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ABSTRACT

Rapid environmental changes linked to human-induced increases in atmospheric
greenhouse gas concentrations have been observed on a global scale over recent decades. Given
the relative certainty of continued change across many earth systems, the information output from
climate models is an essential resource for adaptation planning. But in the face of many known
modeling deficiencies, how confident can we be in model projections of future climate? It stands
to reason that a realistic simulation of the present climate is at least a necessary (but likely not
sufficient) requirement for a model’s ability to realistically simulate the climate of the future. Here,
| present the results of three studies that evaluate the 20" century performance of global climate
models from phase 5 of the Coupled Model Intercomparison Project (CMIP5).

The first study examines precipitation, geopotential height, and wind fields from 21 CMIP5
models to determine how well the North American monsoon system (NAMS) is simulated. Models
that best capture large-scale circulation patterns at low levels usually have realistic representations
of the NAMS, but even the best models poorly represent monsoon retreat. Difficulty in
reproducing monsoon retreat results from an inaccurate representation of gradients in low-level
geopotential height across the larger region, which causes an unrealistic flux of low-level moisture
from the tropics into the NAMS region that extends well into the post-monsoon season.

The second study examines the presence and severity of spurious Gibbs-type numerical
oscillations across the CMIPS5 suite of climate models. The oscillations can appear as unrealistic
spatial waves near discontinuities or sharp gradients in global model fields (e.g., orography) and
have been a known problem for decades. Multiple methods of oscillation reduction exist;

consequently, the oscillations are presumed small in modern climate models and hence are rarely
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addressed in recent literature. Here we quantify the oscillations in 13 variables from 48 global
climate models along a Pacific ocean transect near the Andes. Results show that 48% of
nonspectral models and 95% of spectral models have at least one variable with oscillation
amplitude as large as, or greater than, atmospheric interannual variability.

The third study is an in-depth assessment model simulations of 20th century monthly
minimum and maximum surface air temperature over eight US regions, using mean state, trend,
and variability bias metrics. Transparent model performance information is provided in the form
of model rankings for each bias type. A wide range in model skill is at the regional scale, but no
strong relationships are seen between any of the three bias types or between 20" century bias and
21% century projected change. Using our model rankings, two smaller ensembles of models with
better performance over the southwestern U.S. are selected, but they result in negligible differences
from the all-model ensemble in the average 21% century projected temperature change and model
spread. In other words, models of varied quality (and complexity) are projecting very similar
changes in temperature, implying that the models are simulating warming for different physical
reasons. Despite this result, we suggest that models with smaller 20™" century biases have a greater
likelihood of being more physically realistic and therefore, more confidence can be placed in their
21% century projections as compared to projections from models that have demonstrably poor skill
over the observational period. This type of analysis is essential for responsibly informing climate

resilience efforts.
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CHAPTER 1: INTRODUCTION

1.1 USING GLOBAL CLIMATE MODELS TO INFORM CLIMATE ADAPTATION PLANNING: MODELING
ISSUES

Increasingly, science and technology are called upon to inform resilience efforts with
respect to climate change and other social or environmental issues (President Barack Obama 2016,
Kintisch 2006, UNESCO 2000). In the context of using climate model information responsibly to
inform adaptation planning decisions, scientists must consider a number of remaining modeling

issues and ambiguities.

1.1.a Model Uncertainty, Natural Climate Variability, Scenario Uncertainty

Models are only approximations of reality and therefore, multiple types of uncertainty will
always exist. For climate simulations, uncertainty arises not only from the modeling process itself,
but also from natural climate variability and scenario uncertainty (projections of future greenhouse
gas (GHG) emissions).

In global climate models, uncertainty occurs for a variety of reasons, including limited
theoretical and observational understanding of some earth system processes. For example,
scientists still aren’t sure of what exactly triggers EI Nino-Southern Oscillation (ENSO) events, so
while ENSO variability appears in some models, others still struggle with realistic ENSO
simulation (Guilyardi 2015). This limitation also appears in the varied response across models to
identical scenario forcing (Dessai et al. 2005). Structural uncertainty, also referred to as model

inadequacy, is caused by difficulty in mathematically describing known processes accurately or
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because certain processes (e.g. dynamic vegetation) may be missing or approximated (Knutti et al.
2010). Parametric uncertainty, arises because sub-grid scale processes such as cloud microphysics,
convection, turbulence, and vegetation processes must be estimated or empirically derived and
parameterized to the model grid scale (Knutti et al 2010). Additionally, some modeling centers
over the past decade have transformed their already complex coupled global climate models
(CGCMs) into even more complex earth system models (ESMs). The new capabilities of CMIP5
ESMs include parameterizations for aerosol chemistry and biogeochemical processes such as
carbon and nitrogen cycling (Taylor et al. 2012, IPCC 2014). These model uncertainties and
differing levels of model complexity contribute to the spread in CMIP5 model ability to simulate
present-day and future climate.

Natural climate variability can be a large source of uncertainty, especially at regional
spatial scales and on multi-decadal and shorter timescales (Sillmann et al. 2014, Northrop et al.
2014). Long-term model integrations from the CMIP5 suite are free-running, meaning that they
are not initialized and forced with observed sea surface temperature and other observed conditions.
Instead, they are spun up for a few hundred years to a quasi-equilibrium state using a plausible
pre-industrial initialization. Then, this state becomes the new initialization for running the
integrations forward through the present, forced only with observed time-varying atmospheric and
land surface conditions (Stouffer et al. 2004, Taylor et al. 2012, Taylor et al. 2009, IPCC 2014).
Because of this free-running nature, there is no reason for model natural variability to align with
observed natural variability. For example, we can’t expect free-running models to mirror the
timing and intensity of observed ENSO events, which can result in short-term model climatologies,

trends, and variability that differ from observations (Fyfe et al. 2013).
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Model projections of future climate are driven by multiple scenarios of GHG emissions
that prescribe future time-varying atmospheric and land surface conditions (Taylor et al. 2012).
Scenario uncertainty arises from the fact that there is no way to know which of these future
scenarios, if any, will align most closely with reality. Future global emissions depend on many
unpredictable policy choices, technological developments, and economic considerations.
Considering these many uncertainties, how close to reality should we expect a global
climate model to be? And, what level of complexity is required for realistic simulation of present-
day and future climate conditions? Simple models of other complex systems have been shown to
be reliable for decision making (Knutti 2010) and a more complex or higher resolution climate
model may not be necessary to inform certain resilience efforts (Dunn et al. 2015). As climate
models are increasingly used to inform adaptation decisions, these considerations should be

included in discussions of uncertainty with decision makers.

1.1.b Model Performance Evaluation

Unlike weather model forecasts that can be verified within a matter of days, the decadal-
to century- long lead times of climate model projections make verification impossible on decision
making time scales. Therefore, the credibility of climate models must be established by evaluating
how well they simulate past and present-day climate conditions. It stands to reason that a realistic
simulation of present climate conditions is at least a necessary (but likely not sufficient)
requirement for a model’s ability to realistically simulate (for the right reasons) the climate of the
future. Clearly, understanding model performance as compared to observations on a variety of

spatial and temporal scales during the 20th century is crucial to understanding model capability
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and responsibly informing climate resilience efforts. Nonetheless, it is still unclear exactly how to
judge model quality and reliability, and major questions remain including: 1) How does model
performance in simulating present climate relate to future climate projections? 2) What metrics
should be used to separate good models from bad models? and 3) How much skill in simulating
present climate is due to calibration, tuning, or compensating errors?

Most straightforward metrics of assessing model performance in simulating present-day
climate, such as root mean square error of the model climatology, don’t correlate with future
climate projections on a large scale (Knutti et al 2010b). Still, using projections from models that
have demonstrably poor skill over the observational period to inform adaptation efforts is
unwarranted and therefore, many methods of model ranking have been pursued (Giorgi et al. 2002,
Schmittner et al. 2005, Dessai et al. 2005, Maxino et al. 2008, Perkins et al. 2007). Model
performance similarities during the historical period have been shown to correlate to model
projection similarities for certain variables on regional and global scales (Whetton et al. 2007), but
defining historical performance metrics that relate to predictive skill is a largely unsolved problem
(Knutti et al 2010b).

Separating good models from bad models depends on the question at hand. Researchers
should evaluate climate models using metrics that are relevant to their specific purpose over their
region of interest (Maxino et al. 2008, Knutti 2010a). Model quality should be assessed using
multiple variables and techniques that go beyond simply examining mean statistics (Jun et al. 2008,
Sun et al. 2015, Maxino et al. 2008, Knutti 2010). Even after developing application-relevant
methods to assess model skill, the researcher must decide on where to place the threshold that

distinguishes good models from bad ones for their particular purpose. This process is quite
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ambiguous, with some researchers using natural breaks in performance (Maxino et al. 2008),
whereas others use arbitrary top and bottom percentiles of ranked models (Geil et al. 2013, Geil
and Zeng 2015). Knutti (2010a) suggests that it may be less controversial to eliminate the models
that clearly perform the worst in any particular assessment than to agree on the best models.
Researchers should also consider that the extent of model calibration, tuning, and
compensating errors is not transparent, which can lead to overconfidence in model capability. It is
difficult to determine whether excellent agreement between model simulations and observations
is the result of calibration and tuning or if the realistic simulations are actually correct for the right
physical reasons (Knutti et al. 2008). Santer et al. (2009) suggest that using temporal and spatial
variability evaluation metrics offers a more stringent test of model capability, since model
developers are able to tune models to capture mean climate characteristics, whereas realistic
representation of variability is difficult to achieve through tuning alone. Also, due to the limited
number of earth system observations, model evaluation is probably often conducted with the same
observational datasets that were used to develop and tune the model, which can lead to a warped

view of model capability (Knutti et al. 2010b).

1.1.c Multimodel Ensemble Averaging

It is also unclear as to how to aggregate model information to obtain future climate
projections. Researchers must grapple with how to interpret a combination of models with
differing levels of complexity, whether averaging models together makes physical sense, which

models to include if multimodel ensemble (MME) averaging is appropriate, or whether
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probabilistic methods of aggregation are more robust than MME averaging for a particular
application.

Although CMIP model experiments are standardized, the suite of different models used to
run those experiments represents a diverse range of model formulation, grid resolution, and
complexity. Given these differences, individual models are simulating future warming for different
reasons (Knutti et al 2008). In spite of this, any modeling center is allowed to contribute to CMIP
archives regardless of model complexity or quality, which results in ambiguity as to how to
interpret sets of CMIP models (Knutti 2010, Taylor et al. 2012).

The traditional method for aggregating model information is to create an MME average
from all available model simulations. For mean climate simulation of multiple combined variables
at global scales, an all-model MME average has been shown to outperform individual models,
probably due to the cancelation of random modeling error (Reichler et al. 2008). However, an all-
model MME may not be better than the single best model for any particular mean climate variable
and selection of a few good models (up to about 5) for averaging has been shown to substantially
decrease mean climate bias as compared to an all-model MME, at least for mean seasonal surface
air temperature (Knutti et al. 2010). Depending on the context, averaging model information may
not be physically meaningful. It may lead to unrealistic effects like the smoothing of spatially
heterogeneous patterns (Knutti 2010) or yield physically implausible results. For example, in
situations where there is a tipping point between multiple stable solutions, an average state may
not exist (Knutti et al. 2010). If MME averaging is appropriate, the researcher is faced with the
questions of which and how many models to include and whether to weight models by skill, which

if improperly implemented could result in overconfidence that can be more damaging for
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adaptation decision making than using equal weighting or not aggregating models at all (Knutti et
al. 2010).

All-model MME averages are considered by some scientists to be a naive approach to
understanding model performance and projected climate changes (Jun et al 2008, Maxino et al
2008). Some argue that if including very poorly performing models in ensemble averages improves
the average as compared to observations, then the improvement is for the wrong reasons (Maxino
et al. 2008). Dessai et al. (2005) argue that using frequency distributions to aggregate model
projections as opposed to MME averages is a better fit for identifying appropriate adaptation
responses. Even when employing probabilistic methods though, the researcher must confront all

the same questions regarding model quality, evaluation, and selection.

1.1.d Model Independence

Further complicating the interpretation of climate model information is the issue of model
independence. Significant overlap exists between models due to the sharing of training data,
human expertise, and model code (Pennell et al. 2011, Knutti 2010). Many models have highly
correlated biases (Jun et al. 2008, Pennell et al. 2011, Knutti 2010) and considerable bias
commonality exists beyond just models developed at the same center (Pennell et al. 2011). Model
overlap results in an effective number of climate models that is much smaller than the total. While
the effective number of climate models varies widely for individual model fields, Pennell et al.
(2011) estimate that on average, the effective number of CMIP3 models for the northern

hemisphere extratropics is between 7.5 and 9 from a total of 24. This raises issues for probabilistic
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and statistical methods that assume model independence and leads to overconfidence in model
projections, for example, due to confidence intervals that are too narrow (Pennell et al. 2011).
Model projections are likely to be biased toward an artificial consensus that is caused in
part by model overlap (Pennell et al. 2011). It is reasonable to suspect that model similarities
translate into a reduced range of climate change projections that don’t sample the full range of
uncertainty (Pennell et al. 2011, Knutti et al. 2008). In light of these facts, it is unclear which and
how many models should be used to generate climate change projections and how much
confidence can be placed on projections from a set of climate models that have so many

commonalities.

1.2 USING GLOBAL CLIMATE MODELS FOR CLIMATE ADAPTATION PLANNING: APPLICATION ISSUES

Controlling and adapting to climate change are issues that are not easily defined and are
complexly interwoven across scientific, technological, environmental, social, economic, and
political boundaries. These types of wicked problems don’t have “right” solutions, but their
negative consequences can be mitigated through interdisciplinary collaboration, linking
knowledge to action, and perseverance. Climate scientists can successfully contribute to mitigation
and adaptation efforts by using collaborative knowledge exchange processes to deliver salient,
credible, and legitimate information at the interface of science and decision making with serious

consideration of the ethical issues at play.
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1.2.a Salience, Credibility, Legitimacy

Linking knowledge to action through the production of usable science requires that the
scientific information produced be perceived by all stakeholders as salient, credible, and legitimate
(Cash et al. 2003). Salience refers to the relevance of the information in the context of user needs,
credibility refers to whether the information is perceived to be scientifically plausible and
technically adequate, and legitimacy refers to whether the information itself, the producers of the
information, and the process of creating the information are perceived to be unbiased and fair
(Cash et al. 2003). These three elements generate trust across boundaries, shape knowledge
exchange processes, and increase the likelihood that scientific information will be used (Lacey et
al. 2015).

The salience, credibility, and legitimacy of climate information can be maximized when
the producer is dedicated to understanding the realm of the user, including their organizational
function, how information flows within their agency, how decisions are made, and their previous
experience with climate information (Meadow et al. 2015). It is important for the producer to
understand user priorities, decision making timelines, and the context in which the climate science
will be applied (Brugger and Crimmins 2015). This type of knowledge will help the producer
translate scientific information in understandable and salient ways, and also reveal the best ways
to make the information available and accessible to the user. While keeping the focus on user
information needs, the producer should use robust disciplinary and interdisciplinary scientific
methods and address user and stakeholder concerns about bias and fairness throughout the process
of scientific knowledge creation. For the user, usable science is understandable, accessible, salient,

easy to integrate with existing knowledge, and fits into the user’s decision framework (Meadow et
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al. 2015). Jacobs et al. (2005) suggest asking a series of questions to assess the usefulness of
scientific services and products: 1) Are producers asking and answering relevant questions at
spatial and temporal scales relevant to the user? 2) Can the delivery of the scientific information
be timely such that it is useful for decision making? 3) Are the scientific findings considered
accurate and trustworthy by all stakeholders? 4) Is the scientific information provided in a format
and translated in a way that is understandable to the user? 5) Is the scientific information useful
given the constraints in the decision making process?

Generating usable science and working successfully at the boundary of science and
decision making requires humility to recognize the limitations of one’s own knowledge, and
openness and respect for other systems of thought. A scientist functioning in this space will need
to augment their disciplinary knowledge with expertise in effective communication across
boundaries, facilitation, and policy development, and understand the processes of knowledge

exchange (Preston et al. 2015).

