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ABSTRACT 

 

Rapid environmental changes linked to human-induced increases in atmospheric 

greenhouse gas concentrations have been observed on a global scale over recent decades. Given 

the relative certainty of continued change across many earth systems, the information output from 

climate models is an essential resource for adaptation planning. But in the face of many known 

modeling deficiencies, how confident can we be in model projections of future climate? It stands 

to reason that a realistic simulation of the present climate is at least a necessary (but likely not 

sufficient) requirement for a model’s ability to realistically simulate the climate of the future. Here, 

I present the results of three studies that evaluate the 20th century performance of global climate 

models from phase 5 of the Coupled Model Intercomparison Project (CMIP5).  

The first study examines precipitation, geopotential height, and wind fields from 21 CMIP5 

models to determine how well the North American monsoon system (NAMS) is simulated. Models 

that best capture large-scale circulation patterns at low levels usually have realistic representations 

of the NAMS, but even the best models poorly represent monsoon retreat. Difficulty in 

reproducing monsoon retreat results from an inaccurate representation of gradients in low-level 

geopotential height across the larger region, which causes an unrealistic flux of low-level moisture 

from the tropics into the NAMS region that extends well into the post-monsoon season.  

The second study examines the presence and severity of spurious Gibbs-type numerical 

oscillations across the CMIP5 suite of climate models. The oscillations can appear as unrealistic 

spatial waves near discontinuities or sharp gradients in global model fields (e.g., orography) and 

have been a known problem for decades. Multiple methods of oscillation reduction exist; 

consequently, the oscillations are presumed small in modern climate models and hence are rarely 
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addressed in recent literature. Here we quantify the oscillations in 13 variables from 48 global 

climate models along a Pacific ocean transect near the Andes. Results show that 48% of 

nonspectral models and 95% of spectral models have at least one variable with oscillation 

amplitude as large as, or greater than, atmospheric interannual variability.  

The third study is an in-depth assessment model simulations of 20th century monthly 

minimum and maximum surface air temperature over eight US regions, using mean state, trend, 

and variability bias metrics. Transparent model performance information is provided in the form 

of model rankings for each bias type. A wide range in model skill is at the regional scale, but no 

strong relationships are seen between any of the three bias types or between 20th century bias and 

21st century projected change. Using our model rankings, two smaller ensembles of models with 

better performance over the southwestern U.S. are selected, but they result in negligible differences 

from the all-model ensemble in the average 21st century projected temperature change and model 

spread. In other words, models of varied quality (and complexity) are projecting very similar 

changes in temperature, implying that the models are simulating warming for different physical 

reasons. Despite this result, we suggest that models with smaller 20th century biases have a greater 

likelihood of being more physically realistic and therefore, more confidence can be placed in their 

21st century projections as compared to projections from models that have demonstrably poor skill 

over the observational period. This type of analysis is essential for responsibly informing climate 

resilience efforts.  
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CHAPTER 1: INTRODUCTION 

 

1.1 USING GLOBAL CLIMATE MODELS TO INFORM CLIMATE ADAPTATION PLANNING: MODELING 

ISSUES 

 Increasingly, science and technology are called upon to inform resilience efforts with 

respect to climate change and other social or environmental issues (President Barack Obama 2016, 

Kintisch 2006, UNESCO 2000). In the context of using climate model information responsibly to 

inform adaptation planning decisions, scientists must consider a number of remaining modeling 

issues and ambiguities.  

 

1.1.a  Model Uncertainty, Natural Climate Variability, Scenario Uncertainty 

Models are only approximations of reality and therefore, multiple types of uncertainty will 

always exist. For climate simulations, uncertainty arises not only from the modeling process itself, 

but also from natural climate variability and scenario uncertainty (projections of future greenhouse 

gas (GHG) emissions). 

In global climate models, uncertainty occurs for a variety of reasons, including limited 

theoretical and observational understanding of some earth system processes. For example, 

scientists still aren’t sure of what exactly triggers El Nino-Southern Oscillation (ENSO) events, so 

while ENSO variability appears in some models, others still struggle with realistic ENSO 

simulation (Guilyardi 2015). This limitation also appears in the varied response across models to 

identical scenario forcing (Dessai et al. 2005). Structural uncertainty, also referred to as model 

inadequacy, is caused by difficulty in mathematically describing known processes accurately or 
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because certain processes (e.g. dynamic vegetation) may be missing or approximated (Knutti et al. 

2010). Parametric uncertainty, arises because sub-grid scale processes such as cloud microphysics, 

convection, turbulence, and vegetation processes must be estimated or empirically derived and 

parameterized to the model grid scale (Knutti et al 2010). Additionally, some modeling centers 

over the past decade have transformed their already complex coupled global climate models 

(CGCMs) into even more complex earth system models (ESMs). The new capabilities of CMIP5 

ESMs include parameterizations for aerosol chemistry and biogeochemical processes such as 

carbon and nitrogen cycling (Taylor et al. 2012, IPCC 2014). These model uncertainties and 

differing levels of model complexity contribute to the spread in CMIP5 model ability to simulate 

present-day and future climate. 

   Natural climate variability can be a large source of uncertainty, especially at regional 

spatial scales and on multi-decadal and shorter timescales (Sillmann et al. 2014, Northrop et al. 

2014). Long-term model integrations from the CMIP5 suite are free-running, meaning that they 

are not initialized and forced with observed sea surface temperature and other observed conditions. 

Instead, they are spun up for a few hundred years to a quasi-equilibrium state using a plausible 

pre-industrial initialization. Then, this state becomes the new initialization for running the 

integrations forward through the present, forced only with observed time-varying atmospheric and 

land surface conditions (Stouffer et al. 2004, Taylor et al. 2012, Taylor et al. 2009, IPCC 2014). 

Because of this free-running nature, there is no reason for model natural variability to align with 

observed natural variability. For example, we can’t expect free-running models to mirror the 

timing and intensity of observed ENSO events, which can result in short-term model climatologies, 

trends, and variability that differ from observations (Fyfe et al. 2013).  



 

16 

 

Model projections of future climate are driven by multiple scenarios of GHG emissions 

that prescribe future time-varying atmospheric and land surface conditions (Taylor et al. 2012). 

Scenario uncertainty arises from the fact that there is no way to know which of these future 

scenarios, if any, will align most closely with reality. Future global emissions depend on many 

unpredictable policy choices, technological developments, and economic considerations. 

  Considering these many uncertainties, how close to reality should we expect a global 

climate model to be? And, what level of complexity is required for realistic simulation of present-

day and future climate conditions? Simple models of other complex systems have been shown to 

be reliable for decision making (Knutti 2010) and a more complex or higher resolution climate 

model may not be necessary to inform certain resilience efforts (Dunn et al. 2015). As climate 

models are increasingly used to inform adaptation decisions, these considerations should be 

included in discussions of uncertainty with decision makers.     

 

1.1.b  Model Performance Evaluation  

 Unlike weather model forecasts that can be verified within a matter of days, the decadal- 

to century- long lead times of climate model projections make verification impossible on decision 

making time scales. Therefore, the credibility of climate models must be established by evaluating 

how well they simulate past and present-day climate conditions. It stands to reason that a realistic 

simulation of present climate conditions is at least a necessary (but likely not sufficient) 

requirement for a model’s ability to realistically simulate (for the right reasons) the climate of the 

future. Clearly, understanding model performance as compared to observations on a variety of 

spatial and temporal scales during the 20th century is crucial to understanding model capability 
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and responsibly informing climate resilience efforts. Nonetheless, it is still unclear exactly how to 

judge model quality and reliability, and major questions remain including: 1) How does model 

performance in simulating present climate relate to future climate projections? 2) What metrics 

should be used to separate good models from bad models? and 3) How much skill in simulating 

present climate is due to calibration, tuning, or compensating errors? 

 Most straightforward metrics of assessing model performance in simulating present-day 

climate, such as root mean square error of the model climatology, don’t correlate with future 

climate projections on a large scale (Knutti et al 2010b). Still, using projections from models that 

have demonstrably poor skill over the observational period to inform adaptation efforts is 

unwarranted and therefore, many methods of model ranking have been pursued (Giorgi et al. 2002, 

Schmittner et al. 2005, Dessai et al. 2005, Maxino et al. 2008, Perkins et al. 2007). Model 

performance similarities during the historical period have been shown to correlate to model 

projection similarities for certain variables on regional and global scales (Whetton et al. 2007), but 

defining historical performance metrics that relate to predictive skill is a largely unsolved problem 

(Knutti et al 2010b). 

 Separating good models from bad models depends on the question at hand. Researchers 

should evaluate climate models using metrics that are relevant to their specific purpose over their 

region of interest (Maxino et al. 2008, Knutti 2010a). Model quality should be assessed using 

multiple variables and techniques that go beyond simply examining mean statistics (Jun et al. 2008, 

Sun et al. 2015, Maxino et al. 2008, Knutti 2010). Even after developing application-relevant 

methods to assess model skill, the researcher must decide on where to place the threshold that 

distinguishes good models from bad ones for their particular purpose. This process is quite 
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ambiguous, with some researchers using natural breaks in performance (Maxino et al. 2008), 

whereas others use arbitrary top and bottom percentiles of ranked models (Geil et al. 2013, Geil 

and Zeng 2015). Knutti (2010a) suggests that it may be less controversial to eliminate the models 

that clearly perform the worst in any particular assessment than to agree on the best models. 

 Researchers should also consider that the extent of model calibration, tuning, and 

compensating errors is not transparent, which can lead to overconfidence in model capability. It is 

difficult to determine whether excellent agreement between model simulations and observations 

is the result of calibration and tuning or if the realistic simulations are actually correct for the right 

physical reasons (Knutti et al. 2008). Santer et al. (2009) suggest that using temporal and spatial 

variability evaluation metrics offers a more stringent test of model capability, since model 

developers are able to tune models to capture mean climate characteristics, whereas realistic 

representation of variability is difficult to achieve through tuning alone. Also, due to the limited 

number of earth system observations, model evaluation is probably often conducted with the same 

observational datasets that were used to develop and tune the model, which can lead to a warped 

view of model capability (Knutti et al. 2010b).  

