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Debate about initial human migration across the immense area of
East Polynesia has focused upon seafaring technology, both of
navigation and canoe capabilities, while temporal variation in
sailing conditions, notably through climate change, has received
less attention. One model of Polynesian voyaging observes that as
tradewind easterlies are currently dominant in the central Pacific,
prehistoric colonization canoes voyaging eastward to and through
central East Polynesia (CEP: Society, Tuamotu, Marquesas, Gambier,
Southern Cook, and Austral Islands) and to Easter Island probably
had a windward capacity. Similar arguments have been applied to
voyaging from CEP to New Zealand against prevailing westerlies.
An alternative view is that migration required reliable off-wind
sailing routes. We investigate the marine climate and potential
voyaging routes during the Medieval Climate Anomaly (MCA), A.D.
800–1300, when the initial colonization of CEP and New Zealand
occurred. Paleoclimate data assimilation is used to reconstruct Pa-
cific sea level pressure and wind field patterns at bidecadal resolu-
tion during the MCA. We argue here that changing wind field
patterns associated with the MCA provided conditions in which
voyaging to and from the most isolated East Polynesian islands,
New Zealand, and Easter Island was readily possible by off-wind
sailing. The intensification and poleward expansion of the Pacific
subtropical anticyclone culminating in A.D. 1140–1260 opened an
anomalous climate window for off-wind sailing routes to New Zea-
land from the Southern Austral Islands, the Southern Cook Islands,
and Tonga/Fiji Islands.
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Archaeological, paleoenvironmental, and linguistic evidence
of colonization in East Polynesia suggests that central East

Polynesia (CEP) (Fig. 1) was colonized from Samoa about A.D.
1025–1120 and the marginal archipelagos, Hawaii, Easter Island,
and New Zealand, about A.D. 1190–1290, with New Zealand
reached from the Southern Cook or Austral Islands and Easter
Island through the Gambier Islands (1, 2). On other analytical
assumptions, the ages could be a century or so earlier (3). It is
argued that long-distance voyaging later declined and had ef-
fectively ceased by A.D. 1500 (4, 5). One view is that colonization
voyaging involved some capacity to sail to windward, assuming
that modern climate patterns dominated the voyaging period
(4, 6–8). This, together with the view that short-lived tradewind
reversals associated with seasonal westerlies or El Niño events
may have assisted voyaging, is reflected in the actual and simu-
lated operation of experimental East Polynesian sailing canoes
(4, 6–9). However, comparative analysis of the earliest historical
observations and linguistic data suggests that, before contact with
lateen-sail technology in West Polynesia, after about A.D. 1500,
East Polynesian double canoes had no fixed mast and were re-
stricted substantially to passages in the off-wind sector (10–12).
The advantage of off-wind passages, if they are available, is

that broad-reaching (taking the wind on either quarter) or sailing
downwind avoids the mechanical stresses of beating upwind and
the necessity, by tacking, of having to sail up to four times the
distance to reach the same objective (6, 9). Short eastward pas-
sages were possible in seasonal westerlies and long-distance

passages off-wind could have occurred when westerly winds un-
der very strong El Niño conditions created extensive subtropical
tradewind reversals, but these were probably brief episodes and
quite unpredictable (5, 7, 13–15). While the drivers of Polynesian
migration are not known, any intentional or systematic sailing
involved in colonization voyaging, whether by vessels with only
a downwind capacity or those with greater capability, would have
benefited from multidecadal-scale shifts to favorably fair winds.
Such conditions occur for sailing into the extratropics when
tropical and subpolar air masses, traveling as high-pressure sys-
tems, migrated poleward from their mean climate position in the
subtropics (the location of highest subtropical pressure is along the
Subtropical Ridge, STR), weakening the prevailing zonal west-
erlies in favor of meridional winds (16). Modern reenactments of
Polynesian voyages (4, 6) show downwind sailing into the extra-
tropical southwest Pacific is possible when northeast tradewinds
replace seasonal westerlies in austral winter and spring.
Sea level pressure anomalies (SLPa) over the subtropical to

extratropical Southern Hemisphere have been reconstructed re-
cently for multidecadal time periods during the Medieval Climate
Anomaly (MCA) (17). The MCA comprises two climate regimes,
A.D. 800–1100 and A.D. 1100–1300, each with differently anom-
alous austral winter and spring seasonal climates compared with
the modern climate.
The bidecadal to centennial climate shifts in the Pacific region

during the MCA can be described in terms of the latitudinal
extent of the tropics and the mean state of the Pacific Ocean
region with respect to the persistence or frequency of either
phase of the El Niño−Southern Oscillation (ENSO). Shifts in
mean climate state result from a change in the timing and fre-
quency of persistent seasonal summer−winter weather patterns,
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and storm frequency. For example, a shift to more El Niño-like
(La Niña-like) climate involves a higher frequency of westerly
(southeasterly) winds in the Southern Hemisphere tropics and,
on a decadal scale, represents the occurrence of multiyear El
Niño (La Niña) events, as seen in recent decades 1980–2000
(1950–1970). Similarly, a poleward expansion (equatorward con-
traction) of the tropics results in more (less) frequent, quasi-
stationary anticyclones in the subtropics, and more (less) north–
south (west–east) winds in the southwest Pacific.
During A.D. 800–900 and A.D. 1000–1100, the centennial mean

