-
lations; and a lack of understanding of the amplitude and 
frequency of internal climate system variability, which lim-
its our ability to assess model performance. In collating an 
ensemble of imperfect model simulations, the community 
typically assumes that these simulations are drawn from a 
sufficiently broad pool to constitute an independent sam-
pling strategy (Knutti et al. 2010b). It then uses the distri-
bution across the ensemble to make probabilistic estimates 
of changes in the climate system (e.g. Tebaldi and Knutti 
2007).

In most cases, we actually have more information about 
the differences between ensemble members. For exam-
ple, we know that some models appear to perform signifi-
cantly better than others for some applications (Box 9.1, 
Flato et al. 2013). To account for this, performance-based 
weighting methodologies can be used, in which poorly-
performing models are assigned lower weights than others 
(e.g. Gleckler et al. 2008; Reifen and Toumi 2009; Weigel 
et al. 2010; Tebaldi and Knutti 2007). This is an intuitive 
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solution, and has the advantage over model selection (e.g. 
only using the best performing models) of taking some 
information from all models, while still reducing the sus-
ceptibility of the mean to apparent outlier-introduced bias.

There are of course many reasons why one model may 
perform better than another: one may have more accu-
rate parameterisations, higher spatial resolution, be more 
tightly calibrated to relevant data sets, or include more 
physical components. Some model simulations may also 
perform better than others because of more accurate ini-
tialisation, or because of the imposition of more complete 
or more accurate external forcings. In all these cases there 
is an expectation that the advantages afforded by weight-
ing such a model above others will persist throughout the 
twenty-first century, justifying the construction of weights 
using twentieth century observed data. A model might also 
perform well, however, because its particular realisation 
of stochastic internal variability happens to coincide with 
observations (or worse, observational errors better coin-
cide with the model errors). In these cases, the efficacy of 
using weights derived on a historical reference period for 
future projection are clearly questionable. These and other 
risks associated with model weighting are well recognised 
(Reifen and Toumi 2009; Macadam et al. 2010; Weigel 
et al. 2010).

One issue that performance weighting does not address 
is the potential dependence in sampling strategy that the 
ensemble could represent. How independent are the future 
climate estimates that different model simulations provide? 
Shared parameterisations, initial conditions, or land surface 
data sets, for example, might mean that simulations from 
different research groups behave similarly. By reducing the 
impact of unusual model simulations, performance weight-
ing may actually increase inter-model dependence in an 
ensemble. Consider a case where 5 models in a 6-member 
ensemble are essentially identical and the sixth does not 
perform as well as the others. Removing this outlier would 
falsely give a high degree of confidence in the result where 
inter-model spread is interpreted as probability. This could 
result in climate estimates or projections that are biased, 
and yet appear far more certain than they reasonably 
should, potentially leading to ill-informed decision making.

We already know that the structures of climate models 
are somewhat dependent (Masson and Knutti 2011). In 
our analysis below, we examine how dependence is mani-
fested in model output. That is, how error covariances 
between different simulations affect the ensemble mean 
and ensemble variance. To do this, we use the independ-
ence-based weighting methodology proposed by Bishop 
and Abramowitz (2013). To understand how this weight-
ing approach defines model dependence and how we apply 
it in the context of this work, we first clarify our assump-
tions about the relationship between an ensemble of model 

simulations and observations of the real world. Below we 
contrast three existing paradigms of interpretation.

The truth-plus-error paradigm (Knutti et al. 2010b) 
views imperfect model simulations as centred around the 
observations, with model-observation discrepancy essen-
tially a pseudo-random noise that represents flaws in the 
model, computational inadequacy, or initial condition 
uncertainty. It is the prevailing approach to interpreting 
model ensembles (Annan and Hargreaves 2010; Knutti 
et al. 2010a).

The assumption of random distribution of error in 
the truth-plus-error paradigm implies that, as an ensem-
ble increases in size, the ensemble mean should converge 
toward the observations. That is, the error of the multi-
model mean should converge to zero as model errors are 
averaged out, purely as a function of ensemble size. The 
expected error correlation of independent models in this 
context is the same as for random variables: zero. This 
raises the most problematic (yet least stated) implication of 
the truth-plus-error paradigm—that the climate system is 
entirely deterministic, with no stochastic internal variabil-
ity. That is, the only barrier to an arbitrarily close match 
between the ensemble mean and observations is the number 
of independent models in the ensemble. While some may 
argue that the climate system is deterministic, for example, 
on 30-year averages and beyond, we know that it is not on 
shorter timescales and in fact have evidence of variability 
on longer timescales (e.g. PAGES 2k Consortium 2013). In 
reality of course, we only have one climate system—a sam-
ple size of one—and so definitively defining a timescale of 
internal variability is impossible.

It should be evident that the truth-plus-error paradigm is 
problematic: Fig. 1 shows significant differences between 

Fig. 1  The CMIP3 model ensemble, after Hegerl et al. (2007). Mod-
els are shown in green, the multi-model mean in red, and the observa-
tions in black. An arbitrary single model is shown in blue to highlight 
the differences between variability seen in the model simulations and 
observations and in the multi model mean
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the multi-model mean (red) and the observations (black). 
In particular, there are long periods where the multi-model 
mean and the observations are quite distant (e.g. 1935–
1945). Except where there are strong volcanic eruptions, 
the multi-model mean exhibits significantly less variabil-
ity than the observations. The mean clearly does not con-
verge toward the observations. Similar results were noted 
by Knutti et al. (2010b). It might be argued that this is evi-
dence of a systematic bias, however that would require us, 
in this instance, to believe in the existence of a systematic 
bias that just happened to remove a lot of the variability 
over time.