 

1.1.c  Multimodel Ensemble Averaging 

 It is also unclear as to how to aggregate model information to obtain future climate  

projections. Researchers must grapple with how to interpret a combination of models with 

differing levels of complexity, whether averaging models together makes physical sense, which 

models to include if multimodel ensemble (MME) averaging is appropriate, or whether 
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probabilistic methods of aggregation are more robust than MME averaging for a particular 

application.  

 Although CMIP model experiments are standardized, the suite of different models used to 

run those experiments represents a diverse range of model formulation, grid resolution, and 

complexity. Given these differences, individual models are simulating future warming for different 

reasons (Knutti et al 2008). In spite of this, any modeling center is allowed to contribute to CMIP 

archives regardless of model complexity or quality, which results in ambiguity as to how to 

interpret sets of CMIP models (Knutti 2010, Taylor et al. 2012). 

 The traditional method for aggregating model information is to create an MME average 

from all available model simulations. For mean climate simulation of multiple combined variables 

at global scales, an all-model MME average has been shown to outperform individual models, 

probably due to the cancelation of random modeling error (Reichler et al. 2008). However, an all-

model MME may not be better than the single best model for any particular mean climate variable 

and selection of a few good models (up to about 5) for averaging has been shown to substantially 

decrease mean climate bias as compared to an all-model MME, at least for mean seasonal surface 

air temperature (Knutti et al. 2010). Depending on the context, averaging model information may 

not be physically meaningful. It may lead to unrealistic effects like the smoothing of spatially 

heterogeneous patterns (Knutti 2010) or yield physically implausible results. For example, in 

situations where there is a tipping point between multiple stable solutions, an average state may 

not exist (Knutti et al. 2010). If MME averaging is appropriate, the researcher is faced with the 

questions of which and how many models to include and whether to weight models by skill, which 

if improperly implemented could result in overconfidence that can be more damaging for 
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adaptation decision making than using equal weighting or not aggregating models at all (Knutti et 

al. 2010). 

 All-model MME averages are considered by some scientists to be a naïve approach to 

understanding model performance and projected climate changes (Jun et al 2008, Maxino et al 

2008). Some argue that if including very poorly performing models in ensemble averages improves 

the average as compared to observations, then the improvement is for the wrong reasons (Maxino 

et al. 2008). Dessai et al. (2005) argue that using frequency distributions to aggregate model 

projections as opposed to MME averages is a better fit for identifying appropriate adaptation 

responses. Even when employing probabilistic methods though, the researcher must confront all 

the same questions regarding model quality, evaluation, and selection.  

  

1.1.d  Model Independence 

 Further complicating the interpretation of climate model information is the issue of model 

independence. Significant overlap exists between models due to the sharing of training data, 

human expertise, and model code (Pennell et al. 2011, Knutti 2010). Many models have highly 

correlated biases (Jun et al. 2008, Pennell et al. 2011, Knutti 2010) and considerable bias 

commonality exists beyond just models developed at the same center (Pennell et al. 2011). Model 

overlap results in an effective number of climate models that is much smaller than the total. While 

the effective number of climate models varies widely for individual model fields, Pennell et al. 

(2011) estimate that on average, the effective number of CMIP3 models for the northern 

hemisphere extratropics is between 7.5 and 9 from a total of 24. This raises issues for probabilistic 
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and statistical methods that assume model independence and leads to overconfidence in model 

projections, for example, due to confidence intervals that are too narrow (Pennell et al. 2011). 

 Model projections are likely to be biased toward an artificial consensus that is caused in 

part by model overlap (Pennell et al. 2011). It is reasonable to suspect that model similarities 

translate into a reduced range of climate change projections that don’t sample the full range of 

uncertainty (Pennell et al. 2011, Knutti et al. 2008). In light of these facts, it is unclear which and 

how many models should be used to generate climate change projections and how much 

confidence can be placed on projections from a set of climate models that have so many 

commonalities. 

 

1.2 USING GLOBAL CLIMATE MODELS FOR CLIMATE ADAPTATION PLANNING: APPLICATION ISSUES 

 

Controlling and adapting to climate change are issues that are not easily defined and are 

complexly interwoven across scientific, technological, environmental, social, economic, and 

political boundaries. These types of wicked problems don’t have “right” solutions, but their 

negative consequences can be mitigated through interdisciplinary collaboration, linking 

knowledge to action, and perseverance. Climate scientists can successfully contribute to mitigation 

and adaptation efforts by using collaborative knowledge exchange processes to deliver salient, 

credible, and legitimate information at the interface of science and decision making with serious 

consideration of the ethical issues at play. 

 

 



 

22 

 

1.2.a  Salience, Credibility, Legitimacy 

Linking knowledge to action through the production of usable science requires that the 

scientific information produced be perceived by all stakeholders as salient, credible, and legitimate 

(Cash et al. 2003). Salience refers to the relevance of the information in the context of user needs, 

credibility refers to whether the information is perceived to be scientifically plausible and 

technically adequate, and legitimacy refers to whether the information itself, the producers of the 

information, and the process of creating the information are perceived to be unbiased and fair 

(Cash et al. 2003). These three elements generate trust across boundaries, shape knowledge 

exchange processes, and increase the likelihood that scientific information will be used (Lacey et 

al. 2015).   

The salience, credibility, and legitimacy of climate information can be maximized when 

the producer is dedicated to understanding the realm of the user, including their organizational 

function, how information flows within their agency, how decisions are made, and their previous 

experience with climate information (Meadow et al. 2015). It is important for the producer to 

understand user priorities, decision making timelines, and the context in which the climate science 

will be applied (Brugger and Crimmins 2015). This type of knowledge will help the producer 

translate scientific information in understandable and salient ways, and also reveal the best ways 

to make the information available and accessible to the user. While keeping the focus on user 

information needs, the producer should use robust disciplinary and interdisciplinary scientific 

methods and address user and stakeholder concerns about bias and fairness throughout the process 

of scientific knowledge creation. For the user, usable science is understandable, accessible, salient, 

easy to integrate with existing knowledge, and fits into the user’s decision framework (Meadow et 
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al. 2015). Jacobs et al. (2005) suggest asking a series of questions to assess the usefulness of 

scientific services and products: 1) Are producers asking and answering relevant questions at 

spatial and temporal scales relevant to the user? 2) Can the delivery of the scientific information 

be timely such that it is useful for decision making? 3) Are the scientific findings considered 

accurate and trustworthy by all stakeholders? 4) Is the scientific information provided in a format 

and translated in a way that is understandable to the user? 5) Is the scientific information useful 

given the constraints in the decision making process?  

Generating usable science and working successfully at the boundary of science and 

decision making requires humility to recognize the limitations of one’s own knowledge, and 

openness and respect for other systems of thought. A scientist functioning in this space will need 

to augment their disciplinary knowledge with expertise in effective communication across 

boundaries, facilitation, and policy development, and understand the processes of knowledge 

exchange (Preston et al. 2015). 

 

1.2.b  Knowledge Exchange 

Knowledge exchange is the process by which the interchange of knowledge occurs 

between scientific information producers and users or decision makers. It encompasses knowledge 

production, sharing, storage, mobilization, translation, and use (Cvitanovic et al. 2015). 

Historically, the transfer of knowledge has often followed the uni-directional knowledge-deficit 

model, where scientists as producers of knowledge make research available to potential users. 

Here, knowledge producers and users are two independent groups. The knowledge-deficit model 

considers the publication of scientific journal articles to adequately bring science knowledge into 
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the public domain and leaves the user or decision maker responsible for locating, understanding, 

and using the scientific information (Cvitanovic et al. 2015). This model may produce highly 

credible scientific information, but it is problematic for producing usable science that is also 

perceived as salient and legitimate by users. Success in achieving these three elements to increase 

the usability of scientific information is more likely to occur through collaborative and 

participatory knowledge exchange and research processes (Cash et al. 2003). 

Contemporary approaches to improving knowledge exchange between scientists and 

decision makers include embedding, knowledge brokers, boundary organizations, and 

coproduction. Embedding refers to short-term professional development or permanent advisory-

type positions for research scientists within organizations dominated by decision makers or for 

decision makers within scientific organizations. These types of positions facilitate the spread of 

knowledge across boundaries and the narrowing of priority knowledge gaps (Cvitanovic et al. 

2015). The role of a knowledge broker is to facilitate the exchange of information among various 

stakeholders (e.g. researchers, practitioners, and policy makers). Knowledge brokers are typically 

based in science research teams or institutions, acting as intermediaries that develop relationships 

with science producers and users, and facilitating knowledge exchange across their networks 

(Cvitanovic et al. 2015). Boundary organizations facilitate knowledge exchange among diverse 

networks of stakeholders much like knowledge brokers, but they are established as a separate entity 

and are not typically embedded in institutional research teams. For this reason, boundary 

organizations can more effectively represent both sides of the science and decision making 

interface, while maintaining credibility through independence (Cvitanovic et al. 2015). Knowledge 

coproduction, a widely advocated form of knowledge exchange, refers to a process where all 
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relevant stakeholders participate in all aspects of the research program from onset to 

implementation and analysis (Cvitanovic et al. 2015).  