1.2.b Knowledge Exchange

Knowledge exchange is the process by which the interchange of knowledge occurs
between scientific information producers and users or decision makers. It encompasses knowledge
production, sharing, storage, mobilization, translation, and use (Cvitanovic et al. 2015).
Historically, the transfer of knowledge has often followed the uni-directional knowledge-deficit
model, where scientists as producers of knowledge make research available to potential users.
Here, knowledge producers and users are two independent groups. The knowledge-deficit model

considers the publication of scientific journal articles to adequately bring science knowledge into
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the public domain and leaves the user or decision maker responsible for locating, understanding,
and using the scientific information (Cvitanovic et al. 2015). This model may produce highly
credible scientific information, but it is problematic for producing usable science that is also
perceived as salient and legitimate by users. Success in achieving these three elements to increase
the usability of scientific information is more likely to occur through collaborative and
participatory knowledge exchange and research processes (Cash et al. 2003).

Contemporary approaches to improving knowledge exchange between scientists and
decision makers include embedding, knowledge brokers, boundary organizations, and
coproduction. Embedding refers to short-term professional development or permanent advisory-
type positions for research scientists within organizations dominated by decision makers or for
decision makers within scientific organizations. These types of positions facilitate the spread of
knowledge across boundaries and the narrowing of priority knowledge gaps (Cvitanovic et al.
2015). The role of a knowledge broker is to facilitate the exchange of information among various
stakeholders (e.g. researchers, practitioners, and policy makers). Knowledge brokers are typically
based in science research teams or institutions, acting as intermediaries that develop relationships
with science producers and users, and facilitating knowledge exchange across their networks
(Cvitanovic et al. 2015). Boundary organizations facilitate knowledge exchange among diverse
networks of stakeholders much like knowledge brokers, but they are established as a separate entity
and are not typically embedded in institutional research teams. For this reason, boundary
organizations can more effectively represent both sides of the science and decision making
interface, while maintaining credibility through independence (Cvitanovic et al. 2015). Knowledge

coproduction, a widely advocated form of knowledge exchange, refers to a process where all
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relevant stakeholders participate in all aspects of the research program from onset to
implementation and analysis (Cvitanovic et al. 2015).

The principles of coproduction are: 1) establishing long-term ongoing relationships
between researchers and decision makers, 2) ensuring two-way communication, and 3) keeping
the focus on the production of usable science (Meadow et al 2015). Successful coproduction is
heavily reliant on iterativity (Meadow et al. 2015, Ferguson 2015), meaning that ongoing two-way
interactions are essential and that the research and communication process itself should be
malleable. Iterativity promotes evaluation and adjustment of research strategies and flexibility in
research direction and methods (Brugger and Crimmins 2015). Up-front recognition of the need
and importance of iterativity is crucial for all participants to successfully coproduce knowledge
and generate usable science (Ferguson 2015). The process of coproduction promotes the salience,
credibility, and legitimacy of the information produced by crossing communication divides
between researchers and decision makers, translating knowledge to action, and active mediation

of any conflicts that may arise (Cash et al. 2003).

1.2.c Ethics

The most broadly discussed ethical issue pertaining to climate change is whether human
beings have a responsibility to mitigate anthropogenic effects on the earth system to ensure
sustainable use of natural resources and a livable environment for future generations. While this is
an important issue, there are also many ethical issues pertaining to the interface of climate science
research and decision making that should be considered. The development of a recognized system

of professional ethics is being called for, in part, due to conflicting climate science research results
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that can affect the direction of adaptation efforts. A system of professional ethics could enhance
the quality control of climate science research that is intended to inform adaptation efforts and
protect the interests of adaptation practitioners (Lacey et al. 2015).

For researchers working at the boundary of climate science and adaptation efforts, ethical
considerations should come into play with the choice of research methods, presentation of
uncertainty, interaction at the interface of science and decision making, and treatment of
ambiguity. With respect to research methods, the researcher should be aware of modeling issues
such as those discussed in Section 1.1 and create defensible research methods that navigate those
issues, bearing in mind the intended use of the research. A contentious topic that often arises
around adaptation efforts is whether downscaled climate information is needed in order to make
sound adaptation decisions. Downscaled climate information can be no more reliable than the
global climate model simulations on which the downscaling is based and does not automatically
imply better information (Taylor et al. 2012). The assumptions and limitations of downscaling
processes are often not well understood or explained, which has led to contradictions in climate
projections (Hewitson et al. 2014). It may be the case, as in Australian viticulture, that the spatial
scales relevant to end-user decision making can be captured with the grid resolution of current
global climate models, which is information that can be elucidated by collaborative knowledge
exchange processes and the understanding of user needs (Dunn et al. 2015). The uninformed or
inappropriate use of downscaling also affects the transparency of uncertainty. Researchers may be
unintentionally (or intentionally) presenting their findings as uncontroversial inputs to the user’s
decision making process, without proper understanding of their own methodological assumptions

and uncertainties (Lacey et al 2015, Hewitson et al. 2014). Researchers interacting at the interface
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of science and decision making should assume the role of an honest broker, providing factual
information that does not reflect their own personal preferences, and never push specific methods
or results because of benefit to themselves. Climate adaptation researchers, specifically, should
help users understand the full range of adaptation options that may be available, instead of only
the options that are relevant to themselves (Lacey et al 2015). Ambiguity in climate adaptation
efforts is an opportunity to implement collaborative knowledge exchange processes that align with
a broad set of values for exploring multiple adaptation pathways forward. Although, there is
potential for asymmetric power relationships to develop in the face of ambiguity, where persuasive
behaviors are used to exploit ambiguity for the gain of a single party over a broader benefit to all
involved stakeholders. This risk should be understood by stakeholders working at the science and

decision making interface and managed through ethical guidelines (Fleming et al. 2016).

1.3 OBJECTIVES

The credibility of climate models is established by evaluating how well they simulate past
and present-day climate conditions. Science and technology are increasingly called upon to inform
climate change adaptation and resilience efforts, and using projections from models that have
demonstrably poor skill over the observational period to inform these efforts is unwarranted. This
dissertation focuses on evaluating the skill of CMIP5 global climate models as compared to
observations over the 20" century.

The work presented in Appendix A, published in the Journal of Climate (Geil et al. 2013),

examines how well climate models simulate the North American monsoon system (NAMS) and

27



the causes of deficiencies in poorly performing models. Appendix B, published in Geophysical
Research Letters (Geil and Zeng 2016), examines the presence and severity of unphysical
numerical oscillations in global climate models that may affect the credibility of regional scale
climate projections. Appendix C, which will be submitted to the Journal of Applied Meteorology
and Climatology, is an in-depth assessment of model simulation of 20th century monthly minimum
and maximum surface air temperature over the US on a regional basis.

In addition to these works, | have co-authored four other model evaluation and climate
change projection studies. In Sheffield et al. (2013), | contributed information on historical model
simulation of the NAMS, similar to the work in Appendix A. In Maloney et al. (2014), |
contributed information on projected changes to the NAMS using the findings presented in
Appendix A. I also assisted in the preparation of data and manuscript writing for a study examining
the ability of CMIP5 models to simulate tropical depression wave activity and associated
environmental factors in Serra and Geil (2016). Finally, in Zeng and Geil (2016), | assisted with
the analysis and manuscript writing of a study developing decadal and long-term global warming

projections based on an observational data-driven model.
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CHAPTER 2: PRESENT STUDY

2.1 ASSESSMENT OF CMIP5 MODEL SIMULATIONS OF THE NORTH AMERICAN MONSOON SYSTEM

Global and limited-area model simulations have been conducted in the past to evaluate the
representation of the North American Monsoon System (NAMS) and the results show a wide range
of model ability, but limited information has been published on this topic using the latest set of
global climate models from phase 5 of the Coupled Model Intercomparison Project (CMIP5). The
present study is comprised of a series of analyses aimed at assessing how well the CMIP5 suite of
coupled general circulation models (CGCMs) is able to represent the NAMS.

Two analysis regions include a small 4°x5° core domain in northwestern Mexico and an
extended domain covering the larger NAMS region that encompasses most of Mexico and some
of the US south and western states. Analyses include 1) comparison of the annual cycle of area-
averaged monthly precipitation to observations and previously published CMIP3 results over the
core monsoon domain, 2) a spatial correlation of monthly model precipitation, geopotential height,
and wind to observations, 3) an assessment of monsoon onset and retreat dates as determined from
daily precipitation, and 4) a model composite analysis of the best versus the worst representations
of the NAMS.

There has been no improvement in the magnitude of the mean annual cycle of monthly
precipitation over the core NAMS region since CMIP3, but the timing of seasonal changes in
precipitation has improved with 27% more CMIP5 than CMIP3 models having zero phase lag.

Despite this, a few models do not have a recognizable monsoon signal at all. Also, the multi-

29



model mean annual cycle is biased wet and exhibits the common problem of late monsoon
termination.

Monsoon season correlations of monthly model output to observational data establish that
most models have the highest correlation at the 500 hPa level and the lowest correlations for
precipitation, however, relatively good or bad performance at the 500 hPa level is not predictive
of 850 hPa level or precipitation performance.

The multi-model mean onset and retreat dates are 23 days early and 9 days late,
respectively, using an absolute criteria for defining monsoon onset and retreat. Yearly model onset
variability is comparable to that of the observational data, but yearly model retreat variability is
much greater than what is seen in the observations. On average, model-relative criteria for
determining onset and retreat dates result in less model bias compared the absolute criteria due to
the prevailing wet bias in model precipitation.

An 850 hPa composite of best models reproduces the development and mature stages of
the NAMS, but the composite of worst models fails to adequately illustrate most of the
precipitation and circulation features seen in the observations. The large-scale circulation pattern
bias seen in the best model composite is spatially consistent over the larger region influencing
monsoon development, and thus still allows for a successful representation of the NAMS during
the development and mature stages. In contrast, the spatial inconsistency of large-scale circulation
pattern bias in the worst models prevents a realistic representation of the NAMS during the same
period. Neither the composite of best or worst models realistically captures the retreat of the
NAMS due to an extended connection to tropical moisture that causes excessive fall and winter

precipitation. Models that best capture the relevant large-scale circulation patterns at low levels
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usually have a realistic representation of the NAMS, while performance at mid-levels does not
appear to be a major factor.

The importance of large-scale features to the representation of the NAMS in CMIP5
models is clear and for many models there is room for improvement in the representation of the
NAMS by way of more accurate representation of low-level large-scale circulation features.
Improvement in the representation of the NAMS in the best models is likely limited until increased

model resolution allows for the capture of small-scale NAMS processes.

2.2 QUANTITATIVE CHARACTERIZATION OF SPURIOUS NUMERICAL OSCILLATIONS IN 48 cMIP5

MODELS

The presence of spurious numerical oscillations (SNOs) in global climate models has been
known for decades and has been previously shown to cause poor representation of precipitation,
wind, sea surface temperature, clouds, and more. The SNOs (in the form of Gibbs oscillations) are
most prevalent in models that use spectral numerics and could compromise the results of regional
climate analyses. This study provides a quantitative characterization of the SNOs in 48 CMIP5
models to draw awareness to the large SNOs present in these models.

An ocean transect at approximately 29° S that bisects the South Pacific High near the Andes
is used to examine the SNOs where they are most easily visible: over the ocean and near a steep
topographic gradient. We use 27-year climatological transects of monthly model variables over
ocean points only and compute smoothed versions of the transects by applying a running mean.

Observations are treated in the same way. Two metrics are used to identify and quantitatively
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characterize SNOs along the transect. The first is the root mean square difference (RMSD) between
the climatological transect of a variable and its running mean, representing an absolute measure of
the oscillation amplitude. A relative measure is computed as the ratio of the RMSD to interannual
variability (IAV). At each transect point, the standard deviation in time is first calculated using
annual average values. 1AV is then obtained as the average along the entire transect.

For variables that have observations for comparison, 40% of models on average have
RMSD values greater than the RMSD value for observations along the transect multiplied by a
factor of 5. Furthermore, 69% of the models have an RMSD:IAYV ratio that is as large as, or larger
than, interannual variability along the study transect for at least one variable. This translates to
95% of spectral models and 48% of non-spectral models having at least one RMSD:IAV ratio
greater than unity. The largest SNOs by absolute and relative measures are seen in spectral models
and in the surface pressure field, although smaller SNOs are visible in many of the variables
examined. For eight of the thirteen variables, at least one model (or as many as half for surface
pressure) has SNOs with amplitude as large as, or much larger than, the interannual variability of
those variables along the transect. These variables include surface pressure, surface meridional
winds, vertical velocity, surface air temperature, incoming surface radiation, and total cloud
amount. Also, regardless of the numerical method employed, model resolution does not predict
oscillation amplitude or prevalence.

The presence of large stationary numerical oscillations with amplitudes on the scale of
atmospheric interannual variability suggests that these oscillations are spurious and should not be
ignored. Despite this, SNOs are rarely mentioned in CMIP analysis literature probably because

they are perceived as being small in modern climate models. Given past research by others and
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our present findings, there is no reason to believe that the spurious oscillations are benign to
climate simulations and they could very well have harmful impacts on the representation of

variables at local, regional, and global scales.

2.3 EVALUATION OF THE MEAN STATE, TRENDS, AND VARIABILITY IN CMIP5 MONTHLY SURFACE AIR
TEMPERATURE AT REGIONAL SCALES OVER THE U.S. FOR APPLICATION TO CLIMATE ADAPTATION

PLANNING

Given the relative certainty of continued rapid change across many earth systems, local
and regional decision makers are increasingly interested in climate change planning and adaptation
methods. These decision makers need climate model projections on relevant temporal and spatial
scales, as well as assessments of model reliability in order to make confident planning decisions.
Here, we present an analysis of individual model simulations of monthly average minimum and
maximum surface air temperature (Tmin, Tmax) to provide a clearer picture of model capability
for adaptation and resilience planning efforts.

Area-averaged model and observed 20" century time series for eight regions in the United
States are used to assess biases in model long-term mean state, trend, and variability. Model mean
climate is examined using long-term annual and seasonal averages, linear trends are assessed using
annual and monthly average temperature, and the standard deviation of the detrended monthly
temperature anomaly time series is used to assess variability. Transparent model performance

information is provided in the form of model rankings for each bias type.
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A wide range in model skill is seen even for long term mean climate simulation where the
highest skill is expected, and much of the ensemble cannot reproduce significant observed long
term trends at monthly resolution. No strong relationships are seen between any of the three bias
types or between 20" century bias and 21 century projected change. Using our model rankings,
two smaller ensembles of models with better performance over the southwestern U.S. are selected
and their 21% century projections are compared to those of the all-model ensemble. For the
southwest, constraining temperature projections with multi-model ensembles that have small 20™"
century bias results in negligible differences in the multi-model ensemble average 21 century
projected temperature change and model spread. In other words, models of varied quality (and
complexity) are projecting very similar changes in temperature, implying that the models are
simulating warming for different physical reasons.

Despite these results, we suggest that models with smaller 20" century biases have a greater
likelihood of being more physically realistic with respect to both historical and future simulations,
and therefore, more confidence can be placed in their 21 century projections as compared to
projections from models that have demonstrably poor skill over the observational period. This type

of analysis is essential for responsibly informing climate resilience efforts.

2.4 FUTURE RESEARCH DIRECTIONS

Much research is needed on how to responsibly utilize climate model information with
respect to climate change vulnerability assessment and resilience planning efforts. This type of

work can be broken down into many research sub-categories, of which the following list is by no
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means comprehensive. 1) DEMONSTRATING MODEL CAPABILITY: transparent and in-depth multi-
metric planning-relevant performance assessments of model skill compared to 20" century
observations on a range of spatial and temporal scales. 2) DEFINING CONFIDENCE IN MODEL
PROJECTIONS: how to interpret or adjust confidence in model projections for any given
vulnerability or resilience effort based on 20" century model performance information. 3)
APPLYING MODEL ENSEMBLES: what methods to use for choosing or combining climate model
projections for vulnerability and resilience efforts, how to account for the issue of model overlap,
how to describe and understand projection uncertainty in a planning context. 4) KNOWLEDGE
EXCHANGE BEST PRACTICES: expansion of specific best practices for the facilitation of climate
model knowledge exchange among scientists and practitioners when the end-goal is to use climate
model projections for decision making. 5) KNOWLEDGE EXCHANGE ASSESSMENT: defining metrics
to measure knowledge exchange success and the usability of any scientific information created.