Annan and Hargreaves (2010) were the first to explicitly 
refute and provide an alternative to the truth plus error par-
adigm. They assert that models and observations should be 
treated as indistinguishable random draws from the same 
underlying distribution—the “statistically indistinguish-
able paradigm”. This clearly removes the expectation that 
the ensemble mean and observations should converge as 
the ensemble size increases. Since the observations have 
the same characteristics as a model, and contain a certain 
amount of error, as the model ensemble size increases the 
ensemble mean should not converge to the observations, 
but to the statistical centre of the distribution. The multi-
model mean does not have the same attributes as a true 
Earth-like climate because the averaging process reduces 
the amplitude of unforced internal variability (Knutti et al. 
2010a). Supporting this, Gleckler et al. (2008) show that 
the multi-model mean has smaller errors, and that the vari-
ance of the mean is lower, than individual models. Criti-
cally, the multi-model mean does not represent a poten-
tially real climate. The meaning of ensemble spread is not 
explicitly described in Annan and Hargreaves (2010), but 
is assigned in a later blog post to “collective uncertainties 
about how best to represent the climate system” (Annan 
2010).

The replicate earth paradigm (Bishop and Abramowitz 
2013) expands on this idea by asserting that the distribu-
tion defined by internal climate system variability provides 
a basis for the distribution described in the indistinguish-
able paradigm. That is, an ideal, independent estimate of 
the climate system’s state would be a random draw from a 
distribution that defined true internal climate system vari-
ability. Bishop and Abramowitz (2013) argue, however, that 
it is not safe to assume, as the indistinguishable paradigm 
does, that models represent independent draws from this 
underlying distribution. They argue that if we assume that 
the Earth’s climate is partially chaotic, we can conceptually 
estimate the spread of possible climate system outcomes 
by imagining a vast number of replicate earths. All repli-
cate earths would have observationally consistent climate 
forcing, so that by sampling the different outcomes across 
replicate earths we could estimate a Climate Probability 

Distribution Function (CPDF) for a variable of interest. In 
this case, our observational record would represent just one 
sample from the CPDF, and the instantaneous CPDF would 
represent the distribution of variable values drawn from 
the climate system’s internal variability. The properties of 
the CPDF would clearly vary with time. The CPDF mean, 
a smoothed quantity with lower variability than any indi-
vidual replicate earth, would represent the forced response 
of the natural system. Should the climate system be truly 
deterministic, on timescales longer than 30 years for exam-
ple, then we would simply expect that the CPDF variance 
would collapse to zero when analysing 30-year average 
time series.

Bishop and Abramowitz (2013) argue that climate mod-
els are best viewed as flawed attempts to create replicate 
earths. A perfect, independent model simulation would be 
a random draw from the time-evolving CPDF. The mean 
of an ensemble, therefore, is an approximation to the mean 
of the CPDF, and the quality of that approximation relies 
on the independence of the models in the ensemble. An 
imperfect replicate earth ensemble would be an ensemble 
whose members only represent dependent subsets of the 
possibilities defined by the CPDF, biasing the ensemble as 
a whole.

Under the indistinguishable and replicate earth para-
digms, model errors should actually be considered as a 
linear combination of two time-series (i.e. model minus 
observations), and so the expected correlation will be posi-
tive (Bishop and Abramowitz 2013). If the ensemble mem-
bers are independent, and the time series is long enough, 
replicate earth-like model simulations (as is assumed in 
the indistinguishable paradigm) should have an error cor-
relation of 0.5, because each error is effectively a linear 
combination of two replicate earths: the simulation minus 
observations.

We note that, regardless of ensemble interpretation par-
adigm, all weighting approaches are likely to suffer from 
issues such as sensitivity to the variable being weighted 
(a simulation in an ensemble might receive quite different 
weights depending on which variable is examined) and the 
metric used to construct the weights (some metrics target 
variability, means or entire distributions; some are sensi-
tive to scale, while others are not). Their efficacy will also 
always be entirely dependent on the representativeness of 
the in-sample period used to train the weights with respect 
to the out-of-sample prediction period. These are clearly 
not insurmountable difficulties, but define clear prerequi-
sites for the experimental setup of any meaningful applica-
tion of weights.