climate pattern resembles a shift to the Central Pacific (Modoki)
El Niño pattern, with southwesterly wind fields over New Zealand,
and anomalous westerly wind fields (trade wind reversals) over the
Central Pacific, combined with a poleward tropics (17). The Pa-
cific region during the intervening A.D. 900–1000 period was
dominated by the El Niño pattern and equatorward tropics, where
the westerly wind field anomalies are located in the western to
central Pacific. From A.D. 1000-1300, the Pacific tradewinds were
strengthened generally by the poleward expansion of the tropics
and the related, persistent subtropical anticyclones, firstly located
over eastern and southern Australia and the Tasman Sea before
A.D. 1100, then later over New Zealand and eastward post-A.D.
1140 (17). During A.D. 1140–1260, the Pacific was dominated by
a shift in mean climate to the Central Pacific (Modoki) La Niña
pattern, together with an intensification and poleward expansion
of the subtropical anticyclone (17). The post-A.D. 1140 patterns
impact the CEP via cool sea surface temperatures (SSTs) and
drought in the tropical central Pacific, and bifurcation of trade-
winds and surface currents in the vicinity of the Austral and
Tuamotu Islands (18). Hence, the poleward expansion of the
tropics during the MCA opened an anomalous climate window for
off-wind sailing routes to the southwest Pacific extratropics, pri-
marily New Zealand.
Our previous climate reconstructions (17) indicate that after A.D.

1300, no other multidecadal-scale climate windows occurred for
reliable off-wind sailing between the subtropics and the southwest

extratropics except for a brief period in the mid-1400s. The return
to zonal midlatitude westerlies and subtropical easterly trades
largely eliminated the climate windows for off-wind sailing on the
routes at issue as a more persistent El Niño-like climate and
equatorward subtropics dominated the South Pacific ∼A.D. 1300
to ∼A.D. 1600 (19−23).
These climate windows were investigated at bidecadal resolu-

tion in this study, using the paleoclimate proxy-data-assimilation
approach (17) to reconstruct in additional detail the sea level
pressure and surface wind field anomalies (with respect to the
long-term mean climate for the A.D. 1300–2010 period). The
reconstructions were determined for each running, 20-y window
between A.D. 800 and A.D. 1600, spanning the austral winter
(June, July, August) and spring (September, October, November)
seasons (Materials and Methods and SI Appendix). The data as-
similation approach preserves modeled intervariable relationships;
therefore both sea level pressure and wind field reconstructions
are dynamically consistent. To discuss potential canoe voyaging
routes in more detail, we produced an envelope of surface wind
directions at each grid point in the reconstruction to identify the
off-wind sailing vector (directly downwind plus a margin of ±30° to
allow for broad-reaching). We examined the significant surface
wind anomalies for each 20-y window and plotted potential sailing
routes from the central and southeast Pacific that would have
resulted in landfalls in either New Zealand or Easter Island.
Several assumptions are made in the bidecadal climate re-

construction (see Materials and Methods and SI Appendix) that
result in the following uncertainties, such as: proxy dating un-
certainty, isolation of the proxy climate signal from nonclimatic
noise, the limited spatial distribution of available proxy data, cli-
mate model limitations, and the assimilation algorithm. We have
minimized dating uncertainties by resolving a bidecadal temporal
resolution that is within estimated dating uncertainties for the
included proxy data. Climate signal to noise uncertainties are
minimized by evaluating proxy signal strength at each time step
and including only proxies that display an unambiguous signal.
The reconstructions are partly constrained by the geographic
density of available proxy data for each window, in that the greater
density allows for more redundancies in regional-scale recon-
struction. The spatial distribution of proxy data is shown in
SI Appendix, Fig. S1. The greater density of proxy data reduces
any uncertainties in the bidecadal climate signal as a result of any
inherent chronological data ambiguities or age range for each
paleoclimate proxy. Hence, in this study, the greater density of
paleoclimate data post-A.D. 1100 (SI Appendix, Fig. S2) affords
greater certainty in the reconstruction of the regional synoptic
climatology than before A.D. 1100.