The three manuscripts introduced in Sections 2.1-2.3 and presented in the Appendices of
this dissertation mainly fall under the first research sub-category defined above “DEMONSTRATING
MODEL CAPABILITY”, although the most recent manuscript (Appendix C) also includes aspects of
sub-categories two “DEFINING CONFIDENCE IN MODEL PROJECTIONS” and three “APPLYING MODEL
ENSEMBLES”. All three manuscripts spur follow-on research questions that also fall within the
above-defined applied climate modeling research sub-categories.

In Appendix A we show a range of model skill in simulating the NAMS, although most
models have large wet biases and do not properly simulate the monsoon season retreat due to large-
scale low-level circulation issues that result in a prolonged connection to tropical moisture. We

look at future projections for the core NAMS region in Maloney et al. (2014) and find a projected
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MME-average annual mean drying of 22.2% by the end of the 21% century when using a 16-model
ensemble that includes top performers and poor performers (based on the research in Appendix
A). When using a 9-model ensemble of only top performers the MME-average annual mean
projected drying is reduced to 15.4%, while the drying projected from the model that best simulates
the NAMS in the 20" century is only 5.3%. Follow-on research questions could include: During
which months is most of the projected drying occurring? What does large-scale circulation in the
larger monsoon region look like in the future? What low-level circulation changes are causing the
predicted drying in the good vs. poor historical performing models? Is future NAMS region
circulation change related to historical model performance in a way that can inform our confidence
in model projections of change? These questions are aimed at using model capability information
to adjust our confidence in projections of future change, which falls under the second sub-category
of climate model application research “DEFINING CONFIDENCE IN MODEL PROJECTIONS”. Answers
to these questions could also help define appropriate methods for choosing or combining model
projections in the NAMS region for resilience planning purposes, which is research sub-category
three “APPLICATION OF MODEL ENSEMBLES”.

In Appendix B, we show that large spurious numerical oscillations are indeed present in
most state-of-the-art climate models on the scale of atmospheric interannual variability near steep
terrain. Spurious oscillations of this scale are likely not benign to climate simulations. Follow-on
research could include the demonstration of future projection differences between ensembles of
best and worst performing models with respect to spurious oscillations. An area that may vyield
impactful results is located off of the South American coast near the Andes, where some of the

largest spurious oscillations are seen. How much do the oscillations affect the simulation of
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regional upwelling and do they affect the simulation of EI Nino-Southern Oscillation (ENSO)
events? Do models with small or no spurious oscillations simulate ENSO frequency, intensity, and
duration more realistically than models with large spurious oscillations? This type of research falls
in large part under the first sub-category “DEMONSTRATING MODEL CAPABILITY”.

In Appendix C, we show a large range in model skill in simulating the 20" century mean,
trend, and variability in monthly surface air temperature at regional scales in the US. Despite this
fact, constraining temperature projections with multi-model ensembles that have small 20" century
bias results in negligible differences in the multi-model ensemble average 21 century projected
temperature change and model spread, at least for the southwest US region. This work focused
only on regionally averaged temperature, therefore, the physical explanations for the large
differences in model skill remain unknown. Follow-on research could use additional model
variables to explain the physical reasons for large model biases, which may help shed light on why
20" century model bias is inconsequential to 21% century temperature projections. Also, extending
the analysis at least to precipitation would be very informative for practitioners. These research
ideas fall under sub-categories one “DEMONSTRATING MODEL CAPABILITY” and two “DEFINING
CONFIDENCE IN MODEL PROJECTIONS”.

Another essential future research direction is the assessment of the limitations of
downscaling techniques and how downscaled output relates to the original global model input.
Downscaling techniques are currently being used for vulnerability and resilience efforts, and in
regional and national climate assessments, despite the fact that the assumptions and limitations of
downscaled climate products are not well understood. Responsible use of climate model

information for decision making requires transparent and user-relevant assessments of downscaled
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climate products. This research would be most closely associated with the first research sub-
category “DEMONSTRATING MODEL CAPABILITY”, although it could easily include aspects of sub-
categories two “DEFINING CONFIDENCE IN MODEL PROJECTIONS” and three “APPLYING MODEL
ENSEMBLES”.

Finally, case studies in the realms of climate vulnerability assessment, resilience planning,
and the knowledge exchange processes involved are critically needed in peer-reviewed
publications. More documentation of both successful and unsuccessful vulnerability and resilience
efforts are needed in order to improve knowledge exchange processes, clearly define best practices,
and develop assessment metrics to measure the success of knowledge exchange processes and
usable science products. Well-documented case studies could advance understanding in all of the

five research sub-categories defined in this section.
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Assessment of CMIPS Model Simulations of the North American Monsoon System
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Department of Atmospheric Sciences, University of Arizona, Tucson, Arizona
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ABSTRACT

Precipitation, geopotential height, and wind fields from 21 models from phase 5 of the Coupled Model
Intercomparison Project (CMIPS) are examined to determine how well this generation of general circulation
models represents the North American monsoon system (NAMS). Results show no improvement since CMIP3
in the magnitude (root-mean-square error and bias) of the mean annual cycle of monthly precipitation over
a core monsoon domain, but improvement in the phasing of the seasonal cycle in precipitation is notable.
Monsoon onset is early for most models but is clearly visible in daily climatological precipitation, whereas
monsoon retreat is highly variable and unclear in daily climatological precipitation. Models that best capture
large-scale circulation patterns at a low level usually have realistic representations of the NAMS, but even the
best models poorly represent monsoon retreat. Difficulty in reproducing monsoon retreat results from an in-
accurate representation of gradients in low-level geopotential height across the larger region. which causes an
unrealistic flux of low-level moisture from the tropics into the NAMS region that extends well into the post-
monsoon season. Composites of the models with the best and worst representations of the NAMS indicate that
adequate representation of the monsoon during the early to midseason can be achieved even with a large-scale
circulation pattern bias, as long as the bias is spatially consistent over the larger region influencing monsoon
development: in other words, as with monsoon retreat, it is the inaccuracy of the spatial gradients in geopotential
height across the larger region that prevents some models from realistic representation of the early and mid-
season monsoon system.

1. Introduction to easterly and southeasterly around the west side of the
anticyclone by July (Douglas et al. 1993; Higgins et al.
1997). Low-level flow into the monsoon region is strongly
influenced by the evolution of the North Atlantic sub-
tropical high (NASH) and North Pacific subtropical high
(NPSH). As the subtropical highs build and move north-
ward, northwesterly flow from the NPSH is reduced over
the northern Gulf of California and the westward exten-
sion of the NASH brings southerly flow into eastern
Mexico and the U.S. Great Plains (Schmitz and Mullen
1996; Higgins et al. 1997; Barlow et al. 1998). Southerly
winds flow over the Gulf of California (Badan-Dangon
1991; Douglas et al. 1993) and convective precipitation
quickly spreads to the northwest along the western slopes
and foothills of the Sierra Madre Occidental (SMO:;
Douglas et al. 1993). The mature stage (July-August)
brings the precipitation maximum over the SMO and in-
creased precipitation coincides with increased vertical

The evolution of the North American monsoon sys-
tem (NAMS) can be described as having development,
mature, and decay stages similar to but less intense than
its larger Asian counterpart. During the development
stage (May-June), the extratropical jet weakens and
migrates to the north resulting in decreased frequency of
synoptic-scale transient activity from the midlatitudes
over northern Mexico and the southwestern United
States (Higgins et al. 1997). A thermal surface low forms
in the desert regions (Rowson and Colucci 1992) and
a pronounced anticyclone at jet stream level develops
over northwestern Mexico (Barlow et al. 1998), analogous
to the Tibetan high over Asia (Tang and Reiter 1984).
Mid- to upper-level flow shifts from westerly in May—June
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moisture transport (Douglas et al. 1993: Schmitz and
Mullen 1996). The decay stage (September—October) is
conceptually the reverse of the development stage, but is
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1. Core NAMS domain (23.875°-28.875°N, 108.875°~104.875°W) and extended NAMS

domain (15.125°-34.875°N, 119.875°-90.125°W), shown over regional topography.

more gradual (Higgins et al. 1997; Barlow et al. 1998).
The main source of monsoon moisture has been debated
over recent decades, but it is most likely that low-level
moisture is advected mainly from the Gulf of California
and the eastern Pacific, while the Gulf of Mexico con-
tributes to upper-level moisture (Schmitz and Mullen
1996; Berbery 2001; Higgins et al. 2003). NAMS region
continental moisture sources are also important, as pre-
cipitation recycling contributes to monsoon season rain-
fall (Bosilovich et al. 2003;: Dominguez et al. 2008).
Global and limited-area model simulations have been
conducted in the past to evaluate the representation of
the NAMS and the results show a wide range of model
ability. Arritt et al. (2000) demonstrated that the Met
Office (UKMO) HadCM2 global model could simu-
late generally realistic NAMS circulation and pre-
cipitation, whereas Yang et al. (2001) showed that the
National Center for Atmospheric Research (NCAR)
CCM3 global model was unable to simulate these
NAMS features. Liang et al. (2008) found that only 1 of
17 CMIP3 global models was able to realistically repro-
duce the NAMS precipitation annual cycle, interannual
variability in precipitation, and key circulation patterns
such as the monsoon high and the westward extension of
the NASH with the associated low-level southerly flow.
Stensrud et al. (1995) reproduced monsoon mesoscale
circulation and the general features of deep convec-
tion with the Fourth-generation Pennsylvania State
University-NCAR Mesoscale Model (MM4) limited-
area model, and Berbery (2001) showed that NCEP’s Eta
limited-arca model could additionally reproduce the
diurnal cycle of moisture flux. Gao et al. (2007) used the
MMS limited-area model to demonstrate improvement
over global models in representing spatial and temporal

precipitation patterns but found model deficiencies in
representing the evolution of the diurnal cycle. Castro
et al. (2007a) used the Regional Atmospheric Modeling
System (RAMS) limited-area model driven with global
reanalysis data and found that the model’s enhanced
representation of the surface boundary produced an
acceptable diurnal cycle of summer precipitation in the
monsoon region that was not captured by the driving
reanalysis. A recent study by the same group using the
Weather Research and Forecasting Model (WREF:
Castro et al. 2012) showed the potential for limited-area
models to improve seasonal NAMS forecasts. The use
of higher resolution limited-area models that are able to
capture the diurnal cycle of convection, as opposed to
coarser general circulation models that do not have this
capability, is stressed by Castro et al. (2007a,b, 2012) for
drawing conclusions with respect to regional climate
variability and prediction.

The present study is comprised of a series of analyses
aimed at assessing how well the phase 5 of the Coupled
Model Intercomparison Project (CMIPS) suite of cou-
pled general circulation models (CGCMs) is able to
represent the NAMS. The two analysis regions include
a smaller core domain and a larger extended domain
(Fig. 1). Our core domain is smaller but similar to that
used by the North American Monsoon Experiment
(NAME; Higgins et al. 2006) and related studies (e.g.,
Higgins and Gochis 2007; Gutzler et al. 2009), while our
extended domain includes the larger NAMS region. The
uniformity of the annual cycle of precipitation across all
grid points within our core domain has been visually
verified, as in Higgins et al. (1999), to ensure we have
selected an area with a consistent monsoon precipitation
signal.
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The observational data and CMIPS model simulations
used in this study are described in section 2. The annual
precipitation cycle and comparison to CMIP3 is pre-
sented in section 3, while section 4 evaluates the spatial
progression of the monsoon using spatial gridpoint
correlation. Daily precipitation is utilized to calculate
monsoon onset and retreat dates in section 5, compos-
ites of the best and worst performing models are dis-
cussed in section 6, and a summary is presented in
section 7.

2. Observational data and model simulations
a. Observational data and reanalysis

Monthly precipitation observations are obtained from
the recently developed National Oceanic and Atmo-
spheric Administration (NOAA) 0.5° X 0.5° gridded
precipitation dataset (P-NOAA) provided by Drs. Russ
Vose and Ed Cook and is described by Castro et al.
(2012). This dataset was created from station data and
considers the dependence of precipitation on elevation,
similar to the Parameter-Elevation Regressions on In-
dependent Slopes Model (PRISM) dataset that covers
only the United States (Daly et al. 1994). For our daily
time resolution analysis, we use the Tropical Rainfall
Measuring Mission (TRMM) 3B42v6 daily precipitation
estimates (Huffman et al. 2007), which are provided on
a (0.25° X 0.25° spatial grid. The dataset is created using
several types of satellite measurements and also in-
corporates monthly station observations to improve
accuracy. We have chosen to use the daily TRMM sat-
ellite dataset as opposed to a lower spatial resolution in
situ daily dataset based on the importance of higher
spatial resolution over variable terrain (Gochis et al.
2004). Also, in a study comparing different satellite-
based precipitation estimates to 2004 NAME gauge
data, Gochis et al. (2009) showed that the TRMM
3B42v6 product performs well over the monsoon region.

Monthly geopotential height and wind are provided
by the European Centre for Medium-Range Weather
Forecasts (ECMWF) Interim Re-Analysis (ERA-
Interim; Dee et al. 2011) and are obtained from the
Research Data Archive (RDA: http://rda.ucar.edu: da-
taset ds627.0). ERA-Interim is produced at spectral
T255 horizontal resolution with 60 vertical layers and is
provided at 6-hourly intervals on a 0.75° X 0.75° grid
with 37 vertical pressure levels.

b. Coupled general circulation model simulations

The source of CGCM climate simulations is the
CMIPS5 multimodel ensemble archive, made available
online by the Program for Climate Model Diagnosis and
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Intercomparison (PCMDI: http://pemdi3.lInl.gov/esgcet).
The historical experiment is chosen for this analysis,
which imposes changing atmospheric and land surface
conditions consistent with past observations, including
changes in atmospheric composition due to anthropo-
genic and volcanic influences, solar forcing, concentra-
tions of short-lived species and aerosols from both
natural and anthropogenic sources, and land use (Taylor
et al. 2009). For details regarding CMIPS experimental
design, the reader is referred to Taylor et al. (2009,
2012). Table 1 provides information on the 21 CGCMs
used for this study, which have atmospheric components
ranging in horizontal grid resolution from 0.56° X 0.56°
in longitude by latitude to 3.75° X 2.47° and oceanic
horizontal grids ranging from 0.28° X 0.2° to 1.98° X 1.2°
resolution (Gent et al. 2011; Volodin et al. 2010; http://
data.giss.nasa.gov/modelE/ar5). We recognize that this
range of resolution is still relatively coarse for the rep-
resentation of detailed topography and the resultant
small-scale atmospheric (e.g., convective) processes.
Model composite statistics of high versus low horizontal
and vertical resolutions (not shown) for each of the
analyses in this study did not reveal major differences in
model performance, implying that even the highest
resolution model examined is still too coarse to capture
small-scale topographically influenced processes.

All observations, reanalysis, and simulations are
regridded to the TRMM 0.25° X 0.25° master grid using
bilinear spatial interpolation, which facilitates direct
comparison. The reference period for this study is 1979-
2005 for all model simulations, reanalysis, and obser-
vations, except for TRMM daily precipitation, which
only includes the years 1998-2010. Testing using the
ERA-Interim precipitation indicates that the precipi-
tation metrics presented in this study are insensitive to
the difference in reference periods (between 1979-2005
and 1998-2010).