The principles of coproduction are: 1) establishing long-term ongoing relationships 

between researchers and decision makers, 2) ensuring two-way communication, and 3) keeping 

the focus on the production of usable science (Meadow et al 2015). Successful coproduction is 

heavily reliant on iterativity (Meadow et al. 2015, Ferguson 2015), meaning that ongoing two-way 

interactions are essential and that the research and communication process itself should be 

malleable. Iterativity promotes evaluation and adjustment of research strategies and flexibility in 

research direction and methods (Brugger and Crimmins 2015). Up-front recognition of the need 

and importance of iterativity is crucial for all participants to successfully coproduce knowledge 

and generate usable science (Ferguson 2015). The process of coproduction promotes the salience, 

credibility, and legitimacy of the information produced by crossing communication divides 

between researchers and decision makers, translating knowledge to action, and active mediation 

of any conflicts that may arise (Cash et al. 2003). 

 

1.2.c  Ethics 

The most broadly discussed ethical issue pertaining to climate change is whether human 

beings have a responsibility to mitigate anthropogenic effects on the earth system to ensure 

sustainable use of natural resources and a livable environment for future generations. While this is 

an important issue, there are also many ethical issues pertaining to the interface of climate science 

research and decision making that should be considered. The development of a recognized system 

of professional ethics is being called for, in part, due to conflicting climate science research results 
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that can affect the direction of adaptation efforts. A system of professional ethics could enhance 

the quality control of climate science research that is intended to inform adaptation efforts and 

protect the interests of adaptation practitioners (Lacey et al. 2015). 

For researchers working at the boundary of climate science and adaptation efforts, ethical 

considerations should come into play with the choice of research methods, presentation of 

uncertainty, interaction at the interface of science and decision making, and treatment of 

ambiguity. With respect to research methods, the researcher should be aware of modeling issues 

such as those discussed in Section 1.1 and create defensible research methods that navigate those 

issues, bearing in mind the intended use of the research. A contentious topic that often arises 

around adaptation efforts is whether downscaled climate information is needed in order to make 

sound adaptation decisions. Downscaled climate information can be no more reliable than the 

global climate model simulations on which the downscaling is based and does not automatically 

imply better information (Taylor et al. 2012). The assumptions and limitations of downscaling 

processes are often not well understood or explained, which has led to contradictions in climate 

projections (Hewitson et al. 2014). It may be the case, as in Australian viticulture, that the spatial 

scales relevant to end-user decision making can be captured with the grid resolution of current 

global climate models, which is information that can be elucidated by collaborative knowledge 

exchange processes and the understanding of user needs (Dunn et al. 2015). The uninformed or 

inappropriate use of downscaling also affects the transparency of uncertainty. Researchers may be 

unintentionally (or intentionally) presenting their findings as uncontroversial inputs to the user’s 

decision making process, without proper understanding of their own methodological assumptions 

and uncertainties (Lacey et al 2015, Hewitson et al. 2014). Researchers interacting at the interface 
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of science and decision making should assume the role of an honest broker, providing factual 

information that does not reflect their own personal preferences, and never push specific methods 

or results because of benefit to themselves. Climate adaptation researchers, specifically, should 

help users understand the full range of adaptation options that may be available, instead of only 

the options that are relevant to themselves (Lacey et al 2015). Ambiguity in climate adaptation 

efforts is an opportunity to implement collaborative knowledge exchange processes that align with 

a broad set of values for exploring multiple adaptation pathways forward. Although, there is 

potential for asymmetric power relationships to develop in the face of ambiguity, where persuasive 

behaviors are used to exploit ambiguity for the gain of a single party over a broader benefit to all 

involved stakeholders. This risk should be understood by stakeholders working at the science and 

decision making interface and managed through ethical guidelines (Fleming et al. 2016). 

 

1.3 OBJECTIVES 

 

The credibility of climate models is established by evaluating how well they simulate past 

and present-day climate conditions. Science and technology are increasingly called upon to inform 

climate change adaptation and resilience efforts, and using projections from models that have 

demonstrably poor skill over the observational period to inform these efforts is unwarranted. This 

dissertation focuses on evaluating the skill of CMIP5 global climate models as compared to 

observations over the 20th century. 

The work presented in Appendix A, published in the Journal of Climate (Geil et al. 2013), 

examines how well climate models simulate the North American monsoon system (NAMS) and 
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the causes of deficiencies in poorly performing models. Appendix B, published in Geophysical 

Research Letters (Geil and Zeng 2016), examines the presence and severity of unphysical 

numerical oscillations in global climate models that may affect the credibility of regional scale 

climate projections. Appendix C, which will be submitted to the Journal of Applied Meteorology 

and Climatology, is an in-depth assessment of model simulation of 20th century monthly minimum 

and maximum surface air temperature over the US on a regional basis.  

In addition to these works, I have co-authored four other model evaluation and climate 

change projection studies. In Sheffield et al. (2013), I contributed information on historical model 

simulation of the NAMS, similar to the work in Appendix A. In Maloney et al. (2014), I 

contributed information on projected changes to the NAMS using the findings presented in 

Appendix A. I also assisted in the preparation of data and manuscript writing for a study examining 

the ability of CMIP5 models to simulate tropical depression wave activity and associated 

environmental factors in Serra and Geil (2016). Finally, in Zeng and Geil (2016), I assisted with 

the analysis and manuscript writing of a study developing decadal and long-term global warming 

projections based on an observational data-driven model. 
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CHAPTER 2: PRESENT STUDY 

 

2.1 ASSESSMENT OF CMIP5 MODEL SIMULATIONS OF THE NORTH AMERICAN MONSOON SYSTEM 

 

Global and limited-area model simulations have been conducted in the past to evaluate the 

representation of the North American Monsoon System (NAMS) and the results show a wide range 

of model ability, but limited information has been published on this topic using the latest set of 

global climate models from phase 5 of the Coupled Model Intercomparison Project (CMIP5). The 

present study is comprised of a series of analyses aimed at assessing how well the CMIP5 suite of 

coupled general circulation models (CGCMs) is able to represent the NAMS.  

Two analysis regions include a small 4°x5° core domain in northwestern Mexico and an 

extended domain covering the larger NAMS region that encompasses most of Mexico and some 

of the US south and western states. Analyses include 1) comparison of the annual cycle of area-

averaged monthly precipitation to observations and previously published CMIP3 results over the 

core monsoon domain, 2) a spatial correlation of monthly model precipitation, geopotential height, 

and wind to observations, 3) an assessment of monsoon onset and retreat dates as determined from 

daily precipitation, and 4) a model composite analysis of the best versus the worst representations 

of the NAMS.   

There has been no improvement in the magnitude of the mean annual cycle of monthly 

precipitation over the core NAMS region since CMIP3, but the timing of seasonal changes in 

precipitation has improved with 27% more CMIP5 than CMIP3 models having zero phase lag.  

Despite this, a few models do not have a recognizable monsoon signal at all.  Also, the multi-
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model mean annual cycle is biased wet and exhibits the common problem of late monsoon 

termination. 

Monsoon season correlations of monthly model output to observational data establish that 

most models have the highest correlation at the 500 hPa level and the lowest correlations for 

precipitation, however, relatively good or bad performance at the 500 hPa level is not predictive 

of 850 hPa level or precipitation performance.   

The multi-model mean onset and retreat dates are 23 days early and 9 days late, 

respectively, using an absolute criteria for defining monsoon onset and retreat.  Yearly model onset 

variability is comparable to that of the observational data, but yearly model retreat variability is 

much greater than what is seen in the observations.  On average, model-relative criteria for 

determining onset and retreat dates result in less model bias compared the absolute criteria due to 

the prevailing wet bias in model precipitation.   

 An 850 hPa composite of best models reproduces the development and mature stages of 

the NAMS, but the composite of worst models fails to adequately illustrate most of the 

precipitation and circulation features seen in the observations.  The large-scale circulation pattern 

bias seen in the best model composite is spatially consistent over the larger region influencing 

monsoon development, and thus still allows for a successful representation of the NAMS during 

the development and mature stages.  In contrast, the spatial inconsistency of large-scale circulation 

pattern bias in the worst models prevents a realistic representation of the NAMS during the same 

period. Neither the composite of best or worst models realistically captures the retreat of the 

NAMS due to an extended connection to tropical moisture that causes excessive fall and winter 

precipitation. Models that best capture the relevant large-scale circulation patterns at low levels 
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usually have a realistic representation of the NAMS, while performance at mid-levels does not 

appear to be a major factor. 

The importance of large-scale features to the representation of the NAMS in CMIP5 

models is clear and for many models there is room for improvement in the representation of the 

NAMS by way of more accurate representation of low-level large-scale circulation features. 

Improvement in the representation of the NAMS in the best models is likely limited until increased 

model resolution allows for the capture of small-scale NAMS processes.      

 

2.2 QUANTITATIVE CHARACTERIZATION OF SPURIOUS NUMERICAL OSCILLATIONS IN 48 CMIP5 

MODELS 

 

The presence of spurious numerical oscillations (SNOs) in global climate models has been 

known for decades and has been previously shown to cause poor representation of precipitation, 

wind, sea surface temperature, clouds, and more. The SNOs (in the form of Gibbs oscillations) are 

most prevalent in models that use spectral numerics and could compromise the results of regional 

climate analyses. This study provides a quantitative characterization of the SNOs in 48 CMIP5 

models to draw awareness to the large SNOs present in these models. 

An ocean transect at approximately 29° S that bisects the South Pacific High near the Andes 

is used to examine the SNOs where they are most easily visible: over the ocean and near a steep 

topographic gradient. We use 27-year climatological transects of monthly model variables over 

ocean points only and compute smoothed versions of the transects by applying a running mean. 

Observations are treated in the same way. Two metrics are used to identify and quantitatively 
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characterize SNOs along the transect. The first is the root mean square difference (RMSD) between 

the climatological transect of a variable and its running mean, representing an absolute measure of 

the oscillation amplitude. A relative measure is computed as the ratio of the RMSD to interannual 

variability (IAV). At each transect point, the standard deviation in time is first calculated using 

annual average values. IAV is then obtained as the average along the entire transect.  