Results and Discussion
The earliest MCA climate windows for off-wind sailing from the
CEP to Easter Island occurred with persistent westerly wind
anomalies during A.D. 800–820, A.D. 830–910, A.D. 1010–1030,
A.D. 1040–1060, and A.D. 1080–1100 (SI Appendix, Fig. S5 A and
B), with the latter dates coincident with initial CEP colonization
(2). The wind fields from A.D. 830–850 and A.D. 860–890 show
strong southeast to east sailing routes from Samoa to Easter
Island, via the Gambier Islands or Austral Islands groups. Easter
Island sailing routes originating in the Gambiers around A.D.
1250 and particularly from the Australs A.D. 1250–1280 were also
afforded by westerly winds (SI Appendix, Fig. S5C). Both of these
island groups are likely points of origin for passages to Easter
Island, and both have colonization estimates (Rapa Island in the
Southern Australs A.D. 1100–1200; Gambiers 1108–1275) con-
temporaneous with those for Easter Island (A.D. 1200–1253)
(1, 2, 24). Nevertheless, voyaging at A.D. 800–900 cannot be
discounted. It is interesting to note that the wind field recon-
struction post-A.D. 1080 (Fig. 2A) seems to favor a migration origin
in the Australs (latitude 25°S–27°S) over the commonly hypothe-
sized route from the Gambiers (latitude 23°S). This supports a
previous hypothesis that Polynesians voyaging eastward may have
sailed in the ∼28°S band that experiences a seasonal transition
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between southeast trades and westerlies in modern climate (9). The
Australs to Easter Island route was also open: A.D. 1290–1440,
A.D. 1500–1540, A.D. 1550–1570, and A.D. 1590–1610 (SI Appendix,
Fig. S5D). These latter voyaging windows resulted from a contrac-
tion of the tropics and subtropics, and an equatorward shift in the
westerlies, that occurred in association with a shift in mean climate
state toward persistent El Niño conditions (19–23).
Return voyaging from Easter Island to CEP was possible when

a climate shift restored easterly and northeasterly wind anoma-
lies in the subtropical central Pacific at A.D. 1090–1120 and A.D.
1200–1250 (SI Appendix, Fig. S5 B and C). A strong anticyclonic
wind field associated with easterly migration of the subtropical
anticyclone to the east of New Zealand and a strengthened STR
farther eastward provided reliable tradewinds and opened off-
wind sailing routes for return voyaging from Easter Island to
CEP. The wind fields in A.D. 1110–1130, A.D. 1200–1220, and
A.D. 1230–1250 (SI Appendix, Fig. S5 B and C) show strength-
ened tradewinds between Easter Island and the Austral Islands,
producing an off-wind route to the southern Australs. This east−west
sailing route could have been readily navigated using latitudinal
star path methods.
An alternative or additional hypothesis for settlement on

Easter Island is voyaging by Amerindians from South America.
Our reconstruction indicates off-wind sailing routes to Easter
Island from Central and Northern Chile in A.D. 910–930, A.D.
930–950 (SI Appendix, Fig. S5A) and A.D. 1140–1170 (Fig. 2B), and
A.D. 1220–1260 (Fig. 3 A and B). These follow the equatorward

limb of the east Pacific Subtropical Anticyclone, in the Humboldt
Current, angling northwest about 30°S, then westward toward
Easter Island. Potential return routes to Chile were open A.D.
1260–1290, closing with strengthened southward flow around
A.D. 1300 (Fig. 3C and SI Appendix, Fig. S5 C and D).
New Zealand sailing routes were possible as early as A.D.

910–970 (SI Appendix, Fig. S5A) and from A.D. 1140–1260 (Figs.
2B and 3B), when intensification of the subtropical anticyclone
opened an anomalous climate window for off-wind sailing routes
to the southwest Pacific extratropics. This climate pattern pro-
duced three potential routes to the New Zealand region: from
the Southern Australs, the Southern Cooks, and Tonga/Fiji.
Eventual New Zealand landfall on routes from the Southern
Australs and the Southern Cooks was assisted by the Coriolis
Effect in the Southern Hemisphere, which deflects the surface
ocean current to the left (southwestward) of the subtropical sur-
face wind field.
In A.D. 940–970 and between A.D. 1170–1230, potential

sailing routes from the subtropical Pacific to New Zealand
originated in Tonga and Fiji, and possibly even Vanuatu or New
Caledonia. During A.D. 1170–1210 (A.D. 1170−1190 shown in
Fig. 2C), off-wind sailing routes from Tonga take a southerly
track before encountering northeasterly winds, around 35°S, that
focus possible landfalls along the east coast of the South Island
and southward to the subantarctic Auckland Islands. Early set-
tlement in the latter group [A.D. 1190–1258, (2, 25)] might have
profited from the existence of northerly or northeasterly winds,
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Fig. 2. Reconstructed bidecadal mean sea level
pressure (black lines), sea level pressure anomalies
(color, hectopascals), and the associated wind field
anomaly vectors (gray) for the periods (A) A.D. 1080–
1100, (B) A.D. 1140–1160, and (C) A.D. 1170–1190.
Also shown, for each wind direction vector, is the
±30° limit of off-wind sailing vectors (solid black)
for Polynesian canoe voyaging (after Fig. 1). The
length of the wind anomaly and associated off-wind
sailing vectors depict the relative difference in wind
speed across the Pacific and are proportional to the
reconstructed atmospheric pressure gradients. The
potential downwind voyaging routes for each cli-
mate window are denoted by the large gray arrows.
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which transport warm subtropical air masses to the subantarctic.
The STR was located around 47°S at A.D. 1170–1210, its most
southerly position during the MCA (17). This anomaly de-
teriorated after A.D. 1240 and disappeared after A.D. 1270
when austral winter−spring westerlies were restored over the
Auckland Islands.
The earliest climate window for voyaging to New Zealand from