3. Annual cycle of precipitation

The annual cycle of precipitation within the core
NAMS domain is characterized by relatively dry winter
months followed by an early spring minimum, a sharp
rise during late spring leading to a summertime peak,
and a return to a secondary minimum in the fall (see
Fig. 3). The wettest months are July, August, and
September, when the bulk of the annual precipitation
occurs, whereas the driest months are March, April, and
May. Following the methods of Liang et al. (2008), Fig. 2
compares the modeled and observed precipitation an-
nual cycle using three metrics. For each model, the root-
mean-square (rms) error of monthly mean rainfall is
shown in Fig. 2a, the percent bias in annual rainfall
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TABLE 1. (Continued)
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based on the mean monthly climatological observed
rainfall value (1.66 mmday ') is shown in Fig. 2b, and
the phase lag in number of months is shown in Fig. 2c.
All three metrics are calculated for the core NAMS
domain using 12 monthly climatological precipitation
values. A correlation is computed between the model
annual cycle and the observed cycle at each (monthly
interval) time lag and the phase lag is defined as the time
lag with the highest correlation. The range of rms error
in annual rainfall totals is 0.76-2.74 mmday ' and the
average model error is 1.47mmday ', The large ma-
jority of models are biased wet, with an average bias of
51.3% and arange from —42% to 136%. Although there
is no bias calculation in Liang et al. (2008) for compar-
ison, similarity between the range of rms error (0.46—
2.23mmday ') in their study of CMIP3 models and that
of the CMIP5 models in this analysis indicates that there
has been no improvement in the magnitude of the sim-
ulated annual cycle of monthly precipitation and, in fact,
the lowest and highest rms values have increased slightly
since the previous generation of CGCMs. On the other
hand, there does seem to be improvement in the timing
of seasonal precipitation shifts, with 13 out of 21 (62%)
CMIP5 models having a phase lag of zero months as
compared to 6 out of 17 (35%) CMIP3 models in Liang
et al. (2008). Figure 3 shows the precipitation annual
cycle for all models separated into three groups by phase
lag value. Small, moderate, and large phase lag models
are defined as those with zero, 1-month, and greater than
1-month phase lags, respectively. The only model that
captures all characteristic features of the annual cycle
with the proper timing is the Met Office Hadley Centre
(MOHC) HGE model; however, this model is too wet
for 11 out of 12 months. Of the small and moderate
phase lag models, a common problem is the difficulty in
ending the monsoon scason, as reflected by the in-
sufficient fall minimum and high precipitation in the fall
and winter seasons. This problem is also seen in the
multimodel mean.

4. Seasonal spatial correlation of monsoon
variables

To verify the appropriate spatial progression of NAMS
onset and retreat, we assess the spatial pattern of mon-
soon variables within the extended NAMS analysis re-
gion. This is accomplished using a simple point-to-point
spatial correlation of climatological monthly model
values of precipitation, geopotential height at 500 and
850 hPa, and meridional and zonal wind at 500 and
850 hPa, to the corresponding TRMM satellite data or
ERA-Interim data. Pressure level correlation indices
at 500 and 850hPa are created by averaging the
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F1G. 2. Annual precipitation cycle (a) rms error (mmday 1, (b) bias (%), and (c) phase lag
yielding maximum correlation (months) for all models with respect to monthly P-NOAA
observations over the core NAMS domain. Multimodel median and mean values are also
shown in each panel. All metrics are calculated using 12 monthly climatological values for the
period 1979-2005. Phase lag of +1 means the highest correlation of all 12 months is between
monthly observations ordered January through December and monthly model precipitation

ordered February through January.

corresponding correlations of geopotential height and
winds. It is important to note that Poisson grid filling
(using standard routines included with the NCAR
Command Language V6.0.0; NCAR 2012) is used to
interpolate the 850-hPa model output below ground to
obtain continuous fields at this pressure level. Correla-
tions are calculated for each month during the May
through October monsoon season and the average cor-
relations of the May-June (MJ) early season, the July—
August (JA) midseason, the September-October (SO)
late season, and the full May-October (MJJASO) sca-
son are used to rank the models.

Table 2 shows the results of the correlation analysis
for the five highest and lowest ranked models. The range
of highest to lowest ranked correlation is usually
smallest for the 500-hPa index (e.g., seasonal range of
r = 0.64-0.91) and largest for precipitation (e.g., sea-
sonal range of r = 0.23-0.79). The IPL model even has
a negative precipitation correlation (r = —0.05) during
the decay stage. The highest correlations occur earlier in

the monsoon season, while the lowest correlations occur
later in the season. Seasonally, 16 out of 21 models
perform better at 500 hPa than at 850 hPa (not explicitly
shown in Table 2), partly because of less small-scale
variability and hence fewer spatial degrees of freedom at
500 hPa. Itis interesting that three of the five models that
do not perform better at 500 hPa than at 850 hPa (CNR,
HGC, and HGE) consistently have the highest precipi-
tation correlations. Relatively good or bad correlation at
the 500-hPa level is not predictive of 850-hPa level or
precipitation correlation; however, better correlation at
the 850-hPa level usually corresponds to better corre-
lation of precipitation during the monsoon season.
These results and the results of the annual cycle of
precipitation analysis are used to choose the models
appropriate for the daily time resolution onset and re-
treat analysis that follows. Models with a large phase
lag (>1 month) and models in the bottom quintile of
precipitation or 850-hPa index seasonal correlations
have the poorest representations of the NAMS and
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F1G. 3. Annual precipitation cycle over the core NAMS domain for all models grouped by (a) small phase lag (lag = 0 months).

(b) moderate phase lag (lag = 1 month), and (c) large phase lag (la

¢ > 1 month). The multimodel mean (gray dashed line) for each

category is shown in (a)—(c). (d) The all-model mean (dashed line) and spread (shading). Colors represent different modeling centers and
solid vs dashed lines of the same color differentiate models from a common center.

are therefore eliminated from the daily analysis. This
eliminates seven models: namely. the GIS, INM, IPL,
IPM, MIE, MI4, and NOR models.

Note that neither the correlation nor the correlation
difference between models needs to be statistically sig-
nificant for the ranking in Table 2. Actually. it is not casy
to address the statistical significance because of spatial

49

autocorrelation in both the meridional and zonal di-
rections. To reduce the spatial autocorrelation, we have
thinned the data at 10, 20, 30, and 40 gridbox increments
(i.e., with 2.5° 5° 7.5° and 10° distances between adja-
cent data points). All correlations over these coarse
grids for the top five ranked models in each category
and for all other models are found to be statistically
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TABLE 2. Top and bottom five model rankings of spatial correlat
and 500-hPa index (geopotential height and winds), as compared t

OF CLIMATE VOLUME 26

ion r for precipitation, 850-hPa index (geopotential height and winds),
o TRMM and ERA-Interim data, for the entire monsoon season, the

development stage. the mature stage, and the decay stage over the extended NAMS domain.

Seasonal (MJJASO) Development (MJ) Mature (JA) Decay (SO)
Rank r Rank r Rank r Rank r

Precipitation 1 CNR 0.79 1 HA3 0.88 1 HA3 0.77 1 CSI 0.84
2 HGE 0.79 2 HE 0.85 2 HGE 0.76 2 CNR 0.80
g HGC 0.79 3 HGC 0.84 3 CNR 0.75 3 HGC 0.79
4 CSI 0.77 4 CNR 0.82 4 HGC 0.75 4 HGE 0.77
5 HA3 0.77 5 INM 0.81 5 MRI 0.74 S MRI 0.68
17 GF3 0.55 17 GFG 0.55 17 GIS 0.60 17 GFG 0.46
18 NOR 0.55 18 MPI 0.54 18 MPI 0.59 18 MIE 0.43
19 MI4 0.53 19 IPM 0.53 19 Ml4 0.39 19 GF3 0.25
20 IPM 0.34 20 NOR 0.50 20 IPM 0.37 20 IPM 0.12
21 IPL 0.23 21 IPL 0.49 21 IPL 0.25 21 IPL —0.05
850-hPa index 1 CNR 0.90 1 CNR 0.92 1 CNR 0.89 1 CNR 0.88
2 HGE 0.85 2 HA3 0.89 2 HGE 0.89 2 HA3 0.81
3 HA3 0.85 3 CAN 0.87 3 HGC 0.89 3 HGE 0.79
4 HGC 0.84 4 HGC 0.87 4 MRI 0.88 4 CAN 0.78
5 CAN 0.83 5 HE 0.87 5 MIs 0.85 ) MPI 0.78
17 INM 0.68 17 INM 0.75 17 INM 0.73 17 GFG 0.55
18 1IPM 0.66 18 IPM 0.72 18 NOR 0.71 18 IPM 0.53
19 MIE 0.57 19 GIS 0.55 19 MIE 0.71 19 GIS 0.49
20 GIS 0.54 20 IPL 0.54 20 IPL 0.63 20 MIE 0.45
21 IPL 0.53 21 MIE 0.54 21 GIS 0.59 21 IPL 0.42
500-hPa index 1 GFG 0.91 1 GFG 0.95 1 CcCs 0.92 1 MIs 0.89
2 MPI 0.91 2 CcCs 0.94 2 GFG 0.92 2 GFM 0.89
3 HA3 0.90 3 MPI 0.94 3 IPM 0.91 3 NOR 0.89
4 CcCs 0.90 4 IPM 0.94 4 MPI 0.91 4 MPI 0.89
5 GFM 0.89 5 BCC 0.93 5 NOR 0.90 5 CNR 0.88
17 HGC 0.77 17 NOR 0.84 17 BCC 0.73 17 IPL 0.76
18 HGE 0.77 18 HE 0.84 18 MI4 0.72 18 IPM 0.74
19 MRI 0.75 19 HGC 0.83 19 HGE 0.63 19 GIS 0.73
20 MI4 0.75 20 GIS 0.80 20 HGC 0.60 20 MRI 0.66
21 GIS 0.64 21 MRI 0.78 21 GIS 0.40 21 MI4 0.66

significant at the 0.001 confidence level based on a Stu-
dent’s ¢ test. Other methods of computing statistical
significance with a more robust technique for accounting
for spatial autocorrelation were not pursued because of
the apparent small value added for the type of analyses
presented in this study.

5. Monsoon onset and retreat

Interannual variability of the NAMS impacts local
ccosystems, agriculture, and the general public: there-
fore. there is considerable interest in determining the
NAMS annual onset and retreat dates (e.g., Higgins
et al. 1997: Zeng and Lu 2004; Ellis et al. 2004; Arias
et al. 2012). Identification of model annual onset and
retreat dates using daily precipitation provides a higher
time resolution evaluation of monsoon season phasing
than the monthly phase lag analysis in section 3. We
employ the method of Higgins et al. (1997) for identi-
fying the onset of monsoon rains. A precipitation index

(PI) is created by time averaging TRMM daily pre-
cipitation observations at each grid point in the core
domain and subsequently averaging all grid points to-
gether. The PI time series, shown in Fig. 4. is used to set
the precipitation magnitude and duration threshold
criteria for defining monsoon onset at =1.3mmday !
and 3 days, respectively. These criteria are tested using
individual years of daily TRMM observations to ensure
they yield a set of reasonable onset dates. For each year,
monsoon onset occurs the first time the threshold cri-
teria are satisfied after 1 May. Since precipitation is
much more variable following than preceding the mon-
soon season, the daily precipitation time series for each
year of data are examined to set the monsoon retreat
criteria at <1.3mmday ' and 7days. For each year,
monsoon retreat occurs when the threshold criteria are
first satisfied after 1 September. Table 3 shows the ob-
served monsoon onset and retreat dates for each year
based on these criteria. The average calendar date of
onset for the core domain is 18 June, which agrees with
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the results of Higgins et al. (1999) (see their Fig. 12). The
median date of onset is 19 June and the median date of
retreat is 28 September.

Table 4 shows model median onset and retreat dates
together with the corresponding lag from observations
(in number of days) using the observation-defined
threshold criteria, herein referred to as the absolute
criteria. The CSI model onset is closest to the observed
median onset date by a wide margin with a +3-day onset
lag (Table 4) and also has a reasonable onset standard
deviation (Table 4) and visual clarity of the onset in the
daily climatology (Fig. 5). Most models have a standard
deviation of onset dates that is within *=3 days of that of
the observations (15.2 days) and daily climatological
precipitation that displays a clear monsoon onset, al-
though generally onset is early. These properties are
reflected in the multimodel average standard deviation
of onset (14.9 days: Table 4): daily climatological precip-
itation (Fig. 5); and early 28 May onset date (Table 4),
which is 22 days earlier than the observed date. The
HGE model retreat is closest to the observed median
retreat date with a +4-day retreat lag, but the standard
deviation of retreat dates almost doubles that of the
observational data and retreat is not as visually clear in
the daily climatology as it is in the observations. The
standard deviation of retreat dates for most models is
amplified by at least a factor of 2 using the absolute
criteria, as compared to the 8.3-day standard deviation
of the observations. Most models also extend the mon-
soon past the observed retreat date. Additionally, most
models lack a visually clear retreat in the daily clima-
tological precipitation, with the end of the monsoon
season blending into excessive fall and winter precipi-
tation. These properties are also seen in the multimodel
average standard deviation of retreat (18.1 days: Table 4);
daily climatological precipitation (Fig. 5); and late
6 October retreat date (Table 4), which is 8 days later
than the observed date.

ol

neters per day for the core NAMS domain.

The use of absolute criteria may not be suitable for
many models due to errors in annual precipitation cycle
amplitude; therefore, we have additionally computed
model-relative threshold criteria as an alternate method
of defining monsoon onset and retreat. Our method is
constructed around that of Zeng and Lu (2004), who
used a normalized precipitable water index to define
globally unified summer monsoon onset and retreat
dates. We use precipitation instead of precipitable water
to define a normalized precipitation index (NPI) for the
TRMM observations,

P =
— _ threshold min
NP = —threshold " min_

max min

where Pypreshold 1S the daily precipitation magnitude
threshold of 1.3mm day" and P, and P, are the
13-yr climatological values of the area-averaged mini-
mum and maximum monthly TRMM precipitation in

TABLE 3. Observed dates of monsoon onset and retreat for the core
NAMS domain using TRMM data.

Onset Retreat
20 Jul 1998 9 Sep 1998
17 Jun 1999 20 Sep 1999
31 May 2000 28 Sep 2000
3 Jul 2001 10 Oct 2001
3 July 2002 19 Sep 2002
17 Jun 2003 27 Sep 2003
4 Jun 2004 27 Sep 2004
10 Jul 2005 21 Sep 2005
19 Jun 2006 2 Oct 2006
10 Jun 2007 7 Oct 2007
28 Jun 2008 28 Sep 2008
18 May 2009 5 Oct 2009
2 Jul 2010 28 Sep 2010

Std dev: 15.2 days
Avg: 18 Jun
Median: 19 Jun

Std dev: 8.3 days
Avg: 27 Sep
Median: 28 Sep
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TABLE 4. Model median dates of monsoon onset and retreat with
corresponding lag from observations and standard deviation (in
number of days) using the observation-defined absolute threshold
criteria for the core NAMS domain. Observational information is
listed in the last row for reference.

Median Median
Model onset Lag Stddev retreat Lag Stddev
BCC 2 Jun -17 173 17 Sep -—11 18.4
CAN 8 Jun -—11 170 14 Sep -—14  10.1
ccs 9 May —41 10.5 16 Oct 18 2238
CNR 11 May -39 144 3 Oct 5 17.9
CSl1 22 Jun 3 4231 6 Oct 8 119
GF3 21 May -29 129 26 Oct 28 189
GFG 15 May -35 153 18 Oct 20 226
GFM 27 May -23 18.7 18 Oct 20 279
HA3 28 May -22 183 22 Sep -6 16,6
HGC 25 May -25 14.1 7 Oct 9 153
HGE 6 Jun —13 17.3 2 Oct 4 149
MI5 21 May -29 108 12 Oct 14 238
MPI 5 Jun —14 142 8 Oct 10 139
MRI 4 Jun 15 14.6 6 Oct 8 182
Average 28 May 22 14.9 Oct 8 18.1
Median 28 May -22 145 7 Oct 9 180
Obs 19 Jun 0 152 28 Sep 0 8.3

the core NAMS domain. The computed NPI value
(0.345) and the 27-yr climatological values of area-
averaged minimum and maximum monthly precipita-
tion from each model are then used to solve the NPI
equation for the model-relative precipitation thresholds
(Pinreshora: mmday "), while the duration criterion for
all models is held constant at 3 days for onset and 7 days
for retreat. Onset and retreat are again defined as
when the criteria are first satisfied after 1 May and 1
September, respectively. Model median onset and re-
treat dates with the corresponding lag from observa-
tions (in number of days) using the model-relative
threshold criteria are shown in Table 5, and Fig. 5 depicts
the difference between absolute and model-relative
thresholds, shown over the daily climatological pre-
cipitation for each model and for the multimodel mean.
The HGE and BCC models have onset dates that are
closest to the observed median onset with a —2-day lag
(Table 5), reasonable onset standard deviations (Table
5), and visual clarity of the onset in the daily clima-
tologies (Fig. 5). The CSI model-relative retreat is the
closest to the observed median retreat date with a +2-day
lag, but the standard deviation of the retreat dates is
about 1.5 times that of the observational data. Further-
more, although a retreat is visible in the daily climatology
of CSI, the fall minimum is weak and quickly leads to
exaggerated fall and winter precipitation. The multi-
model average median onset is 12 days early on 7 June
and the standard deviation of onset (Table 5) is similar to
that of the observational data, while the average median

JOURNAL OF CLIMATE
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retreat is 4 days early on 24 September and the standard
deviation of retreat (Table 5) is much larger than that of
the observational data. The model-relative criteria act
to adjust the multimodel onset and retreat dates 10 and
4 days closer to the observed dates, respectively.