For variables that have observations for comparison, 40% of models on average have 

RMSD values greater than the RMSD value for observations along the transect multiplied by a 

factor of 5. Furthermore, 69% of the models have an RMSD:IAV ratio that is as large as, or larger 

than, interannual variability along the study transect for at least one variable. This translates to 

95% of spectral models and 48% of non-spectral models having at least one RMSD:IAV ratio 

greater than unity. The largest SNOs by absolute and relative measures are seen in spectral models 

and in the surface pressure field, although smaller SNOs are visible in many of the variables 

examined. For eight of the thirteen variables, at least one model (or as many as half for surface 

pressure) has SNOs with amplitude as large as, or much larger than, the interannual variability of 

those variables along the transect. These variables include surface pressure, surface meridional 

winds, vertical velocity, surface air temperature, incoming surface radiation, and total cloud 

amount. Also, regardless of the numerical method employed, model resolution does not predict 

oscillation amplitude or prevalence.  

 The presence of large stationary numerical oscillations with amplitudes on the scale of 

atmospheric interannual variability suggests that these oscillations are spurious and should not be 

ignored. Despite this, SNOs are rarely mentioned in CMIP analysis literature probably because 

they are perceived as being small in modern climate models. Given past research by others and 
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our present findings, there is no reason to believe that the spurious oscillations are benign to 

climate simulations and they could very well have harmful impacts on the representation of 

variables at local, regional, and global scales.  

 

2.3 EVALUATION OF THE MEAN STATE, TRENDS, AND VARIABILITY IN CMIP5 MONTHLY SURFACE AIR 

TEMPERATURE AT REGIONAL SCALES OVER THE U.S. FOR APPLICATION TO CLIMATE ADAPTATION 

PLANNING 

 

Given the relative certainty of continued rapid change across many earth systems, local 

and regional decision makers are increasingly interested in climate change planning and adaptation 

methods. These decision makers need climate model projections on relevant temporal and spatial 

scales, as well as assessments of model reliability in order to make confident planning decisions. 

Here, we present an analysis of individual model simulations of monthly average minimum and 

maximum surface air temperature (Tmin, Tmax) to provide a clearer picture of model capability 

for adaptation and resilience planning efforts.  

Area-averaged model and observed 20th century time series for eight regions in the United 

States are used to assess biases in model long-term mean state, trend, and variability. Model mean 

climate is examined using long-term annual and seasonal averages, linear trends are assessed using 

annual and monthly average temperature, and the standard deviation of the detrended monthly 

temperature anomaly time series is used to assess variability. Transparent model performance 

information is provided in the form of model rankings for each bias type.  
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A wide range in model skill is seen even for long term mean climate simulation where the 

highest skill is expected, and much of the ensemble cannot reproduce significant observed long 

term trends at monthly resolution. No strong relationships are seen between any of the three bias 

types or between 20th century bias and 21st century projected change. Using our model rankings, 

two smaller ensembles of models with better performance over the southwestern U.S. are selected 

and their 21st century projections are compared to those of the all-model ensemble. For the 

southwest, constraining temperature projections with multi-model ensembles that have small 20th 

century bias results in negligible differences in the multi-model ensemble average 21st century 

projected temperature change and model spread. In other words, models of varied quality (and 

complexity) are projecting very similar changes in temperature, implying that the models are 

simulating warming for different physical reasons.  

Despite these results, we suggest that models with smaller 20th century biases have a greater 

likelihood of being more physically realistic with respect to both historical and future simulations, 

and therefore, more confidence can be placed in their 21st century projections as compared to 

projections from models that have demonstrably poor skill over the observational period. This type 

of analysis is essential for responsibly informing climate resilience efforts. 

 

2.4 FUTURE RESEARCH DIRECTIONS 

 

Much research is needed on how to responsibly utilize climate model information with 

respect to climate change vulnerability assessment and resilience planning efforts. This type of 

work can be broken down into many research sub-categories, of which the following list is by no 
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means comprehensive. 1) DEMONSTRATING MODEL CAPABILITY: transparent and in-depth multi-

metric planning-relevant performance assessments of model skill compared to 20th century 

observations on a range of spatial and temporal scales. 2) DEFINING CONFIDENCE IN MODEL 

PROJECTIONS: how to interpret or adjust confidence in model projections for any given 

vulnerability or resilience effort based on 20th century model performance information. 3) 

APPLYING MODEL ENSEMBLES: what methods to use for choosing or combining climate model 

projections for vulnerability and resilience efforts, how to account for the issue of model overlap, 

how to describe and understand projection uncertainty in a planning context. 4) KNOWLEDGE 

EXCHANGE BEST PRACTICES: expansion of specific best practices for the facilitation of climate 

model knowledge exchange among scientists and practitioners when the end-goal is to use climate 

model projections for decision making. 5) KNOWLEDGE EXCHANGE ASSESSMENT: defining metrics 

to measure knowledge exchange success and the usability of any scientific information created. 

The three manuscripts introduced in Sections 2.1-2.3 and presented in the Appendices of 

this dissertation mainly fall under the first research sub-category defined above “DEMONSTRATING 

MODEL CAPABILITY”, although the most recent manuscript (Appendix C) also includes aspects of 

sub-categories two “DEFINING CONFIDENCE IN MODEL PROJECTIONS” and three “APPLYING MODEL 

ENSEMBLES”. All three manuscripts spur follow-on research questions that also fall within the 

above-defined applied climate modeling research sub-categories.  

In Appendix A we show a range of model skill in simulating the NAMS, although most 

models have large wet biases and do not properly simulate the monsoon season retreat due to large-

scale low-level circulation issues that result in a prolonged connection to tropical moisture.  We 

look at future projections for the core NAMS region in Maloney et al. (2014) and find a projected 



 

36 

 

MME-average annual mean drying of 22.2% by the end of the 21st century when using a 16-model 

ensemble that includes top performers and poor performers (based on the research in Appendix 

A). When using a 9-model ensemble of only top performers the MME-average annual mean 

projected drying is reduced to 15.4%, while the drying projected from the model that best simulates 

the NAMS in the 20th century is only 5.3%. Follow-on research questions could include: During 

which months is most of the projected drying occurring? What does large-scale circulation in the 

larger monsoon region look like in the future? What low-level circulation changes are causing the 

predicted drying in the good vs. poor historical performing models? Is future NAMS region 

circulation change related to historical model performance in a way that can inform our confidence 

in model projections of change? These questions are aimed at using model capability information 

to adjust our confidence in projections of future change, which falls under the second sub-category 

of climate model application research “DEFINING CONFIDENCE IN MODEL PROJECTIONS”. Answers 

to these questions could also help define appropriate methods for choosing or combining model 

projections in the NAMS region for resilience planning purposes, which is research sub-category 

three “APPLICATION OF MODEL ENSEMBLES”. 

In Appendix B, we show that large spurious numerical oscillations are indeed present in 

most state-of-the-art climate models on the scale of atmospheric interannual variability near steep 

terrain. Spurious oscillations of this scale are likely not benign to climate simulations. Follow-on 

research could include the demonstration of future projection differences between ensembles of 

best and worst performing models with respect to spurious oscillations. An area that may yield 

impactful results is located off of the South American coast near the Andes, where some of the 

largest spurious oscillations are seen. How much do the oscillations affect the simulation of 
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regional upwelling and do they affect the simulation of El Nino-Southern Oscillation (ENSO) 

events? Do models with small or no spurious oscillations simulate ENSO frequency, intensity, and 

duration more realistically than models with large spurious oscillations? This type of research falls 

in large part under the first sub-category “DEMONSTRATING MODEL CAPABILITY”. 

  In Appendix C, we show a large range in model skill in simulating the 20th century mean, 

trend, and variability in monthly surface air temperature at regional scales in the US. Despite this 

fact, constraining temperature projections with multi-model ensembles that have small 20th century 

bias results in negligible differences in the multi-model ensemble average 21st century projected 

temperature change and model spread, at least for the southwest US region. This work focused 

only on regionally averaged temperature, therefore, the physical explanations for the large 

differences in model skill remain unknown. Follow-on research could use additional model 

variables to explain the physical reasons for large model biases, which may help shed light on why 

20th century model bias is inconsequential to 21st century temperature projections. Also, extending 

the analysis at least to precipitation would be very informative for practitioners. These research 

ideas fall under sub-categories one “DEMONSTRATING MODEL CAPABILITY” and two “DEFINING 

CONFIDENCE IN MODEL PROJECTIONS”. 

Another essential future research direction is the assessment of the limitations of 

downscaling techniques and how downscaled output relates to the original global model input. 

Downscaling techniques are currently being used for vulnerability and resilience efforts, and in 

regional and national climate assessments, despite the fact that the assumptions and limitations of 

downscaled climate products are not well understood. Responsible use of climate model 

information for decision making requires transparent and user-relevant assessments of downscaled 
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climate products. This research would be most closely associated with the first research sub-

category “DEMONSTRATING MODEL CAPABILITY”, although it could easily include aspects of sub-

categories two “DEFINING CONFIDENCE IN MODEL PROJECTIONS” and three “APPLYING MODEL 

ENSEMBLES”. 

Finally, case studies in the realms of climate vulnerability assessment, resilience planning, 

and the knowledge exchange processes involved are critically needed in peer-reviewed 

publications. More documentation of both successful and unsuccessful vulnerability and resilience 

efforts are needed in order to improve knowledge exchange processes, clearly define best practices, 

and develop assessment metrics to measure the success of knowledge exchange processes and 

usable science products. Well-documented case studies could advance understanding in all of the 

five research sub-categories defined in this section. 
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Abstract 

Model simulations of 20th century monthly minimum and maximum surface air 

temperature over eight US regions are assessed using mean state, trend, and variability bias 

metrics. Transparent model performance information is provided in the form of model rankings 

for each bias type. A wide range in model skill is seen even for long term mean climate simulation 

where the highest skill is expected, and much of the ensemble cannot reproduce significant 

observed long term trends at monthly resolution. No strong relationships are seen between any of 

the three bias types or between 20th century bias and 21st century projected change. Using our 

model rankings, two smaller ensembles of models with better performance over the southwestern 

U.S. are selected, but they result in negligible differences from the all-model ensemble in the 

average 21st century projected temperature change and model spread. In other words, models of 

varied quality (and complexity) are projecting very similar changes in temperature, implying that 

the models are simulating warming for different physical reasons. Despite this result, we suggest 

that models with smaller 20th century biases have a greater likelihood of being more physically 

realistic and therefore, more confidence can be placed in their 21st century projections as compared 

to projections from models that have demonstrably poor skill over the observational period. This 

type of analysis is essential for responsibly informing climate resilience efforts.  
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1. Introduction 

Rapid environmental changes linked to human-induced increases in atmospheric 

greenhouse gas concentrations have been observed on local to global scales over recent decades. 