In this paper we explore the impact of three different 
weighting techniques on ensemble performance, using four 
different ensembles (Sect. 2). We then discuss the results in 
Sects. 3 and 4 and conclude in Sect. 5.
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2  Methodology

The first three ensembles we use, each covering the period 
1971–2010, were generated using the CSIRO Mk3L cli-
mate system model version 1.2 (Phipps et al. 2011, 2012). 
All simulations were based on the default fully coupled 
ocean-atmosphere mode of Mk3L with each simulation 
perturbed from this baseline configuration. The model 
simulation period (1971–2010, with a spin-up from 1851) 
allowed a long period over which the simulations can be 
compared with reliable observational data of surface air 
temperature. All ensemble members were integrated over 
the period 1851–2010, following the protocol for the 
CMIP5 Historical experiment (Taylor et al. 2012). Accord-
ingly, the model was driven with changes in orbital param-
eters, atmospheric greenhouse gas concentrations, solar 
irradiance and stratospheric sulphate aerosols due to vol-
canic eruptions. The three ensembles were generated by 
using perturbations from the baseline configuration of the 
model, using three approaches:

1. Perturb initial conditions. To generate the initial con-
ditions ensemble, restart files with 100 year spacings 
(sourced from the control simulation used by Phi-
pps et al. 2013), were used as initial conditions. This 
ensemble has 25 members.

2. Perturb model parameters. To generate this ensemble, 
six uncertain model parameters representing aspects of 
the land, ocean and atmosphere were selected with the 
aim of maximising behavioural diversity, and perturbed 
simultaneously within literature-based ranges. This 
ensemble has 25 members.

3. Perturb model structure. In this case, alternative aspects 
of individual model components were selectively disa-
bled or enabled, including the land surface scheme, 
atmospheric boundary layer scheme, gravity wave drag 
scheme, cumuliform and stratiform cloud schemes, the 
oceanic equation of state, and the dynamical and ther-
modynamical components of the sea ice model. Five 
of the simulations failed to complete—this ensemble 
therefore has 20 members.

To generate the parameter values for the perturbed 
parameter ensemble members, we used literature-based 
ranges and perturbed all parameters simultaneously, using 
the low-discrepancy Sobol’ sequence (Reichert et al. 
2002) to sample parameter values uniformly within the 
pre-defined ranges. We used a similar method for the per-
turbed structure ensemble, first using one simulation with 
the default settings (all selected model components on); 9 
simulations with default settings and one model component 
modified; and 15 simulations with a quasi-random selec-
tion of model component states using the Sobol’ sequence 

to select the states. This method has the benefit of allowing 
further sampling if required, while maintaining the relative 
uniformity of coverage of the sample space. A complete 
description of the ensemble generation process, including 
parameter ranges and the sampling approach, is given in 
Haughton et al. (2014). The perturbed structure ensemble 
is intended to emulate an ensemble of single simulations 
from several climate models, each using comparable initial 
conditions and perturbed parameters. It was infeasible to 
actually generate a structural ensemble with multiple cli-
mate models, and so we adopted the above approach using 
CSIRO Mk3L.

Our fourth ensemble is the collection of CMIP5 histori-
cal simulations, a so-called “ensemble of opportunity”, in 
that its makeup is determined by research groups’ ability 
to contribute. Its structure is inevitably part multi-model 
ensemble, part initial conditions ensemble and part per-
turbed parameter ensemble. Contributing institutions, 
model names and the number of simulations from each 
model are shown in Table 1.

We use the HadCRUT3 surface air temperature data set 
as our observational reference (Brohan et al. 2006). Model 
simulations were re-gridded to the HadCRUT3 5◦ × 5◦ 
grid. All simulations were bias corrected (that is, each sim-
ulation’s time and space mean is made to equal observa-
tions), in order to remove the effect of climatic drift over 
the spin-up period (see Haughton et al. 2014).

2.1  Model weighting and ensemble transformation

Our three approaches to weighting these three ensembles 
are (a) a simple ensemble mean and unweighted ensemble 
variance, as is standard practice (Solomon et al. 2007); (b) 
weights that account for performance differences between 
ensemble members, applied both to the mean and ensemble 
variance estimates; and (c) weights that account for both 
performance and dependence between ensemble members, 
again applied to both mean and variance estimates.

The performance weights we use are inversely pro-
portional to each simulation’s error variance—an optimal 
performance weighting approach for mean square error 
(MSE) based cost functions (a more explicit definition 
will be given in the description of independence weighting 
below). Application of these weights to the ensemble mean 
estimate is straightforward. To apply them to the ensem-
ble variance estimate, we use a sample weighted variance 
formula:

where xk are the ensemble members, x̄ is the ensem-
ble mean, vk are performance weights, V1 =

∑K
k=1 vk 

(1)s2 =
V1

V2
1 − V2

K
∑

k=1

vk(xk − x̄)2
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and V2 =
∑K

k=1 v
2
k . If we use normalised weights, we get 

V1 = 1, and so Eq. 1 becomes:

For very homogeneous weights, with a large sample size 
(K), the denominator approaches 1− 1/K , and the weight-
ing has very little effect, but when weights are highly 
heterogeneous, and the sample size is small, the differ-
ence between unweighted and weighted variance becomes 
larger. We use the weighted variance formula for all vari-
ance calculations on weighted ensembles.

Bishop and Abramowitz (2013) use error-covariance-
based weights to account for model dependence within an 
ensemble, following the definition of dependence within 
the replicate earth paradigm described above. While this 
is just one way of defining independence, it is the only 
approach that we are aware of that explicitly and quantita-
tively accounts for model dependence affecting ensemble 
performance.