the southern Australs is in A.D. 910–930 until A.D. 940–960,
which predates archaeological estimates of Austral Islands colo-
nization. This downwind route between the Southern Australs and
New Zealand was also open in A.D. 1140–1170 (A.D. 1140−1160
shown in Fig. 2B), and A.D. 1200–1240 (A.D. 1220–1240 shown in
Fig. 3A); these periods span modern archaeological estimates of
colonization age (2, 3, 13). Canoes that sailed west in the 27°S to
30°S latitudinal band could have become caught in the strong east-
northeasterlies produced by the intensified subtropical anticyclone
over the southwest Pacific.
A downwind route existed between the Southern Cook Islands

and New Zealand at A.D. 940–960 (SI Appendix, Fig. S5A) and
from A.D. 1140–1160, A.D. 1210–1230, and particularly A.D.
1240–1260 (Figs. 2B and 3B), with persistent easterly tradewinds
over the Southern Cooks, becoming northeasterly near the date-
line. Most sailing routes from possible southern Cook or Austral
origins focus landfall possibilities on the northeast coast of the

North Island of New Zealand, consistent with Maori traditions
about colonization canoe landfalls.
Return voyaging from New Zealand to CEP required south-

westerlies to the Southern Cooks and westerlies in the ∼30°S
latitudes to the Southern Australs. These conditions occurred in
A.D. 960–990 but became prevalent from the mid-1200s. Return
voyaging to the Southern Cooks is constrained to A.D. 1280–
1300, while return voyaging to the Southern Australs has a longer
window from A.D. 1250–1270 and post-1300 (Fig. 3C), until the
early 1600s. These periods were interspersed with a potential
window, A.D. 1270–1290 for voyaging back to New Zealand from
the Australs. Hence, opportunities for three-way voyaging on
a bidecadal scale occurred briefly due to an equatorward shift in
the STR and the seasonal persistence of traveling anticyclones.
Our wind field reconstructions indicate that no other bidecadal-

scale climate windows for reliable off-wind sailing between the
subtropics and the southwest Pacific extratropics existed post-A.D.
1260 (except for a period, A.D. 1440–1460, SI Appendix, Fig.
S5D), as El Niño-like conditions prevailed up to ∼A.D. 1600 (19
−23), and more zonal midlatitude westerlies and subtropical
easterly trades were restored (SI Appendix, Fig. S5D). This does
not preclude individual years from presenting favorable seasonal-
scale wind fields for downwind sailing between the subtropical
Pacific and New Zealand, but it does emphasize that these con-
ditions would not be normal, or reliable across generations.
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Hence, our wind field reconstructions are consistent with the ar-
chaeological evidence that long-distance voyaging to New Zealand
either ceased or was rare after A.D. 1300.
In summary, there were multidecadal climate windows for off-

wind voyaging during the MCA, (Fig. 4) from: (i) CEP to Easter
Island between A.D. 800 and A.D. 900, A.D. 1000 and A.D.
1100, and during A.D. 1250–1280; (ii) the eastern margins of far
East Polynesia (including Easter Island), in a northwestward
direction, particularly A.D. 1140–1160, and A.D. 1180–1250; and
(iii) CEP to New Zealand in A.D. 910–960 and A.D. 1140–1260.
The A.D. 1100–1300 windows are all consistent with current
archaeological and related evidence. Additional windows be-
tween Tonga/Fiji and New Zealand during A.D. 940–970 and
A.D. 1170–1230 provide potential for investigating cultural con-
nections otherwise generally discounted. Our data also show that
return voyaging was periodically possible by off-wind sailing in
each direction, and we document a wider range of off-wind
voyaging opportunities than those currently envisaged, including
between the Australs and Easter Island, between Fiji or Tonga
and New Zealand, and between Easter Island and extratrop-
ical Chile.
Our reconstructed sailing conditions during the period of East

Polynesian colonization would have enabled all of the known
colonizing routes, and others, to have been negotiated at times
proposed archaeologically by canoes lacking an upwind capability.
We do not assert that this ability was absent, although it may have
been (10–12). Our point is that the climatic evidence suggests that
an upwind capability was not necessary for exploration and colo-
nization of the remote East Polynesian islands during the periods
attested archaeologically. In addition, an absence of effective
upwind capability might have been significant in the decline of
long-distance voyaging in East Polynesia once the sailing windows

discussed here had closed. Furthermore, societal response to
drought in CEP associated with the Modoki La Niña pattern may
have been influential in decisions to migrate, as disputes about
land and garden produce figure prominently in tradition as the
particular cause of migrations from CEP to the outlying archi-
pelagos (26). Our results suggest that current models of Polyne-
sian maritime technology during the MCA (27, 28) and simulated
and experimental voyaging need to be reconsidered. We conclude
that climate change provided ample opportunity for Polynesian
migration by off-wind sailing during the Late Holocene.