Interestingly, high monthly and seasonal precipitation
correlations do not necessarily imply monsoon onset
and retreat dates that are close to observations. The best
example of this is demonstrated with the results from the
CNR model, which has the highest 850-hPa correlations
and ranks in the top four models for precipitation corre-
lations throughout the entire monsoon season (Table 2)
but has a median absolute onset date that is 39 days
carlier (Table 4) and a model-relative onset that is 29 days
carlier (Table 5) than the observed date. A visual in-
spection of the daily precipitation field for each year (not
shown) reveals consistent small precipitation events in
carly May that satisfy the definition of monsoon onset
even though a clearer onset signal is visible later in the
daily climatological precipitation. Adjustment of the mon-
soon onset definition was not able to remedy the problem.
The disparity between the daily and monthly resolution
analysis results for the CNR model is a good example of
how important insight can be gained with higher time res-
olution model output and how it is possible for lower time
resolution model output to be misleading. Still, the daily
precipitation analysis could also be deceptive on its own, as
an investigation of the six models deemed inappropriate
for the daily analysis (not shown) reveals that it is possible
for models to have relatively good onset and retreat dates
over the small core NAMS region without the proper
spatial progression of precipitation over time within the
surrounding larger NAMS region.

6. Composites

Our final analysis visually elucidates the previously
demonstrated wide range in model ability to reproduce
key spatial and temporal features of the NAMS. Com-
posites of the monthly fields of precipitation, 850-hPa
geopotential height, and 850-hPa winds are constructed
to illustrate the major differences between models with
the best and worst representations of the NAMS based
on the measures discussed below.

Models with large phase error at monthly time res-
olution (GIS, INM, and MIE) are not considered for
compositing because of the unrecognizable or very poor
representation of the annual cycle of NAMS region
precipitation. Also, the monthly fields are examined for
cach individual model to rule out the presence of any
spurious model output. During this process, anomalous
large-scale waves were discovered in the geopotential
height field from the CSI model and consequently this
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F16. 5. Daily precipitation climatology over the core NAMS domain for (top left) observations (1998-2010), (top right) multimodel
mean (1979-2005). and 14 models (1979-2005). Short dashed lines depict the absolute threshold (1.3 mm d;lyfl), and long dashed lines
depict model-relative thresholds for defining yearly monsoon onset and retreat dates.
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TABLE 5. As in Table 4, but using the model-relative threshold
criteria.

Median Median
Model onset Lag Stddev retreat Lag Std dev
BCC 17 Jun =2 17.8 10 Sep -—18 10.8
CAN 3 Jun —16 16.2 6 Sep -—22 7.8
cCs 20 May -30 17.7 2 Oct 4 16.5
CNR 21 May -29 159 21 Sep -7 12.4
CSl1 26 Jun i 113 30 Sep 2 12.5
GF3 4 Jun 15 18.2 6 Oct 8 18.9
GFG 10 Jun -9 17.6 6  Oct 8 154
GFM 8 Jun 11 20.7 5 Oct 7 281
HA3 28 May -22 18.4 12 Sep —16 10.8
HGC 7 Jun -12 16.8 19 Sep -9 10.5
HGE 17 Jun -2 17.1 22 Sep -6 124
MI5 5 Jun 14 109 25 Sep -3 16.4
MPI 14 Jun =5 14.3 1 Oct 3 133
MRI 9 Jun -10 15.1 21 Sep -7 15.5
Average 7 Jun —12 163 24 Sep —4 14.4
Median 8 Jun 11 170 24 Sep —4 12.9
Obs 19 Jun 0 152 28 Sep 0 83

model is not considered for compositing either. The best
models must rank within the top five of the remaining
models for seasonal precipitation and 850-hPa correla-
tions and must have a daily absolute onset lag of less
than 30 days, resulting in a composite of the HA3, HGE,
and HGC models. The worst models must rank within
the bottom five of the remaining models for seasonal
precipitation and 850-hPa correlations, resulting in a
composite of the IPL, IPM, and NOR models. We also
note that all models satisfying the requirements for the
best composite have been previously categorized as having
small phase error at monthly time resolution, whereas all
models satisfying the requirements for the worst compos-
ite have been previously categorized as having moderate
phase error at monthly time resolution (see Figs. 3a,b).
Figure 6 shows precipitation, 850-hPa geopotential
height. and 850-hPa winds for the observational data,
the best composite, and the worst composite for the
development stage month of June, the mature stage
month of August, and the decay stage month of October.
Circulation features important to the proper represen-
tation of the NAMS are clearly seen in the observations
(Fig. 6, top). During the development and mature stages,
the NASH, as seen in the geopotential height field,
strengthens and extends toward the west. The westward
extension of the NASH brings easterly flow and mois-
ture into the eastern portion of the study region from the
Gulf of Mexico and the northward movement of the
NPSH allows for moisture transport into the western
portion of the region from the eastern Pacific and the
Gulf of California, enhancing convergence and pre-
cipitation over land. During this period, a clear northward
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progression of precipitation along the Sierra Madre Oc-
cidental from southern Mexico is visible. The observations
also show (Fig. 6. top) cross-equatorial flow, southwesterly
winds in the ITCZ that create regions of enhanced con-
vergence, and generally weak winds over the eastern North
Pacific. Flow along the western coast of Mexico brings
moisture from the ITCZ toward the Mexican mainland,
whereas this flow weakens and turns offshore during the
decay stage, which effectively severs the connection be-
tween the monsoon region and I'TCZ moisture. Monsoon
decay also brings the castward retreat of the NASH: the
weakening of the NASH, NPSH, and ITCZ; and the
southeasterly retreat of precipitation along the Sierra Ma-
dre due to reduced convergence and moisture availability.

The composite of the three best models (Fig. 6, mid-
dle) illustrates most of the circulation features seen in
the observations during the development and mature
stages and demonstrates that current CGCM’s are ca-
pable of realistically representing the NAMS, even at
horizontal resolutions coarser than 1°. That being said,
some significant issues are also apparent. For example,
the 850-hPa geopotential heights are biased low, pre-
cipitation is biased high, and the connection to tropical
moisture extends well into the fall, resulting in a poor
representation of monsoon retreat.

The composite of the three worst models (Fig. 6,
bottom) fails to adequately reproduce most of the cir-
culation features seen in the observations. Although the
composite does show strengthening and weakening of
the NASH and NPSH, the NASH is overextended to-
ward the west and the NPSH is far too weak, resulting in
an anomalously strong north-south gradient of geo-
potential height over the eastern North Pacific. The
gradient in the tropics produces strong zonal winds
within and to the north of the ITCZ, preventing the
proper development of the ITCZ and cutting off ITCZ
moisture to the monsoon region. Reduced convergence
over Latin America results in extremely poor repre-
sentation of the tropical wet season over this area and
prevents the observed progression of monsoon pre-
cipitation from the southeast toward the northwest
along the mountainous west coast of Mexico. During the
decay stage, the retreat of the subtropical highs shifts
the unrealistic tropical gradient in geopotential height
toward the north, which steers winds and moisture over
the eastern North Pacific to the northwest along the
Mexican coast, resulting in exaggerated precipitation
over the core NAMS domain during the fall.

7. Summary

A total of 21 CMIPS coupled general circulation
models are examined to determine how well the models
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represent the North American monsoon system. Ana-
lyses include a comparison of the annual cycle of area-
averaged monthly precipitation over a core monsoon
domain to CMIP3 results of Liang et al. (2008), a spatial
correlation of monthly model precipitation and pressure
level variables to data, an assessment of monsoon onset
and retreat dates as determined from daily precipitation,
and a model composite analysis of the best versus the
worst representations of the NAMS.

There has been no improvement in the magnitude
(rms error and bias) of the mean annual cycle of monthly
precipitation over the core NAMS region since CMIP3,
but the timing of seasonal changes in precipitation has
improved with 27% more CMIPS than CMIP3 models
having zero phase lag. Despite this, a few models do not
have a recognizable monsoon signal at all. Also, the
multimodel mean annual cycle is biased wet and exhibits
the common problem of late monsoon termination.

Monsoon season correlations of monthly model output
to observational data establish that most models have the
highest correlation at the 500-hPa level and the lowest
correlations for precipitation; however, relatively good or
bad performance at the 500-hPa level is not predictive of
850-hPa level or precipitation performance.

The multimodel mean onset and retreat dates are
23 days carly and 9 days late, respectively, using the
absolute criteria for defining monsoon onset and retreat.
Yearly model onset variability is comparable to that
of the observational data, but yearly model retreat var-
iability is much greater than what is seen in the ob-
servations. On average, the model-relative onset and
retreat dates are an improvement over the absolute
dates because of the prevailing wet bias in model
precipitation.

The 850-hPa composite of best models reproduces
the development and mature stages of the NAMS, but
the composite of worst models fails to adequately illus-
trate most of the precipitation and circulation features
seen in the observations. The large-scale circulation
pattern bias seen in the best model composite is spatially
consistent over the larger region influencing monsoon
development and thus still allows for a successful rep-
resentation of the NAMS during the development and
mature stages. In contrast, the spatial inconsistency of
large-scale circulation pattern bias in the worst models
prevents a realistic representation of the NAMS during
the same period. Neither the composite of best models
nor the composite of worst models realistically captures
the retreat of the NAMS because of an extended con-
nection to tropical moisture that causes excessive fall
and winter precipitation. Models that best capture the
relevant large-scale circulation patterns at low levels
usually have a realistic representation of the NAMS,
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while performance at midlevels does not appear to be
a major factor.

We have shown the importance of large-scale features
to the representation of the NAMS in a suite of CMIP5
models that are still relatively coarse for capturing the
detailed regional topography and resultant small-scale
NAMS processes. Model composites of high versus low
horizontal and vertical resolutions (not shown) did not
reveal major differences in model performance with
respect to NAMS representation, implying that even the
highest resolution model examined is still too coarse to
capture small-scale topographically influenced process-
es. There is room for improvement in the representation
of the NAMS for many models by way of more accurate
representation of low-level large-scale circulation fea-
tures, but improvement in the representation of the NAMS
in the best models is likely limited until increased model
resolution allows for the capture of small-scale NAMS
processes. Finally, we encourage subsequent CMIP col-
laborations to output more daily model fields, which were
not available for all models and variables examined in this
study, thereby limiting most analyses to monthly time
resolution.
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Quantitative characterization of spurious numerical
oscillations in 48 CMIP5 models
Kerrie L. Geil' and Xubin Zeng’

! Department of Atmospheric Sciences, University of Arizona, Tucson, Arizona, USA

Abstract Spurious numerical oscillations (SNOs) (e.g., Gibbs oscillations) can appear as unrealistic spatial
waves near discontinuities or sharp gradients in global model fields (e.g., orography) and have been a known
problem in global models for decades. Multiple methods of oscillation reduction exist; consequently, the
oscillations are presumed small in modern climate models and hence are rarely addressed in recent literature.
Here we use two metrics to quantify SNOs in 13 variables from 48 Coupled Model Intercomparison Project
Phase 5 models along a Pacific ocean transect near the Andes. Results show that 48% of nonspectral models
and 95% of spectral models have at least one variable with SNO amplitude as large as, or greater than,
atmospheric interannual variability. The impact of SNOs on climate simulations should be thoroughly
evaluated and further efforts to substantially reduce SNOs in climate models are urgently needed.

1. Introduction

Global climate models play a critical role in our understanding of climate processes and our ability to make
climate projections. They are an invaluable tool in a climate scientist’s toolbox, and projections from these
models are increasingly used by nonscientists for climate planning and adaptation purposes. The ability to
model climate has undergone vast improvement in recent decades, but model development is an ongoing
process and it is no secret that model deficiencies still exist. Many deficiencies are complex and difficult to
pinpoint, whereas other deficiencies are well known and can be reduced or eliminated using
proven methods.

Spurious numerical oscillations (hereafter referred to as SNOs) are a well-known source of numerical noise in
global climate models. In spectral models, SNOs (also known as (aka) Gibbs oscillations) are unrealistic
spatial waves that appear in model fields, such as orography, that contain discontinuities or sharp
gradients and are mainly associated with the transformation of the truncated spectral representation of a
field to physical space. For spherical harmonics, used in spectral global climate models, the oscillations
come from two sources, namely, the Fourier transform for longitude and the Legendre transform for
latitude. Similar looking SNOs are present near sharp gradients in nonspectral models (e.g., models that
use only finite difference, finite element, and finite volume methods), although these oscillations are
usually more localized.

Spectral model results have been shown to be sensitive to the transformed orography and spectral
resolution, where simulation of variables such as precipitation over mountainous terrain is more realistic
across multiple scales when using smoothed orography and when the same model is run at higher
resolution versus a lower resolution [Lindberg and Broccoli, 1996; Yorgun and Rood, 2014, 2015]. Local-,
regional-, and global-scale precipitation patterns, among other model variables, can be affected by SNOs.
Local issues can include grid-point storms near mountainous terrain caused by spurious vertical velocity
associated with SNOs [Webster et al, 2003] and a connection between SNOs and unrealistic bands of
precipitation [Bouteloup, 1995]. Locally and regionally, poor representation of precipitation near
mountainous terrain [Bala et al., 2008; Yorgun and Rood, 2014, 2015] has been associated with spectral
numerics. SNOs have been the cause of unrealistic “spotty” precipitation over the Sahel region of Africa
[Navarra et al, 1994] and have also been shown to be detrimental to global precipitation patterns
[Lindberg and Broccoli, 1996]. Additionally, SNOs have been associated with the poor representation of low
clouds, radiation, surface wind stress, and sea surface temperature near upwelling regions [Bala et al,
2008], clouds, and low-level meridional wind [Navarra et al, 1994] and near-surface winds [Bouteloup,
1995]. It is also important to note that SNO amplitude is variable across model quantities, which can result
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in physical inconsistencies, nonlinear interactions between model physics and dynamics, and have serious
impacts on model budgets [Jablonowski and Williamson, 2011]. This point becomes especially important
when considering tracer transport in a model, where spurious oscillations can cause unphysical quantities
such as negative mixing ratios.

A number of techniques have been developed to reduce the unwanted SNOs in order to improve model
results. In spectral models, these techniques include filters that are applied to the harmonic coefficients
of the spectral representation of a field [e.g, Hoskins, 1980; Sardeshmukh and Hoskins, 1984; Navarra
et al, 1994; Lindberg and Broccoli, 1996] and a variational method that minimizes the difference
between an actual field and the grid point representation of the spectral field using a cost function
that allows for geographic modulation [Bouteloup, 1995]. In nonspectral models, SNOs can be reduced
by physical diffusion of subgrid-scale energy within model parameterizations [Pielke, 2002; Warner,
2011], with the use of spatial diffusion terms (filters) in the predictive equations to numerically diffuse
shorter wavelengths [Pielke, 2002; Warner, 2011] and with the use of certain implicit numerical
schemes [Navarra et al., 1994; Warner, 2011]. For an additional source of detailed information on filters
and diffusion in global spectral and nonspectral models, the reader is referred to Jablonowski and
Williamson [2011].