Bishop and Abramowitz (2013) argue that since CPDF 
spread describes essentially unpredictable internal climate 
system variability, the best possible estimate to any particu-
lar random draw from the CPDF, or replicate earth, is the 
CPDF mean (at least in a MSE sense). They then construct 
an optimal linear combination of existing ensemble mem-
bers, µj, and argue that this linear combination is the best 
estimate we can get to the CPDF mean—the true climate 
response to external forcing. That is,

where j ∈ {1 . . . J} are time steps, yj are observations and 
x
j
k is the jth time step of the kth model simulation. The 

analytical solution to this problem is expressed in terms 
of the matrix of pair-wise error covariances between each 
simulation:

where cov(xerrn , xerrm ) is the error covariance between the nth 
and mth bias corrected model simulations. The matrix A is 
then inverted, and the column corresponding to model sim-
ulation xk is summed, and normalised by dividing through 

s2 =
1

1−
∑

v2k

K
∑

k=1

vk(xk − x̄)2

µj =

K
∑

k=1

wkx
j
k such that

J
∑

j=1

(µj − yj)2

is minimised, and

K
∑

k=1

wk = 1

(2)A =













cov(xerr
1

, xerr
1

) cov(xerr
1

, xerr
2

) · · · cov(xerr
1

, xerr
K

)

cov(xerr
2

, xerr
1

) cov(xerr
2

, xerr
2

) · · · cov(xerr
2

, xerr
K

)

.

.

.
.
.
.

. . .
.
.
.

cov(xerr
K

, xerr
1

) cov(xerr
K

, xerr
2

) · · · cov(xerr
K

, xerr
K

)













by the sum of the components of the inverted matrix, to 
give a value wk for each model:

We note that the result in Eq. 3 is reported by both Potemp-
ski and Galmarini (2009) and Bishop and Abramowitz 
(2013). As this is an analytic solution for the minimum 
error variance estimate in-sample, Bishop and Abramowitz 
(2013) use μ as an estimate of the CPDF mean.

Note that these coefficients weight for both performance 
and independence: if we set the off-diagonal terms in A to 
zero, the solution for the kth simulation, w′

k, is proportional 
to the error variance of the simulation—precisely the per-
formance weights we discussed above. This zero pairwise 
error covariance scenario is equivalent to the assumption of 
independence in the truth-plus-error paradigm.

The values w are defined such that 
∑K

k=1 wk = 1, but 
they can individually be either larger than 1 or negative. 
Unfortunately this means that these wk cannot be consid-
ered weights for calculating weighted variance. To over-
come this problem Bishop and Abramowitz (2013) use a 
transformation that modifies both the wk and the ensem-
ble members themselves. This transformation ensures that 
(a) the linear combination of modified weights and modi-
fied ensemble members is equal to µj, and (b) the time 
average of the instantaneous ensemble variance around 
the CPDF mean estimate (as estimated by µ) is the same 
as the variance of observations around the CPDF mean 
estimate over time. The transformation is a two-step pro-
cess that first normalises the independence coefficients 
wk to weights w̃k that are positive and sum to 1, and 
then inflates and deflates the variance of each ensemble 
member about the raw ensemble mean and CPDF mean 
estimate, respectively. The resultant elements are linear 
combinations of the original model simulations. The new 
ensemble members retain high correlation with their orig-
inal corresponding simulations (~0.95), but have different 
variability structures, and cannot be considered as physi-
cally consistent model simulations. With positive weights 
now available, we can calculate projection variance using 
these transformed ensemble members. We reiterate that 
the transformation process does not modify the CPDF 
mean estimate: the independence coefficient-based lin-
ear combination of the original models is the same as the 
independence-weighted mean of the transformed ensem-
ble members.

We reiterate that the independence weights outlined 
above account for both performance and independence. 
To aid distinguishing the two weighting approaches how-
ever, we will refer to these simply as independence weights 
below.

(3)w =
A−1

1

1TA−11
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The weighting of Bishop and Abramowitz (2013) can 
be applied in many ways, using different cost functions 
or temporal and spatial resolutions. In particular, it can be 
applied on a per-cell basis— that is, each model simulation 
has one weight per grid cell, and the time series for each 
grid cell from different models are combined using inde-
pendent weights—or it can be applied globally, using all 
data to calculate a single weight per simulation. Bishop and 
Abramowitz (2013) use both global and per-cell weight-
ing. For this study we use only global weighting, based 
on per-cell data and monthly time steps aggregated into a 
single vector. There are therefore K weights for K model 
simulations.

As illustrated by Bishop and Abramowitz (2013), 
weighting model simulations for independence is some-
what analogous to removing model simulations from the 
ensemble—if two models are dependent, their simulations 
contain very similar information. Bishop and Abramow-
itz (2013) investigated out-of-sample performance of the 
approach by testing the transformation on one decade of 
the late twentieth century and testing on others, with stable 
positive results. We also note that Abramowitz and Bishop 
(2014) further investigate this by using a perfect model 
approach with CMIP5 historical and RCP projections, and 
again find the correction to be stable out-of-sample.

3  Results

Figure 2 shows time series of annual averages of global 
mean surface air temperature for all members of the four 
bias corrected ensembles. Note that CMIP5 Historical 
simulations stop after 2004. Three means are displayed for 
each ensemble: the unweighted multi-model mean (red), 
the performance weighted mean (purple), and the inde-
pendence weighted mean (green). In much of Fig. 2 they 
are indistinguishable. As noted above, these use global 
weights, calculated using all grid cells and monthly time 

steps of available data. They are not calculated using global 
average temperatures. We therefore need not necessarily 
expect that weighting would have a major effect on global 
averages, since the discrepancies between models may be 
dominated by regional differences. The weights could be 
calculated over globally averaged annual data, however 
the resulting mean would likely be over-fitted, as there are 
20–25 free variables (weights per ensemble), and only 40 
data points.