Materials and Methods
Methods. Mean sea level pressure (SLP) and wind fields for the South Pacific
basin have been reconstructed at 20-y resolution from A.D. 800–1600 using
an established and previously described (17) paleoclimate data assimilation
approach. Our approach to data assimilation builds on other previous
methods (23, 29) by using the combined signal from a multivariate proxy
data network to select climate state analogs from an existing ensemble. This
section describes the standardization of proxy and model data, analog se-
lection, and calculation of reconstructed SLP and wind fields. The SI Ap-
pendix contains: the proxy network (SI Appendix, Fig. S1 and Table S1), the
results of a pseudoproxy methodological evaluation (SI Appendix, Fig. S3),
the proxy signal used to reconstruct each time period in Figs. 2 and 3 and
SI Appendix, Fig. S4, and the bidecadal time period reconstructions referred
to in Results and Discussion from A.D. 800–1600 (SI Appendix, Fig. S5 A−D).

Proxy Records. The multivariate proxy dataset includes individual proxy
records, reconstructions, and published regional multiproxy reconstructions
(SI Appendix, Fig. S1 and Table S1). Before assimilation, all annually resolved
proxy data were resampled to decadal values, decadally resolved data were
used without resampling, and discrete proxy climate data were binned to
decadal values. To facilitate the intercomparison of proxy data representing
different variables, all decadal data were normalized relative to the A.D.
1300–2000 long-term mean. The mean climate signal for each proxy was
calculated for each discrete 20-y time period. In acknowledgment of the
high signal-to-noise ratio associated with proxy data, each 20-y period was
reconstructed using only proxies displaying an unambiguous climatic signal
(SI Appendix, Fig. S4), defined as the 20-y mean exceeding ±0.5 SD. The
normalized values for each retained proxy were combined into a vector
(P) for each 20-y time period (SI Appendix, Fig. S4).

Model and Simulation Setup. The model simulation used in this study is
a 10,000-y Holocene control simulation from the Commonwealth Scientific
and Industrial Research Organization (CSIRO) Mk3L climate system model
version 1.2. The Mk3L model is a fully coupled reduced-resolution global
atmosphere–land−sea ice−ocean general circulation model designed spe-
cifically for millennial-scale climate simulations (30). The atmospheric
component of Mk3L is a computationally efficient version of the atmo-
spheric component of the Mk3 model used in World Climate Research
Programme Coupled Model Intercomparison Project Phase 3 (WCRP-CMIP3)
and the Intergovernmental Panel on Climate Change Fourth Assessment
Report (30, 31). The model incorporates a 5.6 × 3.2 degree atmosphere with
18 vertical levels and a 2.8 × 1.6 degree ocean with 21 vertical levels; a more
detailed description can be found in ref. 30. The model simulates a modern-
day climate reasonably well, including a realistic ENSO, albeit with some
biases outlined in ref. 32. The Mk3L also produces a realistic simulation of
the amplitude and spatial characteristics of the high-latitude modes, the
Southern Annular Mode, and Pacific South American Modes 1 and 2 (17).
The 10,000-y simulation used in this study is an unforced control simulation
of Holocene climate with constant boundary conditions: CO2 set to 280
ppm, solar irradiance set to 1365 W m−2, and A.D. 1950 orbital parameters.
An additional model simulation, an A.D. 800–2000 Mk3L transient simula-
tion forced with reconstructed solar (33), volcanic (34) and CO2 (35), is used
as the target climate for a pseudoproxy evaluation (SI Appendix, Fig. S3). To
assimilate model and proxy data, both must be in a standardized format.
The model data are therefore represented by an array of normalized an-
nual mean timeseries (S) derived from the same variables and locations as
the proxy records in P. To account for seasonality, annual means were
calculated from the seasons of proxy sensitivity.

Paleoclimate Data Assimilation. The paleoclimate data assimilation approach
uses the combined signals from multiple proxy records to select climate state
analogs from the model simulation (23, 29). Each model time step represents
a dynamically consistent multivariate realization of the climate system that is
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a potential analog for a paleoclimate state. In this sense, each model time
step can be considered to be an individual ensemble member, giving an
effective ensemble size of 10,000. Individual ensemble members analogous
to the proxy inferred climate states for each 20-y period were identified by
calculating the Euclidean distance between the normalized proxy data
(P) and the normalized model data (S1-n) as shown in Eq. 1:

Dn =
X

jPi − Sni j: [1]

P is a vector (width = i) of normalized proxy values that succinctly describes
the climate state for a given multidecadal time period. S is an array of
timeseries (width = i and length = n) derived from the modeled climate at
the equivalent geographic locations and climate variables as the elements
of P. Each column of S1-i corresponds to each element of P1-i, and each row
of S1-n represents one model ensemble member (one modeled year). Dn is
the Euclidean distance between P and each ensemble member (n). Values
of Dn = 0 indicate a perfect analog, while high values indicate dissimilarity.
The best matching analog (BMA) ensemble members are the minima of
D1-n: The mean of the 50 BMA is used to define the climate state for the
time period of interest. Any modeled variable can be resolved by compos-
iting the 50 BMA ensemble mean; however, only modeled variables with
a mechanistic relationship to the proxy dataset should be interpreted with
confidence. The reconstructions presented here show the SLP and SLPa
fields, with wind fields superimposed. Wind strength and directions were
calculated from the ensemble means of the modeled U (east–west) and V
(north–south) components at the 1,000-hPa level. Anomalies are calculated
relative to the full 10,000-y simulation and therefore represent deviations
from the modeled Holocene climate and are not directly representative of
deviations from the climate of the Common Era. Spatial field reconstructions
for time periods referred to in Results and Discussion are shown in SI
Appendix, Fig. S5 A−D.