Given the detrimental nature of SNOs to model simulations, climate simulations based on models
containing these oscillations could be compromised. The questions are then how pervasive are SNOs in
Coupled Model Intercomparison Project Phase 5 (CMIP5) models and what are their quantitative
characteristics? The purpose of this paper is to address these questions and more generally to draw
greater awareness of SNOs in CMIP5 models, with the hope that modeling groups will act to
substantially reduce oscillation biases,

2. Model Simulations, Observations, and Methods

The source of climate simulations is the CMIP5 multimodel ensemble archive (http://pcdmi9.linl.gov). For this
analysis, we use one ensemble member for 27 years (1979-2005) of the historical experiment, which imposes
changing atmospheric and land surface conditions consistent with past observations. More detail regarding
CMIP5 experimental design is provided in Taylor et al. [2009, 2012]. Table S1 in the supporting information
provides information, including atmospheric model component resolution, on the models used for
this study.

For model evaluations, we choose observational data sets with minimal or no use of global models during the
data development process. For this reason, reanalyses are not used. Wind observations are from the Cross-
Calibrated Multi-Platform (CCMP) ocean surface wind vector analyses [Atlas et al, 2011], precipitation
observations are from the Tropical Rainfall Measuring Mission (TRMM) 3B43v7 product [Huffman et al,
2007], and air temperature and specific humidity observations at 1000 mb are from the Atmospheric
Infrared Sounder (AIRS) [Aumann et al., 2003]. Observations of downwelling shortwave and longwave
radiation at the surface come from the Clouds and the Earth’s Radiant Energy System (CERES) [Kato et al.,
2013], and total cloud amount is from the Moderate Resolution Imaging Spectroradiometer (MODIS)
[Hubanks et al, 2008]. All observations used are at monthly time resolution, and the number of
consecutive years used is data set dependent, with the shortest observational span being 8 years for AIRS
(2003-2010) and the longest being 24 years for CCMP (1988-2011).

An ocean transect at approximately 29°S that bisects the South Pacific High near the Andes is used to
examine the SNOs where they are most easily visible based on Figure 1: over the ocean and near a steep
topographic gradient. We use 27-year climatological transects of monthly model variables over ocean
points only and compute smoothed versions of the transects by applying a running mean. Three points
are used to compute the running mean for the large majority of models, but we use four or five points for
a small number of models based on visual inspection of the best fit for each model (see Figure S1 in the
supporting information), in an attempt to obtain the smoothest running mean possible without losing too
many end points. This is necessary due to varying model resolutions and varying SNO wavelengths even
within specific spectral models. A sensitivity test of our results to the number of points used to compute
the running mean was performed and revealed low sensitivity. The transect latitude is chosen as the
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Figure 1. Surface pressure (mb) for nine spectral models (spectral resolution increasing from top left to bottom right)
shows the large range in wavelength and amplitude of the spurious numerical oscillations (aka Gibbs oscillations in
spectral models). The middle plot displays the location of the transect (horizontal black line) used to quantify numerical
oscillations in subsequent figures.

closest model latitude to 29°S; therefore, it varies between 27.8°S and 30.3°S. Observations are treated in the
same way except that the number of years used for the transect climatology is data set dependent and the
number of points used for the running mean varies from 3 to 10.

Polynomial and spline curve fitting methods were also attempted, but the running mean is the superior
smoothing method because it consistently aligns best with the unsmoothed transects. The small area that
contains all the model and data transects is shown in the middle plot of Figure 1. A closer view of the
transect area over climatological (1979-2004) sea level pressure from the HadSLP2 data set [Allan and
Ansell, 2006] is shown in Figure S2 in the supporting information. See Figure S1 in the supporting
information for examples of the variable transects and running mean curves.

We identify and quantitatively characterize SNOs along the transect using two metrics. The first is the root-
mean-square difference (RMSD) between the climatological transect of a variable and its running mean,
representing an absolute measure of the oscillation amplitude. A relative measure is computed as the ratio
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from the PCMDI archive. Therefore, a
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Figure 2. Transects for a spectral model with (top) large, (middle) moderate, wavelength of ~12°. The wavelength

and (bottom) small amplitude surface pressure oscillations. The left column ~ decreases to ~9° in the MPI-ESM-MR

shows 12 month average transects during the 27 year study period, where  model (midresolution of T63) and to

the mealn of eat:httransec[tS rflas :een remotved. The( right columne;r;ows ~3°in the finer resolution (T159) CMCC-
T, r I .

seasonal average transects for five separate years (mean remov: CM model (see Table S1 for model

details). The linear correlation between the average oscillation wavelength along the transect and the physical
grid spacing in spectral models is high (»=0.88) and the average wavelength ranges from 2.5Ax to 4.5Ax
(where Ax is grid size in the zonal direction). For nonspectral models, the correlation is slightly lower
(p=0.69) and the oscillation wavelength is 2Ax, with few exceptions.

Surface Pressure (mb)
o
=
o

Some models, such as the MIROC4h and BCC-CSM1.1 m shown in Figure 1, have very limited or small SNOs,
and the biggest issue appears to be the spike in surface pressure just off the west coast of continents,
especially near high terrain like the Andes (also see Figure S3 in the supporting information). Most other
models also have this issue, but the problem exists in combination with larger-amplitude SNOs that spread
across the oceans. Models with larger-amplitude SNOs, such as the CSIRO-Mk3L-1-2, CMCC-CESM, and MPI-
ESM-MR models, do not even coherently capture the surface subtropical centers of high pressure. Note
that SNOs are present not just over the South Pacific Ocean but can be seen globally over ocean regions
and can also be seen over some land regions (see, for example, the Amazon region in the MPI-ESM-MR,
MIROCS, and CMCC-CM plots in Figure 1).

Figure 2 shows the seasonal and interannual variations of SNOs for three spectral models with large-,
moderate-, and small-amplitude oscillations in surface pressure. It is clear that the minima and maxima of
the oscillations are stationary both interannually and interseasonally. The stationarity of the oscillations
reinforces that they are spurious oscillations as opposed to physical waves resultant from other
model processes.

Before computing the model SNO metrics, we first determine if physical oscillations exist along the transect
based on observations. Figure 3 shows climatological transects for eight observational data sets. While there
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Figure 3. Climatological transects for eight satellite observational data sets (see section 2). From top left to bottom right: Cross-Calibrated Multi-Platform (CCMP)
zonal (U) and meridional wind (V), Tropical Rainfall Measuring Mission (TRMM) precipitation (pr), Atmospheric Infrared Sounder (AIRS) specific humidity (Q) and
air temperature (T) at 1000 mb, Clouds and the Earth’s Radiant Energy System (CERES) downwelling longwave (rlds) and shortwave (rsds) radiation at the surface, and
Moderate Resolution Imaging Spectroradiometer (MODIS) total cloud amount (clt).

are no large oscillations such as those seen in Figures 1 and 2, some observations do show small bumps or
ripples along the transect (see precipitation (pr), surface downwelling shortwave radiation (rsds), and total
cloud amount (clt) plots in Figure 3). For this reason, we compute the SNO metrics based on the
observations as a reference to be compared to model results. Only when the model metric values are
much greater than the data metric values can we claim the model oscillations are spurious. For RMSD, the
threshold value is arbitrarily defined as the observed metric value multiplied by a large factor of 5. For the
RMSD:IAV ratio, we use a threshold value of unity (meaning the amplitude of spurious oscillations is at
least as large as atmospheric interannual variability along the transect) and a more restrictive threshold of
one half, which is still at least 5 times the RMSD:IAV ratio value for any given observational variable.

RMSD values along the ocean transect for 13 variables (columns) are shown for the 90th, 50th, and 10th
percentile spectral and nonspectral models in Figure 4, along with the RMSD value based on observations
(bottom row) if available. RMSD values larger than the observational value times a factor of 5 can be seen
even in the 10th percentile of spectral models (only for downwelling longwave radiation at the surface;
rlds). At the 90th percentile, seven out of the eight spectral model variables with observations for

wap wap pr g9 zg
ps uas vas 925 500 (mm/ huss tas fsds rlds 925 500 cit
(mb) (mis) (mis) (Pals) (Pals) day) (g/kg) (K) (Wim?) (Wim®) (m) (m) (%)

90th 8428 0.225 0.375 0.031 0.008 0.164 0.065 0.427 8.782 4.668 3.201 1.718 5.208
50th 2339 0.081 0.187 0.017 0.006 0.076 0.049 0136 3.153 1.389 0549 0496 1.523
10th 0915 0.031 0096 0.003 0.002 0.027 0.020 0055 1.262 0.816 0.235 0.288 0.645

spectral

90th 1425 0.332 0.691 0.016 0.030 0.068 0.079 0.289 3.609 2.604 1826 1453 2.171
50th 0.175 0.073 0.193 0.002 0.004 0.023 0.034 0.078 0.703 0.372 0.589 0.269 0.437
10th 0.026 0.018 0.016 0.001 0.002 0.008 0.019 0.021 0.248 0.116 0.158 0.118 0.265

finite

oBS - 0023 0030 -- -~ 0.021 0023 0034 0383 0.147 - — 0.165

Figure 4. RMSD percentile values of spectral and nonspectral models (refer to text for explanation of RMSD computation)
for 13 variables, which include surface pressure (ps), near-surface u-wind (uas), and v-wind (vas), vertical velocity at 925 mb
(wap 925) and 500 mb (wap 500), precipitation (pr), surface specific humidity (huss), surface air temperature (tas), surface
incoming solar radiation (rsds) and incoming longwave radiation (rlds), geopotential height at 925 mb (zg 925) and 500 mb
(zg 500), and total cloud amount (clt). RMSD values for observational data are shown on the bottom row. The red text
indicates values greater than or equal to the observed value multiplied by a factor of 5, whereas the blue text indicates
values below this threshold. Model results are shown in black for variables when there are no observations for comparison.
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Figure 5. Same as Figure 4 except for the RMSD:IAV ratio. The red and orange text highlight values greater than unity and
one half, respectively. Values less than one half are shown in black.

comparison have RMSD values larger than the threshold. For nonspectral models, large RMSD values are only
found for one variable at the 50th percentile (surface meridional wind; vas) and for six out of the eight
variables with observations for comparison at the 90th percentile, although many of these values are
smaller than those seen for spectral models. Some models, mostly spectral, have RMSD values that are
very large. For example, the largest RMSD values for surface pressure, downwelling shortwave radiation at
the surface, and total cloud amount are 18.88mb, 9.31Wm ™2, and 5.23%, respectively (see Figure S4 in
the supporting information for individual model results).

Figure 5 shows that the observed RMSD:IAV ratio (bottom row) is always less than 0.1 for each of the eight
data sets. Regardless of spectral versus nonspectral numerics, many models have RMSD:IAV ratios that are
less than the threshold values. Variables that are relatively oscillation-free include specific humidity at the
surface (huss) and geopotential height at 925 and 500 mb (zg 925, zg 500). For most spectral models,
the RMSD:IAV ratio is highest for surface pressure and vertical velocity at 925mb (see Figure S5 in the
supporting information for individual model results). Large oscillations are seen in these two variables
even at the 10th percentile in spectral models. For one spectral model, the amplitude of SNOs in the
surface pressure field is a staggering 29.32 times larger than the year-to-year variability along the transect
(Figure S5 in the supporting information). In nonspectral models, the largest-amplitude oscillations are
found in the vertical velocity field at 925 and 500 mb. Nonspectral models have no RMSD:IAV ratios over
the threshold values at the 50th percentile, whereas spectral models show large RMSD:IAV ratios at the
50th percentile for surface pressure, vertical velocity at 925 and 500 mb, meridional surface wind,
incoming shortwave and longwave radiation at the surface, and total cloud amount (Figure 5). At the 90th
percentile, both spectral and nonspectral models have large RMSD:IAV ratio values for most variables,
although most spectral model values are larger.

Of the 48 models in this study, 69% of the models have an RMSD:IAV ratio larger than unity for at least one
variable, and this increases to 83% of all models if considering an RMSD:IAV ratio of one half. This statistic can
be translated in terms of spectral versus nonspectral numerical methods as follows: 95% of spectral models
and 48% of nonspectral models have at least one RMSD:IAV ratio greater than unity, and these percentages
increase to 100% of spectral and 70% of nonspectral models if considering an RMSD:IAV ratio of one half.

While model resolution affects the wavelength of SNOs as discussed previously, it is not a predictor of
oscillation amplitude or prevalence. The linear correlation between average oscillation amplitude along
the transect and physical grid spacing is low for spectral (p =0.37) and nonspectral models (p =0.34). The
models with large values of both metrics for multiple variables span the gamut of model resolution. These
models include CMCC-CESM (low resolution of T31/3.75°), the MPI suite (moderate resolution of
T63/1.875°), and the MRI suite (higher resolution of T159/1.125°). Additionally, the best performing spectral
models with respect to both metrics (EC-EARTH, MIROC4h, and BNU-ESM) are a mixture of lower and
higher-resolution models, with resolutions of T159/1.125°, T213/0.5625°, and T42/2.8°, respectively (see
Figures S4 and S5 in the supporting information for individual model results and Table S1 for additional
model details).

Note that sometimes large values of both metrics can be caused not by large SNOs along the entire transect,
but instead by more localized issues near the ocean-land transition. This occurs mostly in nonspectral models.
For example, the premature decrease of surface pressure over ocean points approaching land (as illustrated
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for some models in Figure S3 in the supporting information) causes high values of both metrics for the
FGOALS-g2, INM-CM4, and most of the GFDL suite models. There are also a few spectral models with
generally small spurious oscillations in surface pressure that end up with large values for both metrics
because of one very large oscillation near the ocean-land transition. These models include BCC-CSM1.1 m
and the MIROC suite (see the BCC-C5M1.1 m, MIROC5, and MIROC4h plots in Figure 1 and Figure 53 in the
supporting information). Steep and most likely spurious gradients are also seen in the meridional surface
wind field over ocean points approaching land in the GISS suite and HadCM3 models (Figure S3 in the
supporting information).

4. Summary

The presence of spurious numerical oscillations (SNOs) in global climate models has been known for decades
and has been previously shown to cause poor representation of precipitation, wind, sea surface temperature,
clouds, and more. The SNOs (in the form of Gibbs oscillations) are most prevalent in models that use spectral
numerics and could compromise the results of scientific climate analyses. This study provides a quantitative
characterization of the SNOs in 48 CMIP5 models to draw awareness to the large SNOs present in
these models.

For variables that have observations for comparison, 40% of models on average have RMSD values greater
than the RMSD value for observations along the transect multiplied by a large factor of 5 (see Figure S4 in
the supporting information). Furthermore, 69% of the models have an RMSD:IAV ratio that is as large as, or
larger than, interannual variability along the study transect for at least one variable. This translates to 95%
of spectral models and 48% of nonspectral models having at least one RMSD:IAV ratio greater than unity.
The largest SNOs by absolute and relative measures are seen in spectral models and in the surface
pressure field, although smaller SNOs are visible in many of the variables examined. For 8 of the 13
variables, at least one model (or as many as half for surface pressure) has SNOs with amplitude as large as,
or much larger than, the interannual variability of those variables along the transect. These variables
include surface pressure, surface meridional winds, vertical velocity, surface air temperature, incoming
surface radiation, and total cloud amount. Also, regardless of the numerical method employed, model
resolution does not predict oscillation amplitude or prevalence.