RMSE values of each ensemble mean across time and 
space are given in Table 2. Under standard unweighted 
averaging, the initial conditions ensemble mean performs 
notably better than either the perturbed parameter or struc-
tural ensembles, and the structural ensemble has the worst 
performing mean. For the initial conditions ensemble, all 
three means are almost identical, and there is very little 
improvement due to either the performance or independ-
ence-weighting. For the perturbed parameter ensemble, 
the performance weighted mean over the training period 
shows a small improvement over the unweighted mean at 
the global scale (1.6 %), while the independence weighted 
mean shows a slightly larger improvement (3.5 %). For the 
perturbed structure ensemble, the performance improve-
ment of the two weighted means over the unweighted mean 
is larger, although the improvement due to the performance 
weighting (15 %) relative to that due to the independence 
weighting (20 %) is larger than for the perturbed param-
eters ensemble. Under the independence weighting, the 
perturbed structure ensemble out-performs the perturbed 
parameter ensemble, and compares favourably with the 
performance of the initial conditions ensemble. CMIP5 
shows a similar pattern of improvement to the latter two 
ensembles under both weighting methodologies (0.4 and 
3.1 % respectively). The CMIP5 ensemble outperforms all 
of the Mk3L ensembles under this metric.

We now examine the effect of each weighting method-
ology on the variance of the ensembles. The top rows of 
Figs. 3 and 4, as with Fig. 2, show time series of global 

Fig. 2  Global annual mean sur-
face air temperatures (K) of bias 
corrected model simulations, 
grouped by generation method. 
The unweighted mean is in red, 
the performance weighted mean 
is in purple, and the independ-
ence weighted mean is in green. 
Bias-corrected models are in 
orange, and observations are 
in black
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annual average surface air temperature. Observations are 
in dark grey, the unweighted ensemble mean is in black, 
and the light grey shading shows one standard deviation 

of ensemble spread for each year. The second and third 
rows of Fig. 3 show the application of the performance and 
independence weights, respectively. The ensemble means 

Fig. 3  Global average annual 
surface air temperature from 
HadCRUT3 (grey solid line) 
and each bias corrected ensem-
ble for the period 1971–2000 
(1971–2004 for CMIP5). 
Columns represent different 
ensembles and rows different 
approaches to weighting. Each 
weighted ensemble mean is 
shown in black, with the shaded 
region showing the standard 
deviation of simulations in the 
ensemble, at each time step. 
Weighted standard deviations 
are calculated using weights 
applied to global annual aver-
ages
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Fig. 4  As for Fig. 3, but using 
weighted standard deviation cal-
culated on the monthly per-cell 
data, then averaging standard 
deviation to global annual scale 
for plotting. The shaded region 
represents one-half standard 
deviation
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for the second and third rows are the same as the purple 
and green lines in Fig. 2. The shaded ensemble standard 
deviation for each of these two rows is calculated using 
the weighted variance in Eq. 1 and the appropriate set of 
weights.

The weights we use here were derived on all 5◦ × 5◦ 
grid cells and at all monthly time steps. As such, they 
account for performance differences and error covariance 
in different regions and in different seasons. The consid-
erable regional biases that different models exhibit likely 
dominate error covariances between simulations, and so 
exhibit a significant influence on the weights constructed in 
this way. The application of these weights to the calcula-
tion of ensemble variance in globally averaged annual tem-
perature, as is done in row three of Fig. 3, seems somewhat 
inappropriate. With this in mind, we now present two alter-
native methods of calculating the variance of the ensembles 
at this scale.

In Fig. 3, the standard deviation of the ensemble is cal-
culated using globally averaged annual surface tempera-
ture. In Fig. 4, the standard deviation of the ensemble is 
calculated at each grid cell and monthly time step, and then 
averaged over the globe and each year. As we would expect, 
the averaged standard deviation in the latter figure is con-
siderably larger than that shown in Fig. 3, since it captures 
the regional and seasonal differences between models. As 
a result, the shaded regions in Fig. 4 show only one-half of 
the standard deviation (so that variations in the ensemble 
means are still visible). Since the mean and standard devia-
tions in this figure are calculated at different scales, it is 
the relative changes in the spread that is of importance in 
this figure. We reiterate that deriving weights using global 
annual averages would be inappropriate, as we have 20–25 
model time series with only 40 constraining data. It should 
also be clear that this issue does not affect weighting for the 
ensemble mean. It is an open question whether the applica-
tion of these weights to calculating ensemble variance after 
global annual averages are calculated is appropriate.

The fourth rows of Figs. 3 and 4 show a second 
approach to addressing this issue. They show the variance 
of the independence transformed ensemble calculated with-
out using a weighted variance. The similarity of this result 
to the weighted transformed ensembles in the row above it 
in both figures shows that the transformation process itself 
provides most of the change to an ensemble’s variance, 
rather than the weights (at least at the global scale).