Evaluation. Methodological evaluation using pseudoproxy data show that the
approach should accurately reconstruct SLP fields for most of the South Pacific
Basin and Southern Ocean (see SI Appendix, Fig. S4). In the pseudoproxy ex-
periment, a model simulation of the real climate is “reconstructed” using
a synthetic proxy network; because the climate state to be reconstructed is
already known, the skill of the reconstruction approach can be tested (after
refs. 36 and 37). The known climate is an A.D. 800–2000 Mk3L simulation
forced with reconstructed solar (33), volcanic (34), and CO2 (35) conditions.
Pseudoproxies were derived from the model simulation using the same vari-
ables and locations as the proxy network listed in SI Appendix, Table S1. A
signal-to-noise ratio of 0.33 was added to each pseudoproxy to simulate real-
world uncertainty (after ref. 38). The 1,200-y model simulation was then
reconstructed at 20-y resolution using the multivariate data assimilation ap-
proach to select climate state analogs from the unforced 10,000-y simulation
(see Methods) based only on the climate signals from the pseudoproxy net-
work. SI Appendix, Fig. S3 shows grid point correlations between modeled and
reconstructed SLP over 1,200 model years at 20-y resolution; it provides an
indication of the skill of the reconstruction approach given the current proxy
network (SI Appendix, Fig. S1 and Table S1). Positive correlations show in-
creased reconstruction skill, while lower values indicate reduced skill. The ac-
tual SLP and wind field reconstruction, based on real proxy data, should be
interpreted with the highest confidence in the regions indicated by significant
positive correlations. The reconstruction attains higher levels of significance
for periods of higher available proxy data geographic density.
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Figure S2: Illustration of the number of individual proxies used during each bi-decadal 
time period. Only proxies displaying an unambiguous climatic signal, defined as a 20-year 
normalised anomaly exceeding +/- 0.5 standard deviations (relative to the AD 1300-2000 long 
term mean) were included in the reconstruction for each bi-decadal period
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Figure S4: Proxy vectors (P) showing included proxies and climate signals for each of the 
six bi-decadal time periods shown in Fig. 2 and Fig. 3 (main document). The climate signal is 
defined as the normalised 20-year mean and corresponding ordinal classification. Proxy names 
are necessarily abbreviated—numbers correspond to individual proxy records listed in 
SI Appendix, Table S1 and mapped in SI Appendix, Fig. S1.