The presence of large stationary numerical oscillations with amplitudes on the scale of atmospheric
interannual variability suggests that these oscillations are spurious and should not be ignored. Despite this,
SNOs are rarely mentioned in CMIP analysis literature probably because they are perceived as being small
in modern climate models. Given past research by others and our present findings, there is no reason to
believe that the spurious oscillations are benign to climate simulations and they could very well have
harmful impacts on the representation of variables at local, regional, and global scales. Future studies are
needed to quantify how the SNOs affect model climate processes or the quality and robustness of the
model simulations in general. The statistics presented in this paper could affect the design of future CMIP
analyses, and we encourage the CMIP analysis community to address the potential impacts of these
findings. The CMIP modeling groups are also urged to share information on the specific treatments of the
oscillations or lack thereof so that SNOs can be substantially reduced in all climate models (e.g., for future
CMIP activities).
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Figure Si. Climatological precipitation transects
(black) and the corresponding running mean curves
(red) used to compute RMSD values; shown for a
spectral model (CMCC-CM; top), a finite volume
model (GFDL-ESM2M; middle), and TRMM data
(bottom). The number of points used to compute
each running mean is labeled as ‘npts’. Note that the
transect approaches the South American coast as
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Figure S2. The region of model transects shown over climatological (1979-2004) sea level pressure from
the HadSLP2 dataset. The transects bisect the South Pacific subtropical surface high. Transects are
chosen as the model latitude closest to 29° S, which ranges between 27.8° S and 30.3° S. The
westernmost transect longitude is the closest model grid point approaching 112° W from the west and
the easternmost longitude point is one to two model grid points westward of the first continental model

grid point (dependent on the number of grid points used to compute the running mean).
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Figure S3. Examples of model transects that result in large values of RMSD and RMSD:IAV ratio, even
when large Gibbs oscillations are not present along the entire transect. Note that all transects include
only ocean points. The culprits include (a) a premature decrease in surface pressure approaching land, (b)
one large oscillation in surface pressure near the ocean-land transition, and (c-d) unrealistic steep
gradients in meridional surface wind near the ocean-land transition. The CCMP meridional surface wind
observations are shown in (e) for comparison to (c-d).
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Figure S4. RMSD values for (a) spectral models and (b) non-spectral models for 13 variables: surface
pressure (ps), near-surface u-wind (uas) and v-wind (vas), vertical velocity at 925 mb (wapg25) and 500
mb (waps500), precipitation (pr), surface specific humidity (huss), surface air temperature (tas), surface
incoming solar radiation (rsds) and incoming longwave radiation (rlds), geopotential height at 925 mb
(zg925) and 500 mb (zg500), and total cloud amount (clt). Observational values are shown in black on the
bottom row of each panel. Black circles indicate fields that are not available. Vertical red dashed lines
represent the observational data value multiplied by a factor of 5. Red labels show values beyond each
abscissa maximum and green labels show values for bars that are not easily visible. Vertical grid lines are
shown with gray dashes.
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APPENDIX C
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MONTHLY SURFACE AIR TEMPERATURE AT REGIONAL SCALES OVER THE US
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Abstract

Model simulations of 20th century monthly minimum and maximum surface air
temperature over eight US regions are assessed using mean state, trend, and variability bias
metrics. Transparent model performance information is provided in the form of model rankings
for each bias type. A wide range in model skill is seen even for long term mean climate simulation
where the highest skill is expected, and much of the ensemble cannot reproduce significant
observed long term trends at monthly resolution. No strong relationships are seen between any of
the three bias types or between 20™ century bias and 21 century projected change. Using our
model rankings, two smaller ensembles of models with better performance over the southwestern
U.S. are selected, but they result in negligible differences from the all-model ensemble in the
average 21% century projected temperature change and model spread. In other words, models of
varied quality (and complexity) are projecting very similar changes in temperature, implying that
the models are simulating warming for different physical reasons. Despite this result, we suggest
that models with smaller 20" century biases have a greater likelihood of being more physically
realistic and therefore, more confidence can be placed in their 21% century projections as compared
to projections from models that have demonstrably poor skill over the observational period. This

type of analysis is essential for responsibly informing climate resilience efforts.
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1. Introduction

Rapid environmental changes linked to human-induced increases in atmospheric
greenhouse gas concentrations have been observed on local to global scales over recent decades.
Given the relative certainty of continued rapid change across many earth systems, local and
regional decision makers are increasingly interested in planning for projected climate changes and
employing mitigation strategies. These decision makers need climate model projections on
relevant time and spatial scales, as well as assessments of model reliability in order to make
confident planning decisions.

Preliminary resources for this type of planning in the US include national and regional
climate assessment reports such as the National Climate Assessment (NCA; Melillo et. al 2014)
and the Assessment of Climate Change in the Southwest United States (Garfin et. al 2013). Aimed
at decision makers, these reports use plain language to condense the most up-to-date scientific
knowledge on national- and regional-scale climate observations and future change projections. In
the context of regional climate resilience efforts, one of the main problems with reports like the
NCA is the lack of information regarding model reliability. Climate projections are almost
exclusively presented using a multi-model ensemble (MME) average of all available models,
regardless of individual model performance. This method is likely inappropriate on smaller
regional planning scales due to the large spread in model ability at these scales (Maxino et al. 2008,
Perkins et al. 2007). It stands to reason that a realistic simulation of the present climate is at least
a necessary (but likely not sufficient) requirement for a model’s ability to realistically simulate the

climate of the future for the right reasons. As such, understanding model performance at regional
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scales over the 20th century is crucial to discerning model reliability, avoiding the use of the worst
performing models, and informing our confidence in climate projections.

Three main issues can be found from previous regional performance assessments. First,
there is a dearth of climate model information available at local to regional planning-relevant
scales. Second, performance information for specific models is frequently neglected in favor of
the MME mean and model spread. Third, the measures used to evaluate model performance are
often not comprehensive or quantitative enough to provide sufficient evidence of model reliability
for planning decisions. For example, similar to the national and regional climate assessment
reports, some studies simply evaluate model performance based on long term mean climate
(Reichler et al. 2008, Macadam et al. 2010). Other studies focus on the simulation of trends
(Sillmann et al. 2014) or climate variability (Yao et al. 2013, Maxino et al. 2008, Perkins et al.
2007). Many studies examine both mean climate and variability, but don’t provide clear
quantitative information regarding individual model performance at decision relevant scales
(Sillmann et al. 2013a, Wuebbles et al. 2014, Santer et al. 2009, Cheng et al. 2015, Sun et al. 2015).
Overall, there are a lack of studies that use all of these relevant evaluation measures (long term
means, trends, and variability) to quantify individual model performance at scales applicable to
adaptation planning.

Here, we present a planning-relevant analysis of individual model simulations of monthly
average minimum and maximum surface air temperature (Tmin, Tmax). We evaluate the ability
of all available CMIP5 climate models to simulate 20" century long term mean climate, trends,
and variability in order to provide a clearer picture of model capability for resilience efforts. Our

analysis was designed based on the interest of an energy utility in southern Arizona in assessing
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their heat-related vulnerabilities and increasing their resilience to future temperature change. The
model performance information presented here is intended for similar application by researchers

and practitioners working at the intersection of climate science and decision making.

2. Model Simulations, Observations, and Methods
The source of model simulations is the CMIP5 multimodel ensemble archive

(http://pcmdi.lInl.gov). We use a 106-year period (1900-2005) of the historical experiment, which

imposes changing atmospheric and land surface conditions consistent with past observations.
Details regarding CMIP5 experimental design can be found in Taylor et al (2009, 2012). One
ensemble member is chosen for each model with monthly minimum and maximum surface air
temperature and topography available in the archive (42 models in total). Table 1 lists the models
used and provides the modeling group, country origin, and abbreviation code we have assigned to
each model.

Observations of Tmin and Tmax are from the Berkeley Earth 1°x1° gridded monthly land
data product (Rhode et al. 2013), which provides temperature over land only. Although this study
is limited to model performance at monthly time resolution, we choose the Berkeley Earth monthly
observations because of the corresponding daily data product, which will provide consistency for
further model evaluation at daily resolution.

Preprocessing steps include regridding all models to a common grid, applying an elevation-
based model temperature correction, creating an MME-average, and area-averaging over eight
study areas. The 1°x1° grid of the Berkeley Earth observations is used as the common grid and

model information is adjusted to this grid using bilinear spatial interpolation. The temperature
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correction is applied to each model using a lapse rate of 6.5 °C/km and the elevation difference
between modeled and observed topography. Since the Berkeley Earth gridded observations do not
include elevation information, we use the ASTER Global Digital Elevation Model (DEM) dataset
(NASA JPL, 2009) scaled down to our 1-degree common grid by area averaging. At this point,
MME-average Tmin and Tmax are created by averaging together the regridded, elevation-
corrected spatial fields of all 42 models. Then, a monthly time series is obtained for all models by
area-averaging over eight study areas. A land mask is applied to each model so that only grids with
greater than 50% land area are included in each area-average. The seven regional study areas used
are based on the regions delineated by the NCA and are shown in Figure 1 (SW=southwest,
NW=northwest, GP=great plains, MW=midwest, NE=northeast, SE=southeast, AK=Alaska). We
also include an additional continental US study area that comprises most of the lower 48 states.
The area-averaged model and observed 20" century time series for each region are used to
assess biases in model long-term mean state, trend, and variability. First, we examine model mean
climate using long-term annual and seasonal averages. Here, significant biases are identified at the
90% confidence level using a two-tailed t-test for difference in means and adjusting for lag-1
autocorrelation. Next, we look at linear trends in annual average temperature as well as in monthly
average temperature for the month with the largest difference between observed and MME-
average trends for each region. Significant trends at the 90% confidence level are again identified
using a two-tailed t-test, adjusted for lag-1 autocorrelation. Significance is computed in the same
way for the trend of the time series difference between models and observations to identify
modeled and observed trends that are significantly different from each other. Finally, we use the

standard deviation of the detrended monthly temperature anomaly time series to assess variability,
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where the anomalies are computed by removing monthly climatological means. Significant
differences between model and observed variability at the 95% confidence level are identified
using a two-tailed f-test, adjusted for lag-1 autocorrelation.

Results are then used to rank model performance with respect to each type of bias. Each
type of bias ranking is divided into five categories to aid in the selection of better performing
multimodel ensembles, so that the reader can quickly identify the bias magnitude for each model.
The bounds of the categories were arbitrarily chosen to separate out very good and very poor model
performance, and to distribute average performing models relatively evenly over the remaining
categories. In the discussion section of this paper, we use the southwest US region to demonstrate
how the rankings can be used to select better performing multimodel ensembles and then compare

future projections from these ensembles to projections using all available models.

3. Results
a. Long-term mean state

Starting with model mean state bias, we see a range in regional performance. Figure 2
shows the MME-average bias and model bias spread for the seasonal and annual mean climate
states. For both Tmin and Tmax, seasonal mean state MME-average bias is much smaller in some
regions (average absolute seasonal bias is 0.52 °C and 0.80 °C for GP, 0.38 °C and 0.76 °C for SE
Tmin and Tmax, respectively) than in others (average absolute seasonal bias is 2.40 °C and 1.35
°C for SW, 1.68 °C and 2.08 °C for AK Tmin and Tmax). The same is true for the annual mean
MME-average bias. It is clear that for most regions, the majority of models are biased warm for

Tmin, although the largest model biases are cold biases that act to compensate for most of the
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overwhelming model warm biases. The same phenomenon is seen in Tmax, where the majority of
models are biased cold in most regions, but this bias is mostly compensated by a lesser number of
models with larger warm biases. Across all eight regions on average, Tmax MME-average absolute
bias is slightly larger than Tmin bias (by 0.23 °C seasonally and 0.21 °C annually), but the model
spread in Tmax bias is smaller than the spread in Tmin bias (by 1.06 °C seasonally and 1.56 °C
annually). This indicates that Tmax model biases of opposite signs are less compensating than they
are for Tmin. Also of note is that the average model spread in annual mean bias for both Tmin and
Tmax (12.87 °C and 11.31 °C) is almost as large as that of seasonal mean bias (13.60 °C and 12.53
°C), showing a large range in model ability even at the coarser timescale. On a seasonal and annual
basis, the MME-average bias is usually significant for both Tmin and Tmax across all regions. For
confident decision making in the context of climate change adaptation and resilience efforts, the
MME-average performance and spread of model biases in simulating even long-term mean climate
at the regional scale are inadequate.

Additionally, Figure 2 clearly shows that low annual mean bias can be mistaken for good
performance when seasonal biases are of opposite signs. For example, without looking beyond the
annual mean bias, there is no way to know that the annual mean Tmin bias in the NW region is the
result of compensating seasonal biases, whereas this is not the case for the low annual mean bias
in the SE region. Use of this metric alone is not comprehensive enough to accurately assess model
skill and can cause over-confidence in model ability.

Assessment of vulnerability to climate change and the resulting planning decisions may
focus on one particular season or even one month of the year. Often, the MME-average bias and

model spread increase when looking at the long-term mean state for a single month. Figure 3 shows
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the May time series for the SW region, where the MME-average bias is -3.83 °C and the model
bias spread is 13.27 °C on average, as compared to the summer and annual mean bias and model
spread in Figure 2 (summer MME-average bias -3.14, spread 12.57; annual MME-average bias -
2.40, spread 12.87).

All models are ranked on the basis of Tmin and Tmax seasonal bias in the appendix (Table
Al). For most regions, the majority of models are biased 1-3 °C. There are two instances where
the MME-average outperforms all individual models (in the GP and US regions for Tmin), and
this is caused by compensating model biases. In regions where bias is stronger in one direction,
many models outperform the MME-average. For example, in the SW region where most models
show Tmin cold biases, 67% of individual models have a smaller average seasonal bias than the
MME-average. Similarly, in the NE region where most models are biased warm in Tmin and cold

in Tmax, 19% of individual models outperform the MME-average for Tmin and 26% for Tmax.

b. Trends

Next, we look at model ability to simulate 20" century trends. Figure 4 shows the trends in
annual average temperature as well as in monthly average temperature for the month with the
largest difference between observed and MME-average trends (herein referred to as max-month)
for each region. For the annual average trends shown in Figure 4a, there is a significant difference
between the MME-average and observed Tmin values for half of the regions and regardless of
significance, the MME-average value is always an underestimation (by 0.24 °C/century on
average). In the case of Tmax, there is no significant difference between the MME-average and

observed values for any region, although the MME-average value is almost always a slight
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overestimation (by 0.14 °C/century on average). The magnitude of the model spread in annual
mean trend is similar between Tmin and Tmax for each region (average difference in model spread
is 0.27 °Clcentury), but while most models agree on the sign of the Tmin trends, the models are
more often split on the sign of Tmax trends. Also, the AK model spread for both Tmin and Tmax
is much larger than any other regions, indicating the difficultly that models have in simulating
realistic 20" century climate in this region.

Keeping in mind that only the month with the largest MME-average trend bias is shown in
Figure 4b, most MME-average trends in max-month temperature are significantly different from
observations. For each region, the greatest MME trend bias is found almost exclusively in fall or
winter. The model spread in max-month trends (4.39 °C/century for Tmin, 3.82 °C/century for
Tmax on average) is much larger than for annual average trends (2.06 °C/century Tmin, 2.21
°C/century for Tmax on average) and there is no model consensus on the sign of max-month trends.
It is also interesting that when the observed max-month trend in Tmax is significant (shown with
large filled circles in Fig 4b, e.g. for the GP, MW, NE, and US regions), the MME-average trend
is always an underestimation. This is also true for Tmin max-month and annual average trends.

All MME-average trends in annual and max-month temperature are significant (filled large
squares in Figure 4a,b), whereas there is one region for Tmin and four regions for Tmax where the
observed max-month temperature trend is not significant (open circles in Figure 4b). A time series
example of this is shown in Figure 5, which compares the observed, MME-average, and single
model max-month (October) trends in Tmax for the AK region. The observed trend (Figure 5a) is
-0.75 °C/century and is not significant (p=0.31), whereas the MME-average trend (Figure 5b) is

significant and of the opposite sign (+1.04 °C/century, p<0.01). Many models, such as MRIC3
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(Figure 5c¢), reproduce small insignificant trends (-0.60 °C/century, p=0.41), but the models that
produce larger significant trends, such as CESMF (Figure 5d; +3.76 °C/century, p<0.01)
overwhelm the MME-average toward significant bias.