Given the relative certainty of continued rapid change across many earth systems, local and 

regional decision makers are increasingly interested in planning for projected climate changes and 

employing mitigation strategies. These decision makers need climate model projections on 

relevant time and spatial scales, as well as assessments of model reliability in order to make 

confident planning decisions.  

Preliminary resources for this type of planning in the US include national and regional 

climate assessment reports such as the National Climate Assessment (NCA; Melillo et. al 2014) 

and the Assessment of Climate Change in the Southwest United States (Garfin et. al 2013). Aimed 

at decision makers, these reports use plain language to condense the most up-to-date scientific 

knowledge on national- and regional-scale climate observations and future change projections. In 

the context of regional climate resilience efforts, one of the main problems with reports like the 

NCA is the lack of information regarding model reliability. Climate projections are almost 

exclusively presented using a multi-model ensemble (MME) average of all available models, 

regardless of individual model performance. This method is likely inappropriate on smaller 

regional planning scales due to the large spread in model ability at these scales (Maxino et al. 2008, 

Perkins et al. 2007). It stands to reason that a realistic simulation of the present climate is at least 

a necessary (but likely not sufficient) requirement for a model’s ability to realistically simulate the 

climate of the future for the right reasons. As such, understanding model performance at regional 
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scales over the 20th century is crucial to discerning model reliability, avoiding the use of the worst 

performing models, and informing our confidence in climate projections.  

Three main issues can be found from previous regional performance assessments. First, 

there is a dearth of climate model information available at local to regional planning-relevant 

scales. Second, performance information for specific models is frequently neglected in favor of 

the MME mean and model spread. Third, the measures used to evaluate model performance are 

often not comprehensive or quantitative enough to provide sufficient evidence of model reliability 

for planning decisions. For example, similar to the national and regional climate assessment 

reports, some studies simply evaluate model performance based on long term mean climate 

(Reichler et al. 2008, Macadam et al. 2010). Other studies focus on the simulation of trends 

(Sillmann et al. 2014) or climate variability (Yao et al. 2013, Maxino et al. 2008, Perkins et al. 

2007). Many studies examine both mean climate and variability, but don’t provide clear 

quantitative information regarding individual model performance at decision relevant scales 

(Sillmann et al. 2013a, Wuebbles et al. 2014, Santer et al. 2009, Cheng et al. 2015, Sun et al. 2015). 

Overall, there are a lack of studies that use all of these relevant evaluation measures (long term 

means, trends, and variability) to quantify individual model performance at scales applicable to 

adaptation planning.  

  Here, we present a planning-relevant analysis of individual model simulations of monthly 

average minimum and maximum surface air temperature (Tmin, Tmax). We evaluate the ability 

of all available CMIP5 climate models to simulate 20th century long term mean climate, trends, 

and variability in order to provide a clearer picture of model capability for resilience efforts. Our 

analysis was designed based on the interest of an energy utility in southern Arizona in assessing 
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their heat-related vulnerabilities and increasing their resilience to future temperature change. The 

model performance information presented here is intended for similar application by researchers 

and practitioners working at the intersection of climate science and decision making.  

 

2. Model Simulations, Observations, and Methods 

The source of model simulations is the CMIP5 multimodel ensemble archive 

(http://pcmdi.llnl.gov). We use a 106-year period (1900-2005) of the historical experiment, which 

imposes changing atmospheric and land surface conditions consistent with past observations. 

Details regarding CMIP5 experimental design can be found in Taylor et al (2009, 2012). One 

ensemble member is chosen for each model with monthly minimum and maximum surface air 

temperature and topography available in the archive (42 models in total). Table 1 lists the models 

used and provides the modeling group, country origin, and abbreviation code we have assigned to 

each model. 

Observations of Tmin and Tmax are from the Berkeley Earth 1°x1° gridded monthly land 

data product (Rhode et al. 2013), which provides temperature over land only. Although this study 

is limited to model performance at monthly time resolution, we choose the Berkeley Earth monthly 

observations because of the corresponding daily data product, which will provide consistency for 

further model evaluation at daily resolution.  

 Preprocessing steps include regridding all models to a common grid, applying an elevation-

based model temperature correction, creating an MME-average, and area-averaging over eight 

study areas. The 1°x1° grid of the Berkeley Earth observations is used as the common grid and 

model information is adjusted to this grid using bilinear spatial interpolation. The temperature 

http://pcmdi.llnl.gov/
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correction is applied to each model using a lapse rate of 6.5 °C/km and the elevation difference 

between modeled and observed topography. Since the Berkeley Earth gridded observations do not 

include elevation information, we use the ASTER Global Digital Elevation Model (DEM) dataset 

(NASA JPL, 2009) scaled down to our 1-degree common grid by area averaging. At this point, 

MME-average Tmin and Tmax are created by averaging together the regridded, elevation-

corrected spatial fields of all 42 models. Then, a monthly time series is obtained for all models by 

area-averaging over eight study areas. A land mask is applied to each model so that only grids with 

greater than 50% land area are included in each area-average. The seven regional study areas used 

are based on the regions delineated by the NCA and are shown in Figure 1 (SW=southwest, 

NW=northwest, GP=great plains, MW=midwest, NE=northeast, SE=southeast, AK=Alaska). We 

also include an additional continental US study area that comprises most of the lower 48 states.  

The area-averaged model and observed 20th century time series for each region are used to 

assess biases in model long-term mean state, trend, and variability. First, we examine model mean 

climate using long-term annual and seasonal averages. Here, significant biases are identified at the 

90% confidence level using a two-tailed t-test for difference in means and adjusting for lag-1 

autocorrelation. Next, we look at linear trends in annual average temperature as well as in monthly 

average temperature for the month with the largest difference between observed and MME-

average trends for each region. Significant trends at the 90% confidence level are again identified 

using a two-tailed t-test, adjusted for lag-1 autocorrelation. Significance is computed in the same 

way for the trend of the time series difference between models and observations to identify 

modeled and observed trends that are significantly different from each other. Finally, we use the 

standard deviation of the detrended monthly temperature anomaly time series to assess variability, 
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where the anomalies are computed by removing monthly climatological means. Significant 

differences between model and observed variability at the 95% confidence level are identified 

using a two-tailed f-test, adjusted for lag-1 autocorrelation. 

Results are then used to rank model performance with respect to each type of bias. Each 

type of bias ranking is divided into five categories to aid in the selection of better performing 

multimodel ensembles, so that the reader can quickly identify the bias magnitude for each model. 

The bounds of the categories were arbitrarily chosen to separate out very good and very poor model 

performance, and to distribute average performing models relatively evenly over the remaining 

categories. In the discussion section of this paper, we use the southwest US region to demonstrate 

how the rankings can be used to select better performing multimodel ensembles and then compare 

future projections from these ensembles to projections using all available models.  

 

3. Results 

a. Long-term mean state 

Starting with model mean state bias, we see a range in regional performance. Figure 2 

shows the MME-average bias and model bias spread for the seasonal and annual mean climate 

states. For both Tmin and Tmax, seasonal mean state MME-average bias is much smaller in some 

regions (average absolute seasonal bias is 0.52 °C and 0.80 °C for GP, 0.38 °C and 0.76 °C for SE 

Tmin and Tmax, respectively) than in others (average absolute seasonal bias is 2.40 °C and 1.35 

°C for SW, 1.68 °C and 2.08 °C for AK Tmin and Tmax). The same is true for the annual mean 

MME-average bias. It is clear that for most regions, the majority of models are biased warm for 

Tmin, although the largest model biases are cold biases that act to compensate for most of the 
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overwhelming model warm biases. The same phenomenon is seen in Tmax, where the majority of 

models are biased cold in most regions, but this bias is mostly compensated by a lesser number of 

models with larger warm biases. Across all eight regions on average, Tmax MME-average absolute 

bias is slightly larger than Tmin bias (by 0.23 °C seasonally and 0.21 °C annually), but the model 

spread in Tmax bias is smaller than the spread in Tmin bias (by 1.06 °C seasonally and 1.56 °C 

annually). This indicates that Tmax model biases of opposite signs are less compensating than they 

are for Tmin. Also of note is that the average model spread in annual mean bias for both Tmin and 

Tmax (12.87 °C and 11.31 °C) is almost as large as that of seasonal mean bias (13.60 °C and 12.53 

°C), showing a large range in model ability even at the coarser timescale. On a seasonal and annual 

basis, the MME-average bias is usually significant for both Tmin and Tmax across all regions. For 

confident decision making in the context of climate change adaptation and resilience efforts, the 

MME-average performance and spread of model biases in simulating even long-term mean climate 

at the regional scale are inadequate. 

Additionally, Figure 2 clearly shows that low annual mean bias can be mistaken for good 

performance when seasonal biases are of opposite signs. For example, without looking beyond the 

annual mean bias, there is no way to know that the annual mean Tmin bias in the NW region is the 

result of compensating seasonal biases, whereas this is not the case for the low annual mean bias 

in the SE region. Use of this metric alone is not comprehensive enough to accurately assess model 

skill and can cause over-confidence in model ability.  