1020

1020

1016

1016
1016

1016
10

16

1016

1016

101210121012

1012

1012 1012

100810081008
1004

10041004

1000
 

 
Samoa

Society Is
Sth Cook Is

Easter Is

New Zealand

Auckland Is

Nth Austral Is

Sth Austral Is

Gambier IsTonga

Fiji

Chile

Tuamotu Is
 AD 800 to 820   AD 800 to 820  

 160ο E  180ο W  160ο W  140ο W  120ο W  100ο W   80ο W 

 40ο S 

 20ο S 

1020

1020

10201016 1016

1016 1016

1016
10161016

101210121012

1012

1012 10
12

1008
10081008 1004

10041004
10001000 996 

 
Samoa

Society Is
Sth Cook Is

Easter Is

New Zealand

Auckland Is

Nth Austral Is

Sth Austral Is

Gambier IsTonga

Fiji

Chile

Tuamotu Is
 AD 820 to 840  

 160ο E  180ο W  160ο W  140ο W  120ο W  100ο W   80ο W 

 40ο S 

 20ο S 

1020

1020

1016
1016

1016

1016

10
16

1016

1016

101210121012

1012

1012 10
12

1008
10081008 1004

1004
1004

1000
 

 
Samoa

Society Is
Sth Cook Is

Easter Is

New Zealand

Auckland Is

Nth Austral Is

Sth Austral Is

Gambier IsTonga

Fiji

Chile

Tuamotu Is
 AD 830 to 850   AD 830 to 850  

 160ο E  180ο W  160ο W  140ο W  120ο W  100ο W   80ο W 

 40ο S 

 20ο S 

1020

1020

1016
1016

1016

1016

10
16

1016

1016

10121012
1012

1012

1012 10
12

10081008
1008

1004
10041004

1000 

 
Samoa

Society Is
Sth Cook Is

Easter Is

New Zealand

Auckland Is

Nth Austral Is

Sth Austral Is

Gambier IsTonga

Fiji

Chile

Tuamotu Is
 AD 860 to 880  

 160ο E  180ο W  160ο W  140ο W  120ο W  100ο W   80ο W 

 40ο S 

 20ο S 

1020

1020

10
16

1016

1016

1016

1016

101610161016

101210121012

1012

1012
10

12

1008
10081008 1004

1004
1004

10001000 996 

 
Samoa

Society Is
Sth Cook Is

Easter Is

New Zealand

Auckland Is

Nth Austral Is

Sth Austral Is

Gambier IsTonga

Fiji

Chile

Tuamotu Is
 AD 910 to 930   AD 910 to 930  

 160ο E  180ο W  160ο W  140ο W  120ο W  100ο W   80ο W 

 40ο S 

 20ο S 

1020

1020

1020

10
16

1016

1016

1016

1016

101610161016

101210121012

1012

1012 10
12

1008
10081008 1004
10041004 1000

1000
1000 996 

 
Samoa

Society Is
Sth Cook Is

Easter Is

New Zealand

Auckland Is

Nth Austral Is

Sth Austral Is

Gambier IsTonga

Fiji

Chile

Tuamotu Is
 AD 930 to 950   AD 930 to 950  

 160ο E  180ο W  160ο W  140ο W  120ο W  100ο W   80ο W 

 40ο S 

 20ο S 

1020

1020

1020

10
16

1016

1016

1016

1016

101610161016

10121012
1012

1012

1012 1012

100810081008 1004
10041004 1000

1000
1000 

 
Samoa

Society Is
Sth Cook Is

Easter Is

New Zealand

Auckland Is

Nth Austral Is

Sth Austral Is

Gambier IsTonga

Fiji

Chile

Tuamotu Is
 AD 940 to 960  

 160ο E  180ο W  160ο W  140ο W  120ο W  100ο W   80ο W 

 40ο S 

 20ο S 

1020

1020

10
16

1016
1016

1016

1016

101610161016

101210121012

1012

1012
1012

100810081008
1004

10041004

10001000
 

 
Samoa

Society Is
Sth Cook Is

Easter Is

New Zealand

Auckland Is

Nth Austral Is

Sth Austral Is

Gambier IsTonga

Fiji

Chile

Tuamotu Is
 AD 960 to 980  

 160ο E  180ο W  160ο W  140ο W  120ο W  100ο W   80ο W 

 40ο S 

 20ο S 

1
0
2
0

1
0
2
0

1016
1016

1016

1016

101
6

1016

1
0
1
6

10121012
1012

1
0
1
2

1012 10
12

1008
1008

1008
1004

1004

1004
10001000

 

 

Samoa
Society Is
Sth Cook Is

Easter Is

New Zealand

Auckland Is

Nth Austral Is

Sth Austral Is

Gambier IsTonga

Fiji

Chile

Tuamotu Is

1170 to 1190 1170 to 1190 1170 to 1190 

 160ο E  180ο W  160ο W  140ο W  120ο W  100ο W   80ο W 

 40ο S 

 20ο S 

−3 −2 −1 0 1 2 3

<-3 -2 -1 0 1 2 >3

1020

1020

1016
1016

1016

1016
10

16

1016

1016

101210121012

1012

1012 1012

100810081008
1004

10041004

1000 

 
Samoa

Society Is
Sth Cook Is

Easter Is

New Zealand

Auckland Is

Nth Austral Is

Sth Austral Is

Gambier IsTonga

Fiji

Chile

Tuamotu Is
 AD 880 to 900  

 160ο E  180ο W  160ο W  140ο W  120ο W  100ο W   80ο W 

 40ο S 

 20ο S 

1020

1020

10201016 1016

1016

1016

1016
10161016

101210121012

1012

1012 10
12

1008
10081008 1004

1004
1004

10001000 996 

 
Samoa

Society Is
Sth Cook Is

Easter Is

New Zealand

Auckland Is

Nth Austral Is

Sth Austral Is

Gambier IsTonga

Fiji

Chile

Tuamotu Is
 AD 980 to 1000  

 160ο E  180ο W  160ο W  140ο W  120ο W  100ο W   80ο W 

 40ο S 

 20ο S 

Figure S5a: Bi-decadal time period reconstructions. Each figure panel shows the reconstructed 
bi-decadal mean sea-level pressure (black lines), sea-level pressure anomalies (colour, hPa), and 
the associated wind field anomaly vectors (grey) for selected periods between AD 800 and 1000, 
as referred to in the main text. Also shown for each wind direction vector, is the ± 30° limit of 
off-wind sailing vectors (solid black) for Polynesian canoe voyaging (after Fig. 1, main document). 
The length of the wind anomaly and associated off-wind sailing vectors depicts the relative 
difference in wind speed across the Pacific and is proportional to the reconstructed atmospheric 
pressure gradients.
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Figure S5b: Bi-decadal time period reconstructions. As for SI Appendix, Fig. S5a, but for 
selected periods between AD 1010 and 1180.
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Figure S5c: Bi-decadal time period reconstructions. As for SI Appendix, Fig. S5a, but for 
selected periods between AD 1170 and 1280.
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Figure S5d: Bi-decadal time period reconstructions. As for SI Appendix, Fig. S5a, but for 
selected periods between AD 1270 and 1610.
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N
um

ber'
Location'

Proxy'
Proxy'type'

Clim
ate'Variable'

Latitude'(°)'
Longitude'(°)'

Region'
Reference'

1'
Lake'Verlorenvlei'

Sedim
ent'