We can also examine the spread of the ensembles by 
looking at the percentage of observations that fall within 
one standard deviation of the ensemble mean. Results 
are shown in Table 3. For a normal distribution, the value 
would be expected to approach 68.3 %, but the appropri-
ate shapes of the distributions for these ensembles (repre-
senting CPDF distribution estimates) are not known so this 

assumption should be treated with caution. What is clear is 
that the improvement in ensemble variance under the per-
formance weighting is far less consistent than the improve-
ment to the mean: the initial conditions ensemble variance 
estimate does not change, and the perturbed parameters 
ensembles variance estimate actually degrades slightly 
under the performance weighting (assuming that we are 
expecting a value near 68 %). Since we don’t know the var-
iance of the observations around the true CPDF mean, it is 
difficult to say whether the variance in the structural ensem-
ble or CMIP5 ensemble is improved or degraded under the 
performance weighting. It is possible that performance 
weighting improves variance estimates for ensembles that 
are very over-dispersive (such as our structural ensemble), 
however this data does not provide compelling evidence. 
We also note that we are only considering error covariance 
based performance weights. It is theoretically possible that, 
under other cost functions, performance-weighted variance 
does not perform so poorly.

Under the independence transformation, variance of 
the initial conditions and perturbed parameters ensembles 
improve dramatically. We also note that the percentage of 
observations that lie within one standard deviation of the 
ensemble mean after the independence transformation var-
ies by only 9 % across all of these very different ensembles 
(as opposed to 40 % before transformation). This appar-
ent convergence raises the intriguing question of whether 
the appropriate expected value of the percentage of obser-
vations that fall within one standard deviation of the true 
CPDF mean might be around these values. We also note 
that the range (65.41–73.98 %) includes 68.3 %, which is 
the value that would be expected if the CPDF followed a 
normal distribution.

To better understand dependence within each of these 
ensembles, we now also examine the pair-wise error cor-
relations between simulations in each ensemble. Note that 
while we used error covariance when applying Bishop and 
Abramowitz’s methodology, error correlation as a normal-
ised measure is a little more intuitive and allows direct 
comparison between model ensembles.

Figure 5 shows histograms of pair-wise error correla-
tions between the simulations in each ensemble. There is a 
clear change in homogeneity between the ensembles: initial 
conditions ensemble simulation pairs all have very similar 
correlations, while the perturbed parameters ensemble error 
correlations are much broader, and those of the structural 
ensemble broader again. The average pair-wise error cor-
relation for the initial conditions ensemble is 0.79, for the 
perturbed parameters ensemble 0.60, and for the structural 
ensemble 0.35. The 95 % confidence interval for the initial 
conditions ensemble and perturbed parameters ensemble 
both exclude 0. The confidence interval of the initial con-
ditions ensemble (0.782, 0.80) also excludes 0.5, the value 
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expected by the indistinguishable paradigm. The confi-
dence interval for the perturbed structure ensemble is far 
broader, partly due to the sample size, with a confidence 
interval of (−0.27, 0.98), and includes both 0 and 0.5.

The narrowness of the initial conditions ensemble may 
be expected from Fig. 2, where we see that the variance 
between the simulations is sufficiently small that the range 
frequently does not span the observations. In particular, in 
the mid 1970s, the observations are lower than all the mod-
els, while in the mid-late 1990s, the opposite is true. This 
alone would add significantly to the correlations between 
simulation errors. There are likely similar patterns in sea-
sonal and spatial trends that we do not see in Fig. 2 because 
of global averaging. This clearly points to strong dependence 
between the simulations in the initial conditions simulations.

Given those factors, the spread of the correlations 
between structural ensemble simulations is somewhat 

surprising—there are even simulation pairs with negative 
correlation. This means that the patterns differ between the 
simulations so much that the variance introduced by the 
observations is outweighed by the variance between the 
simulations.

The CMIP5 ensemble is distinctly bimodal, with a 
significant cluster in the range of 0.7–0.9. This cluster is 
almost entirely due to high correlations between pairs of 
simulations from the same modelling system within a sin-
gle institution. All correlations between model pairs for 
CMIP5 are shown in Fig. 6, which clearly shows strong 
clustering from model simulations from nearly every mod-
elling institution (see Table 1 for a complete list of simula-
tions). This indicates that most model simulations from a 
single institution are highly dependent.

Most of the inter-institutional model simulation pair-
wise correlations lie in the range of 0.2–0.6. This indicates 
that the these model pairs are reasonably independent. 
However, Fig. 6 also shows some inter-institutional clus-
tering—for example, the Australian ACCESS 1.0 and 1.3 
models, which share the atmospheric component with the 
UKMO HadGEM2 model (shown by the @ in Fig. 6). As 
such, this model pair exhibits less independence than most 
model pairs in the ensemble.

Although the CMIP5 ensemble could be considered a 
structural ensemble, or at least a mixed structural/param-
eter/initital conditions ensemble, it is clear that even con-
sidering the error correlations among the inter-model or 
inter-institution simulations (left part of the bi-modal dis-
tribution seen in the fourth panel of Fig. 5) there is not as 
much diversity as is seen in our structural ensemble. This 
may be due to a number of factors, including deliberate 
model tuning. Our pseudo-random structural perturbations 
had no targeted performance goal behind them, while all 
of the CMIP5 simulations were produced with the intention 
of replicating historical obervations accurately. Deliberate 
or subconscious selection of the best simulations during the 
submission process for CMIP5 might also be a factor.