Assessment of vulnerability to climate change and the resulting planning decisions may 

focus on one particular season or even one month of the year. Often, the MME-average bias and 

model spread increase when looking at the long-term mean state for a single month. Figure 3 shows 
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the May time series for the SW region, where the MME-average bias is -3.83 °C and the model 

bias spread is 13.27 °C on average, as compared to the summer and annual mean bias and model 

spread in Figure 2 (summer MME-average bias -3.14, spread 12.57; annual MME-average bias -

2.40, spread 12.87).  

All models are ranked on the basis of Tmin and Tmax seasonal bias in the appendix (Table 

A1). For most regions, the majority of models are biased 1-3 °C. There are two instances where 

the MME-average outperforms all individual models (in the GP and US regions for Tmin), and 

this is caused by compensating model biases. In regions where bias is stronger in one direction, 

many models outperform the MME-average. For example, in the SW region where most models 

show Tmin cold biases, 67% of individual models have a smaller average seasonal bias than the 

MME-average. Similarly, in the NE region where most models are biased warm in Tmin and cold 

in Tmax, 19% of individual models outperform the MME-average for Tmin and 26% for Tmax.  

 

b. Trends 

Next, we look at model ability to simulate 20th century trends. Figure 4 shows the trends in 

annual average temperature as well as in monthly average temperature for the month with the 

largest difference between observed and MME-average trends (herein referred to as max-month) 

for each region. For the annual average trends shown in Figure 4a, there is a significant difference 

between the MME-average and observed Tmin values for half of the regions and regardless of 

significance, the MME-average value is always an underestimation (by 0.24 °C/century on 

average). In the case of Tmax, there is no significant difference between the MME-average and 

observed values for any region, although the MME-average value is almost always a slight 
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overestimation (by 0.14 °C/century on average). The magnitude of the model spread in annual 

mean trend is similar between Tmin and Tmax for each region (average difference in model spread 

is 0.27 °C/century), but while most models agree on the sign of the Tmin trends, the models are 

more often split on the sign of Tmax trends. Also, the AK model spread for both Tmin and Tmax 

is much larger than any other regions, indicating the difficultly that models have in simulating 

realistic 20th century climate in this region. 

Keeping in mind that only the month with the largest MME-average trend bias is shown in 

Figure 4b, most MME-average trends in max-month temperature are significantly different from 

observations. For each region, the greatest MME trend bias is found almost exclusively in fall or 

winter. The model spread in max-month trends (4.39 °C/century for Tmin, 3.82 °C/century for 

Tmax on average) is much larger than for annual average trends (2.06 °C/century Tmin, 2.21 

°C/century for Tmax on average) and there is no model consensus on the sign of max-month trends. 

It is also interesting that when the observed max-month trend in Tmax is significant (shown with 

large filled circles in Fig 4b, e.g. for the GP, MW, NE, and US regions), the MME-average trend 

is always an underestimation. This is also true for Tmin max-month and annual average trends.          

All MME-average trends in annual and max-month temperature are significant (filled large 

squares in Figure 4a,b), whereas there is one region for Tmin and four regions for Tmax where the 

observed max-month temperature trend is not significant (open circles in Figure 4b). A time series 

example of this is shown in Figure 5, which compares the observed, MME-average, and single 

model max-month (October) trends in Tmax for the AK region. The observed trend (Figure 5a) is 

-0.75 °C/century and is not significant (p=0.31), whereas the MME-average trend (Figure 5b) is 

significant and of the opposite sign (+1.04 °C/century, p<0.01). Many models, such as MRIC3 
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(Figure 5c), reproduce small insignificant trends (-0.60 °C/century, p=0.41), but the models that 

produce larger significant trends, such as CESMF (Figure 5d; +3.76 °C/century, p<0.01) 

overwhelm the MME-average toward significant bias. 

All models are ranked on the basis of Tmin and Tmax annual and max-month trend bias in 

the appendix. For annual average trend bias (Table A2), the MME-average usually falls within the 

0.2-0.5 °C/century category for Tmin and within the 0-0.2 °C/century category for Tmax. Most 

models have biases of less than 1 °C/century and depending on the region, 12-45% of individual 

models have smaller trend biases than the MME-average. For max-month trend bias (Table A3) 

the MME-average usually falls within the 1-2 °C/century category for both Tmin and Tmax. Most 

models have biases greater than 1 °C/century and 40-52% of individual models have smaller biases 

than the MME-average.  

 

c. Variability 

Last, we examine 20th century variability. Figure 6a shows the standard deviation of the 

modeled and observed detrended monthly temperature anomaly time series. Here, the MME-

average is computed as the average of individual model standard deviation values, as opposed to 

computing variability from the average MME temperature field because averaging model fields 

together smooths out most variability. Without visualization of individual model results, it may 

appear that many models have much greater than observed variability in Tmin and Tmax for most 

regions, but the large model spread is usually caused by only a few models. This is reflected in the 

fact that, with the exception of the AK region, the MME-average variability is very close to that 

of observations. The MME-average variability bias for the AK region is 0.72 °C for Tmin and 0.48 
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°C for Tmax, whereas across all other regions on average (excluding AK), it is 0.23 °C for Tmin 

and 0.08 °C for Tmax. The magnitude of the model spread varies across the regions, ranging from 

0.43 °C (US Tmax) to 2.46 °C (NW Tmin), and the spread is often smaller for Tmax than Tmin 

(0.53 °C smaller on average). 

An illustration of model ability to simulate temperature variability is shown in Figure 6b, 

where we zoom in to the modeled and observed Tmax anomaly time series for the AK region 

during the randomly chosen decade of the 1960’s (other decades examined appeared similar). The 

trend and climatological monthly mean of each series has been removed. The model spread in gray 

shading shows the tendency to overestimate variability in the region. The models with the smallest 

(ACC13, 0.04 °C) and largest (CMCCE, 1.17 °C) standard deviation bias (for the entire 1900-

2005 study period) are shown as an example of individual model performance. While the model 

with small bias (blue) performs well, the model with the largest bias (green) clearly shows more 

extreme warm and cold temperatures as compared to observations, especially during winter 

months. Future change in climate variability, including extremes (which are not assessed here), is 

a very important consideration in assessing vulnerability to climate change, as changes in 

variability can affect the frequency of heat waves, freezing temperatures, flooding and drought 

events, etc. For this reason, determining the models that simulate realistic variability and using 

that information to constrain vulnerability assessment is essential. 

 All models are ranked on the basis of Tmin and Tmax standard deviation bias in the 

appendix (Table A4). Most models have biases of less than 0.5 °C for Tmin and Tmax, except in 

the AK region, where most models are biased greater than 0.5 °C. For any given resilience 

application, climate model variability performance information at monthly time resolution may 
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not be sufficient for decision making. We suggest using the results presented here in combination 

with a decision-relevant variability assessment of daily resolution model information.    

 

4. Discussion 

a. Correlation between historical biases 

 To understand how the historical model biases relate to each other, we perform a linear 

regression analysis between each type of bias (seasonal mean, annual trend, max-month trend, and 

variability) for each region. For each regression, the linear correlation coefficient (r) is computed 

and tested for significance at the 95% level using a two-tail t-test. Substantial overlap is known to 

exist between models due to the sharing of training data, human expertise, and model code, which 

results in an effective number of climate models that is much smaller than the total (Pennell et al. 

2011, Knutti 2010). While the effective number of models varies widely for individual model 

fields, Pennell et al. (2011) estimated that on average, the effective number of CMIP3 models for 

the northern hemisphere extratropics is between 7.5 and 9 from a total of 24. To account for model 

overlap, we roughly estimate the effective number of independent models as one third of the total 

(14 effective models from 42 total). The effective number of models is used to compute the degrees 

of freedom for significance testing. To ensure robust tests of significance, we also compute the 

linear correlation coefficient a second time excluding the 10% of models (4) with the largest 

magnitude variable bias.  

No strongly significant relationships are found, although significance (using both 

measures) between the annual trend bias and max-month trend bias is seen in four regions (SW, 

NW, GP, US) for Tmin and three regions (SW, GP, US) for Tmax. Figure 7a shows this 
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relationship for GP Tmin where the correlation values are 0.66 and 0.63. The only other 

relationship that is significant using both measures is between max-month trend bias and 

variability bias for the US region, but the correlation is not particularly strong, as shown in Figure 

7b, and the same relationship is not significant in any of the smaller regions.  All other linear 

correlations between regression variables are either insignificant by both measures or significant 

only if computed using all 42 models, such as the relationship shown in Figure 7c.   

 

b. Correlation between historical bias and projected change in the southwest 

A total of 33 models (marked with asterisks in Table 1), have output available for the 

historical, RCP 4.5, and RCP 8.5 experiments. For the discussion of future projections over the 

southwest US we adjust our metrics slightly, according to the interest expressed by an electric 

company in southern Arizona in spring time temperature changes. We compare the 20th century 

(1900-2005) bias to the 21st century (2006-2099) projected change of five metrics: annual mean, 

spring mean (March, April, May average), annual trend, May trend, and monthly time series 

standard deviation for Tmin and Tmax. Linear correlations and statistical significance are 

computed using the same methods as in section 4a and model overlap is again accounted for by 

estimating the effective number of independent models as one third of the total (11 effective 

models from 33 total). Three statistically significant correlations between 20th century bias and 

21st century projected change are found, but they all prove fairly weak visually.  

Figure 8 shows these significant correlations, which include Tmax mean bias to RCP 8.5 

projected variability change (Figure 8a), Tmax spring mean bias to RCP 8.5 projected variability 

change (Figure 8b), and Tmax annual trend bias to RCP 4.5 projected annual trend change (Figure 
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8f). None of these significant relationships hold true for both RCPs (Figure 8d,e,c). The reason 

that the significant and insignificant correlations shown in Figure 8 are all negative is unclear, 

while the many other insignificant correlations (not shown) are a mixture of positive and negative 

relationships. No other significant correlations were found between any of the biases and 

projections for Tmin or Tmax.  