M
icrofossil'Diatom

'
Precipitation'

D32'
19'

South'Africa'
1'

2'
M
akapansgat'Valley'

Speleothem
'

δ
18O

'
Precipitation'

D24'
28'

South'Africa'
2'

3'
Flores,'Indonesia'

Speleothem
'

δ
18O

'
Precipitation'

D8'
120'

Indian'O
cean'

3'
4'

Rarotonga,'Cook'Islands'
Coral'

Density'grow
th'

band'
Sea'Surface'
Tem

perature'
D21'

200'
South'Pacific'

4'

5'
Vanuatu'

Speleothem
'

δ
18O

'
Precipitation'

D18'
168'

South'Pacific'
5'

6'
G
reat'Barrier'Reef''

Coral'
δ
18O

'
Precipitation'

D18'
146'

Australia'
6'

7'
G
reat'Barrier'Reef'

Coral'
Sr/Ca'

Sea'Surface'
Tem

perature'
D18'

146'
Australia'

6'

8'
Lake'From

e,'South'Aust.'
Sedim

ent'
Paleo''lake'volum

e'
Precipitation'

D30'
139'

Australia'
7,8'

9'
Lake'Surprise,'Victoria'

Sedim
ent'

M
icrofossil'Diatom

'
Precipitation'

D38'
141'

Australia'
9'

10'
Coastal'N

ew
'South'

W
ales'

Sedim
ent'

Strandplain'dune'
geom

etry'
W
ave'Direction'

D33'
151'

Australia'
10'

11'
M
t'Read'Tasm

ania''
Tree'

Ring'w
idth'

Tem
perature'

D42'
145'

Australia'
11'

12'
N
ew

'Zealand'Regional'
M
ultiproxy'

M
ultiple'

Precipitation'
D44'

168'
N
ew

'Zealand'
12'

13'
N
Z'South'Island'

Sedim
ent'

G
lacial'M

oraine'
lim

it'
Precipitation'

D43.5'
170'

N
ew

'Zealand'
13'

14'
O
roko'Sw

am
p,'South'

Island'
Tree'

Ring'w
idth'

Tem
perature'

D43'
170'

N
ew

'Zealand'
14'

15'
N
Z'N

orth'Island'
Tree'

Ring'W
idth'

Sea'Level'Pressure'
D37'

175'
N
ew

'Zealand'
15'

16'
U
rew

era'N
orth'Is.'

Tree'
Ring'w

idth'
Tem

perature'
D38'

177'
N
ew

'Zealand'
16'

17'
South'Am

erica'Regional'
M
ultiproxy'

M
ultiple'

Precipitation'
D40'

287'
South'Am

erica'
17'

18'
South'Am

erica'Regional'
M
ultiproxy'

M
ultiple'

Tem
perature'''

D40'
287'

South'Am
erica'

18'
19'

Lago'G
uanaco,'Chile,''

Sedim
ent'

Carbonate'
Precipitation'

D52'
287'

South'Am
erica'

19'
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N
um

ber'
Location'

Proxy'
Proxy'type'

Clim
ate'Variable'

Latitude'(°)'
Longitude'(°)'

Region'
Reference'

20'
Laguna'Aculeo,'Chile'

Sedim
ent'

Pigm
ents'

Tem
perature'

D34'
288'

South'Am
erica'

20'
21'

South'O
rkney'Is'

Sedim
ent'

δ
18O

'
Tem

perature'
D60'

314'
South'Atlantic'

21'
22'

South'G
eorgia'Is'

Sedim
ent'

G
lacial'M

oraine'
lim

it'
Tem

perature'
D54'

324'
South'Atlantic'

22 

'
23'

Patagonia'Chile'and'
Argentina'

Tree'
Ring'w

idth'
Precipitation'

D41'
289'

South'Am
erica'

23'

24'
Droning'M

aude'Land'
Ice'Core'

δ
18O

'
Tem

perature'
D75'

0.5'
East'Antarctica'

24'
25'

Law
'Dom

e,'W
ilkes'Land'

Ice'Core'
Sodium

'(N
a)'

Sea'Level'Pressure'
D66'

112'
East'Antarctica'

25'
26'

Law
'Dom

e,'W
ilkes'Land'

Ice'Core'
δ
18O

'
Sea'Level'Pressure'

D66'
112'

East'Antarctica'
26'

27'
Victoria'Low

er'G
lacier,'

N
orthern'Victoria'Land'

Ice'Core'
δD''

Tem
perature'

D77'
166'

East'Antarctica'
27'

28'
Victoria'Low

er'G
lacier,''

N
orthern'Victoria'Land'

Ice'Core'
Iron'(Fe)'

Sea'Level'Pressure'
D77'

166'
East'Antarctica'

27'

29'
Victoria'Low

er'G
lacier,''

N
orthern'Victoria'Land'

Ice'Core'
Sodium

'(N
a)'

Sea'Level'Pressure'
D77'

166'
East'Antarctica'

27'

30'
Siple'Dom

e'
Ice'Core'

Sodium
'(N

a)'
Sea'Level'Pressure'

D81'
212'

W
est'Antarctica'

28'
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