4  Discussion

Performance weighting is in widespread use, and is an 
active area in ensemble research, yet almost all weighting 
procedures consider only the weighted mean, and ignore 
the effect on variance (e.g. Giorgi 2005; Krishnamurti 
et al. 2000). Recent reviews of model combination meth-
odologies and issues related to weighting also appear to 
have largely ignored the application of any kind of weight-
ing to ensemble variance (Weigel et al. 2010; Knutti et al. 
2010a). This may well be because it can be very prob-
lematic: as we have shown, performance weighting may 
reduce the quality of ensemble variance in some situations. 
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As a consequence, performance-weighted ensembles may 
underestimate the variability we should expect to see in 
the future climate. For small ensembles, this would likely 
only be compounded by using simple variance calculations 
in the place of appropriate weighted variance calculations, 
as explained in Sect. 2. As we have only considered error 
variance based performance weighting, it is theoretically 
possible that other cost functions do not suffer as severely 
from this problem. However, the very nature of perfor-
mance weighting reduces the impact of the more extreme 
samples, and in doing so likely reduces the variance of 
ensembles.

In contrast, the means and variance of the ensembles 
both improved under the independence transformation, and 
improvements were far more consistent from each ensem-
ble. In the replicate earth transformation process, the dis-
tance of the CPDF mean estimate from the observations 
is critical in determining how broad the CPDF variance 
estimate should be. The CPDF variance estimate is just the 
time-averaged variance between the observations and the 
CPDF mean estimate. This means that if the CPDF mean 
tracks the observations very closely, the difference between 
the mean and the observations, and hence the CPDF vari-
ance estimate, will be very small. If, on the other hand, the 
CPDF mean estimate is very smooth, the internal variabil-
ity in the observations will ensure that the CPDF variance 
estimate is larger.

The obvious implication here is that an ensemble of 
simulations from models which are in some way over-fitted 
or have coincident internal variability with the observed 
system will likely underestimate the variance. On the other 
hand, an ensemble of poorly performing models is likely 
to overestimate variance. It is also worth noting here that 
the CPDF variance estimate is, to some degree, a function 
of the number of models. The more models that are added 
to the ensemble, the more tightly the CPDF mean estimate 
can be fitted to the observations. However, this is not likely 
to be a problem except for very large ensembles with a very 
short period, or low spatial resolution. In our ensembles, 
we have at most 25 models with which to fit hundreds of 
thousands of data points, so over-fitting is unlikely to be a 
problem.

The CPDF mean, ultimately, represents the mean 
response to all large-scale forcings that all replicate earths 
would share. So the CPDF mean should respond to, for 
example, changes in CO2, solar irradiance, and volcanic 
and anthropogenic aerosols, which are shared inputs to 
models. It should not respond directly to chaotic fluctua-
tions in internal model processes, such as ENSO cycles; 
these processes are represented by the spread of the CPDF 
about the mean. However, it should capture changes in the 
patterns of those chaotic fluctuations: for example, a state-
shift that shuts down the North Atlantic thermohaline circu-
lation, or a shift to a permanent El Niño like state, if those 

Fig. 6  Correlation between the 
error time series of each pair 
of model simulations. Model 
simulations are sorted alpha-
betically, as listed in Table 1, 
and major groups’ simulations 
are annotated. The * indicates 
a model group with multiple 
model variations. Darker cells 
indicate higher correlation. 
Some models from different 
groups share high correlation, 
for example the Australian 
ACCESS model, and the UK 
HadGEM2 model, from which 
ACCESS was forked (indicated 
by the @)
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changes represent a forced response to the given boundary 
conditions. The difficulty then lies in determining which 
changes are important, affecting every replicate earth, and 

which are replicate-specific. The possibility of bifurcations 
in the distribution of possible states would clearly compli-
cate this viewpoint.

The results shown in Figs. 5 and 6 highlight a striking 
difference between the truth plus error and replicate earth 
paradigms. Under the truth plus error paradigm we expect 
the observations to be the centre of the model distribution. 
With this understanding, we should expect the model error 
to be randomly distributed around the observations, and 
hence expect a set of independent models to have a mean 
error correlation of zero.

In contrast, under the indistinguishable paradigm we 
expect that the observations are similar to model simula-
tions, as both are drawn from the same distribution. Under 
the replicate earth paradigm, the same is true, but only if 
the model simulations adequately represent replicate earths. 
In both cases, “model errors” are actually a linear combina-
tion of two samples (the model, minus the observations), 
and some of the variance between a pair of model errors 
is contributed by the observations. Thus, if the models and 
observations are independently drawn from the same dis-
tribution, as in the indistinguishable paradigm, or are true 
replicate earths, then the expected correlation between 
error pairs is actually 0.5 (Annan and Hargreaves 2010; 
Bishop and Abramowitz 2013).

Under the replicate earth paradigm, if the models and 
observations are not drawn from the same distribution—for 
example, if the models’ distribution has less variance—
then the observations contribute more variance to the lin-
ear combination, and we should expect higher error cor-
relations. Likewise, if the models’ spread is higher than 
the observations, we should expect error correlations to be 
lower.