 

c. Choosing better performing multimodel ensembles for the southwest 

Regardless of the lack of significant relationship between 20th century biases or between 

20th century bias and 21st century projections, it is still worthwhile to at least eliminate 

demonstrably poor performing models from the MME when the intended use of the MME is to 

inform climate resilience efforts. Using the regional mean, trend, and variability bias rankings in 

the Appendix, we choose two better performing MMEs to examine southwest temperature 

projections. Many methods exist to accomplish this task, but the process of choosing models 

should be relevant to the intended use of projection information. We are not using the max-month 

trend bias rankings (Table A3) in the model selection process because it is not as relevant as the 

annual trend bias to our intended use of the projections.  

We develop a simple point-based method using the bias categories in Tables A1, A2, and 

A4, which were chosen fairly arbitrarily in order to separate excellent and poor performance, while 

distributing average performing models across the remaining categories relatively evenly. For 

Tmin and Tmax separately, each model is given points based on the bias category it falls in for 

each of the three bias types. Zero points are given for the smallest bias category, one point for the 

second smallest bias category, and so on, up to four points for the largest bias category. Summed 
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across the three bias types, the total points possible for each model ranges between zero and twelve, 

with fewer points indicating better performance. This process is completed twice, once for Tmin 

bias and again for Tmax bias. 

A fairly straight forward way of choosing a better performing MME is to eliminate models 

that clearly do not simulate realistic 20th century climate. We call this process “RMBAD” and 

select MMEs for Tmin and Tmax separately. All models that fall within the largest and second to 

largest bias categories for any bias type (i.e. 3 or 4 points for any bias) are eliminated first. Any 

remaining models with total points of 5 or higher are eliminated second. The RMBAD selection 

process results in an MME of 24 models for Tmin and 19 models for Tmax (Table 2) from a total 

of 33 available models. In a planning context, we suggest using this type of MME for probabilistic 

studies and for generation of future potential climate scenarios.  

Another way of choosing a better performing MME is to select a number of the best 

performing models. Knutti et al. (2010) show that for mean seasonal surface air temperature, 

selection of a few good models for averaging substantially decreases mean climate bias as 

compared to an all-model MME average, and the greatest bias reduction is seen when about five 

good models are chosen. Based on these results, we use our points system to choose five models 

with good 20th century performance in a process we call “TOP5”. First, we decided to discount the 

importance of annual trend bias (as compared to mean and variability bias) based on the theoretical 

ability of models to capture small 20th century observed linear trends. The observed 20th century 

annual trend is less than 1 °C/century for Tmin and Tmax over the southwest US. If modeled and 

observed natural variability near the beginning and end of the century is not similar, then for small 

observed trends, it is possible that the modeled trend will be significantly different, therefore 
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imposing equal weight on trend bias during the model selection process may be unreasonably 

restrictive. Second, while it is clear that considerable bias commonality exists beyond just models 

developed at the same center (Pennell et al. 2011), commonalities between models from different 

modeling centers are not transparent and specific model overlap information is not readily 

available. In an attempt to account for at least a portion of model overlap, we require the models 

chosen using the TOP5 process to be from separate modeling centers. The models resulting from 

the TOP5 process for Tmin and Tmax are listed in Table 3. Because this type of MME is so 

restricted in number of models, we suggest using this method for multimodel averaging and 

planning purposes where average projections may be sufficient. 

 

d. 20th century performance and 21st century projections over the southwest US using three 

different multimodel ensembles 

 Figure 9 compares the performance of the RMBAD, TOP5, and all-model MMEs in 

simulating 20th century climate characteristics. For the mean and variability metrics, the RMBAD- 

and TOP5- average biases are an improvement over the all-model average bias. For example, the 

RMBAD-average and TOP5-average reduce the magnitude of the all-model-average spring time 

bias in Tmin of -3.23 °C by 37% (1.19 °C) and 57% (1.83 °C), respectively. Similarly, the 

RMBAD-average and TOP5-average reduce the all-model-average variability bias in Tmax of 

0.112 °C by 27% (0.030 °C) and 94% (0.105 °C). As intended, the RMBAD and TOP5 MME 

selection processes greatly reduce model spread for the mean and variability bias metrics. These 

result are not seen for the trend metrics due to the down-weighting of trend performance in the 
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TOP5 selection process and because for the SW region, relatively few models fall in the worst 

trend bias categories chosen for Table A2.   

Figure 10 shows the 21st century projected temperature changes for the SW region for all 

three MMEs. The TOP5-, RMBAD-, and all-model- average projected changes in Tmin and Tmax 

are nearly identical for all five metrics. There is very small or no reduction in projection uncertainty 

(model spread) between the all-model MME and the RMBAD MME, and the small model spread 

of the TOP5 MME is more than likely caused by the reduction in number of models rather than by 

any real reduction of uncertainty. Results for RCP 4.5 (not shown) are very similar. 

 

5. Conclusions 

 We have examined the capacity of all available CMIP5 global climate models to simulate 

20th century long term mean climate, trends, and variability in monthly average minimum and 

maximum surface air temperature on planning-relevant spatial scales in the US. Transparent 

information regarding individual model performance over the continental US and seven smaller 

US regions (based on the National Climate Assessment) is provided in the form of bias rankings 

in order to create a clearer picture of model ability for resilience efforts.  

At regional scales in the US, the model spread in annual mean bias is between 11 and 14 

°C, revealing a large range in model ability even at coarse timescales. Although for most regions, 

the majority of models have mean seasonal and annual biases of less than 3 °C in magnitude. 

Annual trend bias is generally less than 1 °C/century and max-month trend bias is 1-3 °C/century 

for most regions. While MME-average annual trends may be fairly close to observations, many 

individual models have annual trend biases nearly as large, or larger than, the trend itself. For the 
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monthly trends examined, the MME-average underestimates observed significant trends and many 

models do not agree on the sign of regional trends at monthly time resolution. Models tend to 

overestimate variability, especially during winter months, although most models have variability 

bias of less than 0.5 °C for most regions. Models perform worst over the AK region for every bias 

metric.  

 No strong correlations exist between any of the 20th century biases for any region, nor do 

the 20th century biases correlate strongly with 21st century projected mean, trend or variability 

change. Using the bias rankings to select two better performing MMEs, we examine 21st century 

temperature projections for the southwest US as compared to using an all-model MME. We find 

that constraining temperature projections with MMEs that have small 20th century biases results 

in negligible differences in the MME-average 21st century projected climate change and model 

spread. In other words, models of varied quality (and complexity) are projecting very similar 

changes in temperature, implying that models are simulating warming for different physical 

reasons. More research is required to elucidate the physical reasons why CMIP5 model projections 

of regional warming are so similar, despite the large range in simulation capability.  

Further study is also needed to assess if our findings remain true in other regions of the 

world or for other variables such as precipitation. It is important to note that the models shown 

here to perform well for temperature may not perform well for other variables. For example, in 

Geil et al. (2013) we show that for a region in northwest Mexico located a few degrees south of 

the southwest region in the present study, one of the worst representations of seasonal precipitation 

is seen in the MIRCE model, which is a TOP5 Tmax model in the present study. Similarly, our 

previous work shows the three models from the UK Met Office have by far the best representations 
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of seasonal precipitation in northwest Mexico, whereas we show here that they are not top 

performers for temperature in the southwest.       

Regardless of the current disconnect between 20th century model performance and 21st 

century projected change, relying on information from an all-model MME where each model is 

given equal value is often considered to be a naïve approach to understanding model performance 

and projected climate changes (Jun et al 2008, Maxino et al 2008). Also, it is unknown if the 

relationships between 20th century bias and projected change will remain static as model 

development continues. We suggest that models with smaller 20th century biases have a greater 

likelihood of being more physically realistic with respect to both historical and future climate 

simulations, and therefore, more confidence can be placed in their 21st century projections as 

compared to projections from models that have demonstrably poor skill over the observational 

period. This type of analysis is essential to clarifying our confidence in climate change projections 

and responsibly informing climate resilience efforts. 

 Lastly, this study is based solely on monthly resolution model information. It is unknown 

if the non-relationship between 20th century bias and projected change remains when examining 

higher time resolution model information, for instance, whether an assessment of bias in the 

frequency, intensity, and duration of heat waves affects the projected change in heat wave 

characteristics. For resilience efforts that are based on model projections, we stress the importance 

of carrying this work one step further, through assessment of daily resolution model information 

using specific metrics relevant to the decisions at hand, and constraining vulnerability assessment 

to those models showing reasonable 20th century performance. 

 



 

96 

 

Acknowledgements 

The Berkeley Earth temperature dataset was obtained from http://berkeleyearth.org. ASTER 

GDEM is a product of NASA and METI. We acknowledge the WCRP Working Group on Coupled 

Modelling, which is responsible for CMIP, and we thank the climate modeling groups (listed in 

Table 1) for producing and making available their model output. For CMIP the DOE/PCMDI 

provides coordinating support and led development of software infrastructure in partnership with 

the Global Organization for Earth System Science Portals. This work was supported by NOAA’s 

Climate Program Office through grant NA12OAR4310124 with the Climate Assessment for the 

Southwest program at the University of Arizona, NASA (NNX14AM02G), and the Agnese Nelms 

Haury Program in Environment and Social Justice. 

 

 

 

 

 

 

 

 

Appendix: Model Bias Rankings 

 

The following tables provide model bias rankings for each of the eight US regions. For all appendix 

tables, categories are inclusive on the lower bound and exclusive on the upper bound, and the 42-

model MME is shown in bold. 

 

 

 

http://berkeleyearth.org/
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TABLE A1. Model ranking by the average of the absolute value of seasonal mean bias for the 

period JAN 1900 – DEC 2005.  

 
* Models for which RCP 4.5 and/or RCP8.5 simulations are not available. 
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TABLE A2. Model ranking by absolute value of the JAN 1900 – DEC 2005 trend bias. Models 

with biases significantly different from observations at the 90% confidence level are colored 

brown. 

 
* Models for which RCP 4.5 and/or RCP8.5 simulations are not available. 
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TABLE A3. Model ranking by absolute value of the 1900 – 2005 max-month trend bias. Models 

with biases significantly different from observations at the 90% confidence level are colored 

brown. 

 
* Models for which RCP 4.5 and/or RCP8.5 simulations are not available. 
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TABLE A4. Model ranking by absolute value of the JAN 1900 – DEC 2005 monthly time series 

standard deviation bias. Here, the MME is the mean of individual model standard deviation values. 

Models with biases significantly different from observations at the 95% confidence level are 

colored brown.  

 
* Models for which RCP 4.5 and/or RCP8.5 simulations are not available. 
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Tables and Figures 

Table 1. CMIP5 models used for this study. 

Model Code Modeling Center  Country 

ACCESS1-0 ACC10* Commonwealth Scientific and Industrial Research 

Organization (CSIRO) and Bureau of Meteorology (BOM) 
Australia 

ACCESS1-3 ACC13* 

BCC-CSM1.1 BCCC1* 
Beijing Climate Center, China Meteorological Administration China 

BCC-CSM1.1m BCCCM* 

BNU-ESM BNUEM* Beijing Normal University China 

CanESM2 CANE2* Canadian Centre for Climate Modelling and Analysis Canada 

CCSM4 CCSM4* 

 

National Science Foundation, US Department of Energy, and 

National Center for Atmospheric Research 

 

USA 

CESM1-BGC CESMB* 

CESM1-CAM5 CESMC* 

CESM1-

FASTCHEM 
CESMF 

CESM1-WACCM CESMW 

CMCC-CESM CMCCE 

Centro Euro-Mediterraneo sui Cambiamenti Climatici Italy CMCC-CM CMCCC* 

CMCC-CMS CMCCS* 

CNRM-CM5 CNRMC* Centre National de Recherches Meteorologiques/Centre 

Europeen de Recherche et Formation Avancees en Calcul 

Scientifique 

France 
CNRM-CM5-2 CNRM2 

CSIRO-Mk3.6.0 CSI36* 

Commonwealth Scientific and Industrial Research 

Organization, Queensland Climate Change Centre of 

Excellence 

Australia 

CSIRO-Mk3L-1-2 CSI3L University of New South Wales Australia 

FGOALS-g2 FGOG2 
LASG, Institute of Atmospheric Physics, Chinese Academy of 

Sciences and CESS, Tsinghua University 
China 

GFDL-CM3 GFDC3* 

NOAA Geophysical Fluid Dynamics Laboratory USA GFDL-ESM2G GFDEG* 

GFDL-ESM2M GFDEM* 

GISS-E2-H GIE2H* 

NASA Goddard Institute for Space Studies USA 
GISS-E2-H-CC GIEHC* 

GISS-E2-R GIE2R* 

GISS-E2-R-CC GIERC* 

HadCM3 HADC3 

Met Office Hadley Centre UK HadGEM2-CC HADEC* 

HadGEM2-ES HADEE* 

INM-CM4 INMC4* Institute for Numerical Mathematics Russia 
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IPSL-CM5A-LR IPCAL* 

Institut Pierre-Simon Laplace France IPSL-CM5A-MR IPCAM* 

IPSL-CM5B-LR IPCBL* 

MIROC5 MIRC5* 

Japan Agency for Marine-Earth Science and Technology, 

Atmosphere and Ocean Research Institute (The University of 

Tokyo), and National Institute for Environmental Studies 

Japan 
MIROC-ESM MIRCE* 

MIROC-ESM-

CHEM 
MIRCC* 

MPI-ESM-LR MPIEL* 

Max Planck Institute for Meteorology Germany MPI-ESM-MR MPIEM* 

MPI-ESM-P MPIEP 

MRI-CGCM3 MRIC3* 
Meteorological Research Institute Japan 

MRI-ESM1 MRIE1 

NorESM1-M NOR1M* Norwegian Climate Centre Norway 

* Models with output available for the historical experiment from 1900-2005, and for the RCP 4.5 and RCP 

8.5 experiments from 2006-2100. 
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Table 2. Tmin and Tmax RMBAD MME models and total points for each model. 

TMIN POINTS TMAX POINTS 

ACC10 2 ACC10 3 

ACC13 3 ACC13 3 

BCCC1 4 BCCCM 3 

BCCCM 3 CCSM4 4 

CCSM4 3 CESMB 3 

CESMB 2 CESMC 1 

CESMC 1 CMCCC 4 

CMCCC 3 CMCCS 1 

CMCCS 3 CNRMC 3 

CSI36 4 INMC4 4 

GFDC3 4 IPCAL 3 

GFDEG 2 IPCAM 4 

GFDEM 3 IPCBL 1 

GIE2H 3 MIRC5 3 

GIEHC 2 MIRCC 2 

GIE2R 4 MIRCE 1 

HADEE 2 MPIEL 3 

MIRC5 2 MPIEM 3 

MIRCC 2 NOR1M 2 

MIRCE 3   

MPIEL 3   

MPIEM 3   

MRIC3 2   

NOR1M 3   

 

 

Table 3. Tmin and Tmax TOP5 MME models and total points for each model. 

TMIN POINTS TMAX POINTS 

ACC10 2 CESMC 1 
CESCM 1 CMCCS 1 
GIEHC 2 IPCBL 1 
MIRC5 2 MIRCE 1 
MPIEL 3 MPIEL 3 
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Figure 1. The eight study areas shown over ASTER global DEM topography on our 1°x1° 

common grid. AK=Alaska, NW=northwest, SW=southwest, GP=great plains, MW=midwest, 

SE=southeast, NE=northeast, and US=United States. 
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Figure 2.  Bias in seasonal and annual mean Tmin and Tmax for the period 1900-2005 (where W, 

S, S, F, and A on the x-axis stand for winter, spring, summer, fall, and annual, respectively). The 

MME-average is shown with a square marker and individual models are shown with dots along 

grey vertical model spread bars. Colored markers indicate bias significance at the 90% confidence 

level after adjusting for serial lag-1 autocorrelation.  
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Figure 3. May time series of Tmin for the southwest region, where the solid line shows the 

observations, the blue dash shows the MME-average, and the gray shade shows the model spread. 

The green dash shows an example of one individual model. 
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Figure 4.  Annual average (a) and monthly average trends (b) in Tmin and Tmax. Only the month with the 

greatest MME-average trend bias is shown for each region in (b). Large circles are observations, large 

squares are the MME-average values, and individual models are shown with dots along grey vertical 

model spread bars. Filled large markers indicate MME-average and observed trends that are significant at 

the 90% confidence level, after adjusting for serial lag-1 autocorrelation. Color indicates that the modeled 

and observed trends are significantly different from each other at the 90% confidence level, after adjusting 

for serial lag-1 autocorrelation.  
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Figure 5. Alaska max-month (October) trend in Tmax for (a) observations, (b) the 42-model MME-average, 

(c) the model with the smallest trend bias (MRIC3), and (d) the model with the largest trend bias (CESMF). 

Filled markers indicate that the trend is significant at the 90% confidence level, after adjusting for serial 

lag-1 autocorrelation (p<0.1), while open markers are used for insignificant trends (p>=0.1). The Pearson 

linear correlation coefficient (r) of each trend is shown for reference. 
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Figure 6. The time series standard deviation (a) where circles are the observations, dots along grey vertical 

model spread bars are individual models, and squares represent the average of all individual models. Color 

indicates models with variability that is significantly different than observations at the 95% confidence 

level, adjusted for serial lag-1 autocorrelation. (b) The detrended Tmax AK time series with mean removed 

for the 1960’s, where the black line is the observed time series, the blue dashed line is the model with the 

smallest variability bias (ACC13) for the 106 year study period, and the green dashed line is the model 

with the largest variability bias (CMCCE). Gray shading shows the model spread.  
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Figure 7. Linear regression between 20th century biases for 42 

models. (a) Regression between annual trend bias and max-

month trend bias for the GP region. (b) Regression between 

max-month trend bias and variability bias for the US region. (c) 

Regression between seasonal average mean bias and variability 

bias for the SW region. The regression line is shown in solid 

black with the corresponding correlation coefficient, r, located 

at the top center of each plot. A second regression that 

excludes the 10% of models (4) with the largest magnitude x-

axis variable bias is shown with a dashed line and the 

corresponding r value is in parentheses at the top right of each 

plot. Colored r values represent significance at the 95% 

confidence level, adjusted for reduced model independence. 



113 
 

 

Figure 8. Linear regression of 20th century bias to 21st century RCP 8.5 (a,b,c) and RCP 4.5 (d,e,f) projected 

change for the southwestern US using 33 models. Regression mean bias versus variability change (a,d), 

spring mean bias versus variability change (b,e), and annual trend bias vs annual trend change (c,f). The 

regression line is shown in solid black with the corresponding correlation coefficient, r, located at the top 

center of each plot. A second regression that excludes the 10% of models (3) with the largest magnitude 

x-axis variable bias is shown with a dashed line and the corresponding r value is in parentheses at the top 

right of each plot. Colored r values represent significance at the 95% confidence level, adjusted for 

reduced model independence. 
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Figure 9. Comparison of historical biases between the TOP5, RMBAD and ALL-model MMEs, for Tmin 

(top) and Tmax (bottom) using annual mean, March-April-May seasonal mean, annual trend, May trend, 

and standard deviation bias metrics. Large markers indicate the MME-average and individual models are 

shown with dots along grey model spread bars. 
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Figure 10. Same as Figure 9, except for RCP 8.5 projected change. 

 

 

 