Figure 5 shows that the truth plus error paradigm would 
be hard to justify with any of these ensembles. The results 
for the initial conditions ensemble would be hard to sup-
port even under the indistinguishable paradigm, where we 
would always expect 0.5 error correlation, assuming the 
sample is long enough. The perturbed parameters ensem-
ble error correlations also clearly indicate a problem with 
the truth-plus-error paradigm, although they do not indi-
cate a clear distinction between the indistinguishable and 
the replicate earth paradigms. But under the replicate earth 
paradigm, if models are not replicate earth-like, we actu-
ally expect the error correlations to vary depending on 
the variance in the observations relative to the variance in 

Table 1  List of CMIP model simulations used in this study

Simulation numbers correspond to the rows and columns of Fig. 6. 
More details of the modelling institutions are available at http://cmip.
llnl.gov/cmip5/availability.html

Simulation Model Institution

1 ACCESS1.0 CSIRO-BOM

2 ACCESS1.3

3–5 bcc-csm1.1 BCC

6 BNU-ESM GCESS

7–16 CanCM4 CCCma

17–20 CanESM2

21–26 CCSM4 NCAR

27 CESM1-BGC NSF-DOE-NCAR

28–30 CESM1-CAM5

31–33 CESM1-FASTCHEM

34–37 CESM1-WACCM

38–47 CNRM-CM5 CNRM-CERFACS

48–57 CSIRO-Mk3-6.0 CSIRO-QCCCE

58–61 FGOALS-g2 LASG-CESS

62–64 FGOALS-s2 LASG-IAP

65–67 FIO-ESM FIO

68–72 GFDL-CM3 NOAA GFDL

73–76 GFDL-ESM2G

77–80 GISS-E2-H NASA GISS

81–84 GISS-E2-R

85–88 HadCM3 MOHC

89–91 HadGEM2-CC

92–95 HadGEM2-ES

96 inmcm4 INM

97–100 IPSL-CM5A-LR IPSL

101 IPSL-CM5A-MR

102–104 MIROC-ESM MIROC

105 MIROC-ESM-CHEM

106–8 MIROC4h

109–111 MIROC5

112 MPI-ESM-LR MPI-M

113 MPI-ESM-P

114–118 MRI-CGCM3 MRI

119–121 NorESM1-M NCC

122 NorESM1-ME

Table 2  RMSE values for the means of each ensemble, relative to the observations for the entire period (1971–2010, 1971–2004 for CMIP5)

Initial conditions Perturbed parameters Perturbed structure CMIP5

Unweighted 2.050 2.205 2.577 1.672

Performance weighted 2.050 2.170 2.183 1.666

Independence weighted 2.049 2.127 2.056 1.620

http://cmip.llnl.gov/cmip5/availability.html
http://cmip.llnl.gov/cmip5/availability.html
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the models, and due to the very small spread of the initial 
conditions ensemble, a mean pair-wise error correlation of 
0.79 seems entirely understandable.

We also reiterate that we only have one true sample of 
the CPDF— the underlying distribution of probable earth 
states over time, given known boundary conditions—with 
which to estimate what the entire CPDF looks like. Hence 
it is difficult to categorically state the extent to which any of 
these ensembles truly represent the CPDF. We cannot know 
for certain that our observations are not a stark outlier—
that most other replicate earths would not be quite different 
(effectively suggesting that our observational record is too 
short). If they are, then our CPDF estimates will clearly be 
biased. The results in Table 3 do, however, go some way to 
allaying this concern.

Finally, as the process has been described in Bishop and 
Abramowitz (2013), this weighting approach is limited to 
one variable at a time. While in one sense, separate applica-
tions to temperature and precipitation may lead to physi-
cally inconsistent best estimates, neither the CPDF mean 
or the unweighted ensemble mean are true climate realisa-
tions to begin with, so this is less of an issue than it may 
seem. We note that Abramowitz and Bishop (2014) show 
an application of the approach to precipitation, and that 
Potempski and Galmarini (2009) may offer an approach to 
allow weighting several variables at once.

5  Conclusions

We have shown that different weighting methodologies 
have significantly different effects on the four ensembles 
we considered. In particular, although means generally 
improve under performance-based weighting, we have 
shown that variance may not improve, and may in fact 
worsen. There remains the possibility that this result is par-
ticular to error variance-based performance weighting, and 
may be quite different for other cost functions, but without 
evidence it seems unlikely.

In contrast, independence-based weighting signifi-
cantly improves both the ensemble mean and variance. 
The improvement to the ensemble mean is notably bet-
ter than that under performance weighting, and the 

improvement to the variance is both better and far more 
consistent across different ensembles. This suggests that 
independence weighting could provide large gains in 
projection accuracy, including estimates of uncertainty, 
which, by reducing uncertainty around actions needed to 
avert the worst of climate change, could be of consider-
able benefit.

Finally, more work clearly needs to be done in testing 
the efficacy of this process using different variables, reso-
lutions and observationally-based products. In particu-
lar, it would be useful to conduct similar experimentation 
using different cost functions as the basis for the depend-
ence measure. Nevertheless, the significant gains appar-
ent across the range of ensembles shown here suggest that 
post processing can yield considerably improved ensemble 
mean and variance estimates.
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