All models are ranked on the basis of Tmin and Tmax annual and max-month trend bias in
the appendix. For annual average trend bias (Table A2), the MME-average usually falls within the
0.2-0.5 °C/century category for Tmin and within the 0-0.2 °C/century category for Tmax. Most
models have biases of less than 1 °C/century and depending on the region, 12-45% of individual
models have smaller trend biases than the MME-average. For max-month trend bias (Table A3)
the MME-average usually falls within the 1-2 °C/century category for both Tmin and Tmax. Most
models have biases greater than 1 °C/century and 40-52% of individual models have smaller biases

than the MME-average.

c. Variability

Last, we examine 20" century variability. Figure 6a shows the standard deviation of the
modeled and observed detrended monthly temperature anomaly time series. Here, the MME-
average is computed as the average of individual model standard deviation values, as opposed to
computing variability from the average MME temperature field because averaging model fields
together smooths out most variability. Without visualization of individual model results, it may
appear that many models have much greater than observed variability in Tmin and Tmax for most
regions, but the large model spread is usually caused by only a few models. This is reflected in the
fact that, with the exception of the AK region, the MME-average variability is very close to that

of observations. The MME-average variability bias for the AK region is 0.72 °C for Tmin and 0.48
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°C for Tmax, whereas across all other regions on average (excluding AK), it is 0.23 °C for Tmin
and 0.08 °C for Tmax. The magnitude of the model spread varies across the regions, ranging from
0.43 °C (US Tmax) to 2.46 °C (NW Tmin), and the spread is often smaller for Tmax than Tmin
(0.53 °C smaller on average).

An illustration of model ability to simulate temperature variability is shown in Figure 6b,
where we zoom in to the modeled and observed Tmax anomaly time series for the AK region
during the randomly chosen decade of the 1960°s (other decades examined appeared similar). The
trend and climatological monthly mean of each series has been removed. The model spread in gray
shading shows the tendency to overestimate variability in the region. The models with the smallest
(ACC13, 0.04 °C) and largest (CMCCE, 1.17 °C) standard deviation bias (for the entire 1900-
2005 study period) are shown as an example of individual model performance. While the model
with small bias (blue) performs well, the model with the largest bias (green) clearly shows more
extreme warm and cold temperatures as compared to observations, especially during winter
months. Future change in climate variability, including extremes (which are not assessed here), is
a very important consideration in assessing vulnerability to climate change, as changes in
variability can affect the frequency of heat waves, freezing temperatures, flooding and drought
events, etc. For this reason, determining the models that simulate realistic variability and using
that information to constrain vulnerability assessment is essential.

All models are ranked on the basis of Tmin and Tmax standard deviation bias in the
appendix (Table A4). Most models have biases of less than 0.5 °C for Tmin and Tmax, except in
the AK region, where most models are biased greater than 0.5 °C. For any given resilience

application, climate model variability performance information at monthly time resolution may
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not be sufficient for decision making. We suggest using the results presented here in combination

with a decision-relevant variability assessment of daily resolution model information.

4. Discussion
a. Correlation between historical biases

To understand how the historical model biases relate to each other, we perform a linear
regression analysis between each type of bias (seasonal mean, annual trend, max-month trend, and
variability) for each region. For each regression, the linear correlation coefficient (r) is computed
and tested for significance at the 95% level using a two-tail t-test. Substantial overlap is known to
exist between models due to the sharing of training data, human expertise, and model code, which
results in an effective number of climate models that is much smaller than the total (Pennell et al.
2011, Knutti 2010). While the effective number of models varies widely for individual model
fields, Pennell et al. (2011) estimated that on average, the effective number of CMIP3 models for
the northern hemisphere extratropics is between 7.5 and 9 from a total of 24. To account for model
overlap, we roughly estimate the effective number of independent models as one third of the total
(14 effective models from 42 total). The effective number of models is used to compute the degrees
of freedom for significance testing. To ensure robust tests of significance, we also compute the
linear correlation coefficient a second time excluding the 10% of models (4) with the largest
magnitude variable bias.

No strongly significant relationships are found, although significance (using both
measures) between the annual trend bias and max-month trend bias is seen in four regions (SW,

NW, GP, US) for Tmin and three regions (SW, GP, US) for Tmax. Figure 7a shows this
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relationship for GP Tmin where the correlation values are 0.66 and 0.63. The only other
relationship that is significant using both measures is between max-month trend bias and
variability bias for the US region, but the correlation is not particularly strong, as shown in Figure
7b, and the same relationship is not significant in any of the smaller regions. All other linear
correlations between regression variables are either insignificant by both measures or significant

only if computed using all 42 models, such as the relationship shown in Figure 7c.

b. Correlation between historical bias and projected change in the southwest

A total of 33 models (marked with asterisks in Table 1), have output available for the
historical, RCP 4.5, and RCP 8.5 experiments. For the discussion of future projections over the
southwest US we adjust our metrics slightly, according to the interest expressed by an electric
company in southern Arizona in spring time temperature changes. We compare the 20™" century
(1900-2005) bias to the 21% century (2006-2099) projected change of five metrics: annual mean,
spring mean (March, April, May average), annual trend, May trend, and monthly time series
standard deviation for Tmin and Tmax. Linear correlations and statistical significance are
computed using the same methods as in section 4a and model overlap is again accounted for by
estimating the effective number of independent models as one third of the total (11 effective
models from 33 total). Three statistically significant correlations between 20" century bias and
21% century projected change are found, but they all prove fairly weak visually.

Figure 8 shows these significant correlations, which include Tmax mean bias to RCP 8.5
projected variability change (Figure 8a), Tmax spring mean bias to RCP 8.5 projected variability

change (Figure 8b), and Tmax annual trend bias to RCP 4.5 projected annual trend change (Figure
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8f). None of these significant relationships hold true for both RCPs (Figure 8d,e,c). The reason
that the significant and insignificant correlations shown in Figure 8 are all negative is unclear,
while the many other insignificant correlations (not shown) are a mixture of positive and negative
relationships. No other significant correlations were found between any of the biases and

projections for Tmin or Tmax.

c. Choosing better performing multimodel ensembles for the southwest

Regardless of the lack of significant relationship between 20" century biases or between
20" century bias and 21% century projections, it is still worthwhile to at least eliminate
demonstrably poor performing models from the MME when the intended use of the MME is to
inform climate resilience efforts. Using the regional mean, trend, and variability bias rankings in
the Appendix, we choose two better performing MMEs to examine southwest temperature
projections. Many methods exist to accomplish this task, but the process of choosing models
should be relevant to the intended use of projection information. We are not using the max-month
trend bias rankings (Table A3) in the model selection process because it is not as relevant as the
annual trend bias to our intended use of the projections.

We develop a simple point-based method using the bias categories in Tables Al, A2, and
A4, which were chosen fairly arbitrarily in order to separate excellent and poor performance, while
distributing average performing models across the remaining categories relatively evenly. For
Tmin and Tmax separately, each model is given points based on the bias category it falls in for
each of the three bias types. Zero points are given for the smallest bias category, one point for the

second smallest bias category, and so on, up to four points for the largest bias category. Summed
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across the three bias types, the total points possible for each model ranges between zero and twelve,
with fewer points indicating better performance. This process is completed twice, once for Tmin
bias and again for Tmax bias.

A fairly straight forward way of choosing a better performing MME is to eliminate models
that clearly do not simulate realistic 20" century climate. We call this process “RMBAD” and
select MMEs for Tmin and Tmax separately. All models that fall within the largest and second to
largest bias categories for any bias type (i.e. 3 or 4 points for any bias) are eliminated first. Any
remaining models with total points of 5 or higher are eliminated second. The RMBAD selection
process results in an MME of 24 models for Tmin and 19 models for Tmax (Table 2) from a total
of 33 available models. In a planning context, we suggest using this type of MME for probabilistic
studies and for generation of future potential climate scenarios.

Another way of choosing a better performing MME is to select a number of the best
performing models. Knutti et al. (2010) show that for mean seasonal surface air temperature,
selection of a few good models for averaging substantially decreases mean climate bias as
compared to an all-model MME average, and the greatest bias reduction is seen when about five
good models are chosen. Based on these results, we use our points system to choose five models
with good 20" century performance in a process we call “TOP5”. First, we decided to discount the
importance of annual trend bias (as compared to mean and variability bias) based on the theoretical
ability of models to capture small 20™" century observed linear trends. The observed 20" century
annual trend is less than 1 °C/century for Tmin and Tmax over the southwest US. If modeled and
observed natural variability near the beginning and end of the century is not similar, then for small

observed trends, it is possible that the modeled trend will be significantly different, therefore
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imposing equal weight on trend bias during the model selection process may be unreasonably
restrictive. Second, while it is clear that considerable bias commonality exists beyond just models
developed at the same center (Pennell et al. 2011), commonalities between models from different
modeling centers are not transparent and specific model overlap information is not readily
available. In an attempt to account for at least a portion of model overlap, we require the models
chosen using the TOP5 process to be from separate modeling centers. The models resulting from
the TOP5 process for Tmin and Tmax are listed in Table 3. Because this type of MME is so
restricted in number of models, we suggest using this method for multimodel averaging and

planning purposes where average projections may be sufficient.

d. 20" century performance and 21 century projections over the southwest US using three
different multimodel ensembles

Figure 9 compares the performance of the RMBAD, TOPS5, and all-model MMEs in
simulating 20" century climate characteristics. For the mean and variability metrics, the RMBAD-
and TOP5- average biases are an improvement over the all-model average bias. For example, the
RMBAD-average and TOP5-average reduce the magnitude of the all-model-average spring time
bias in Tmin of -3.23 °C by 37% (1.19 °C) and 57% (1.83 °C), respectively. Similarly, the
RMBAD-average and TOP5-average reduce the all-model-average variability bias in Tmax of
0.112 °C by 27% (0.030 °C) and 94% (0.105 °C). As intended, the RMBAD and TOP5 MME
selection processes greatly reduce model spread for the mean and variability bias metrics. These

result are not seen for the trend metrics due to the down-weighting of trend performance in the
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TOP5 selection process and because for the SW region, relatively few models fall in the worst
trend bias categories chosen for Table A2.

Figure 10 shows the 21% century projected temperature changes for the SW region for all
three MMEs. The TOP5-, RMBAD-, and all-model- average projected changes in Tmin and Tmax
are nearly identical for all five metrics. There is very small or no reduction in projection uncertainty
(model spread) between the all-model MME and the RMBAD MME, and the small model spread
of the TOP5 MME is more than likely caused by the reduction in number of models rather than by

any real reduction of uncertainty. Results for RCP 4.5 (not shown) are very similar.

5. Conclusions

We have examined the capacity of all available CMIP5 global climate models to simulate
20" century long term mean climate, trends, and variability in monthly average minimum and
maximum surface air temperature on planning-relevant spatial scales in the US. Transparent
information regarding individual model performance over the continental US and seven smaller
US regions (based on the National Climate Assessment) is provided in the form of bias rankings
in order to create a clearer picture of model ability for resilience efforts.

At regional scales in the US, the model spread in annual mean bias is between 11 and 14
°C, revealing a large range in model ability even at coarse timescales. Although for most regions,
the majority of models have mean seasonal and annual biases of less than 3 °C in magnitude.
Annual trend bias is generally less than 1 °C/century and max-month trend bias is 1-3 °C/century
for most regions. While MME-average annual trends may be fairly close to observations, many

individual models have annual trend biases nearly as large, or larger than, the trend itself. For the
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monthly trends examined, the MME-average underestimates observed significant trends and many
models do not agree on the sign of regional trends at monthly time resolution. Models tend to
overestimate variability, especially during winter months, although most models have variability
bias of less than 0.5 °C for most regions. Models perform worst over the AK region for every bias
metric.

No strong correlations exist between any of the 20" century biases for any region, nor do
the 20" century biases correlate strongly with 21 century projected mean, trend or variability
change. Using the bias rankings to select two better performing MMEs, we examine 21% century
temperature projections for the southwest US as compared to using an all-model MME. We find
that constraining temperature projections with MMEs that have small 20th century biases results
in negligible differences in the MME-average 21st century projected climate change and model
spread. In other words, models of varied quality (and complexity) are projecting very similar
changes in temperature, implying that models are simulating warming for different physical
reasons. More research is required to elucidate the physical reasons why CMIP5 model projections
of regional warming are so similar, despite the large range in simulation capability.

Further study is also needed to assess if our findings remain true in other regions of the
world or for other variables such as precipitation. It is important to note that the models shown
here to perform well for temperature may not perform well for other variables. For example, in
Geil et al. (2013) we show that for a region in northwest Mexico located a few degrees south of
the southwest region in the present study, one of the worst representations of seasonal precipitation
is seen in the MIRCE model, which is a TOP5 Tmax model in the present study. Similarly, our

previous work shows the three models from the UK Met Office have by far the best representations
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of seasonal precipitation in northwest Mexico, whereas we show here that they are not top
performers for temperature in the southwest.

Regardless of the current disconnect between 20™ century model performance and 21°
century projected change, relying on information from an all-model MME where each model is
given equal value is often considered to be a naive approach to understanding model performance
and projected climate changes (Jun et al 2008, Maxino et al 2008). Also, it is unknown if the
relationships between 20th century bias and projected change will remain static as model
development continues. We suggest that models with smaller 20th century biases have a greater
likelihood of being more physically realistic with respect to both historical and future climate
simulations, and therefore, more confidence can be placed in their 21st century projections as
compared to projections from models that have demonstrably poor skill over the observational
period. This type of analysis is essential to clarifying our confidence in climate change projections
and responsibly informing climate resilience efforts.

Lastly, this study is based solely on monthly resolution model information. It is unknown
if the non-relationship between 20" century bias and projected change remains when examining
higher time resolution model information, for instance, whether an assessment of bias in the
frequency, intensity, and duration of heat waves affects the projected change in heat wave
characteristics. For resilience efforts that are based on model projections, we stress the importance
of carrying this work one step further, through assessment of daily resolution model information
using specific metrics relevant to the decisions at hand, and constraining vulnerability assessment

to those models showing reasonable 20™ century performance.
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Appendix: Model Bias Rankings
The following tables provide model bias rankings for each of the eight US regions. For all appendix

tables, categories are inclusive on the lower bound and exclusive on the upper bound, and the 42-
model MME is shown in bold.
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TABLE Al. Model ranking by the average of the absolute value of seasonal mean bias for the
period JAN 1900 — DEC 2005.

TMIN
|SEASONAL BIAS| swW NW GP MW NE SE AK us
HADEC, CESMB, ;ﬂé\:iﬁgﬁgg‘é
CESM4, CESMF™, CCSMd, MRIEL®,
CNRM2*, CNRMC, . !
ccsms, ceme, — CNRM MR, | MMERZ CMCCE, BCcCr, HADEE,
. CESMB, CESMF*, HADEE, HADEC, g g CMCCC, NOR1M, . ; GFDEG, GIE2R, CESMC, CMCCC, iy .
0-1°C CNRMC, CMCCC, HADC3*, MRIEL®, GFDEG, GIERC, GIE2R,
ACC13, MIRCS, GFDEG . HADC3*, BNUEM GFDEM, HADEE, FGOG2* .
MR CNRM2 CNRMC, CESMC, NORIN, GIERC BCCCM, CESMF*,
MME42, MPIEL . ’ CESMB, CMCCE”,
GFDC3, MRIC3, 5136, MPIEL, CSI3L*
. 2 . s
CESMBS‘I‘UTSH ' BNUEM, MPIEM,
GFDEM, HADEC
MME42, CESMC,
E:";E;‘;:E::‘ ::;3} 1’:;:‘ GFDEG, CMCCS, GFDEG, CMCCE*,
MIRCE, MIRCC, ‘ ’ ‘ ’ GIE2R, MME42, NOR1IM, MPIEM,
MPIEP*, CMCCE®, CMCCS, BECCl,
NORLM, MPIEL, FGOG2*, MPIEL, MRIE1*, GIERC, BOCCL, GIERC, CESMF®, INMCS, GIE2H, HADC3* CMCCS, MPIEP*, CNRMC, GFDC3,
CMICCE®, GFDEM, CMCCS, ‘BNUEM’ GFDEM ’GFDEG‘ CNRM2*, CESMC, HADEC, CESMB, (M((’S B(CCIJ HADCZ’: MPIEM’ ACC10, ’MP\EP"J
1-2°C MPIEM, GIEHC, GIEZH, N . ! ' CNRMC, HADEC, BNUEM, CCSM4, | N . , ' .
BNUEM, CMCCS, ACC10, CCSM4, CESMC, GIEZR, CMCCE®, GIEZH HADEE, MPIEP* GIEHC, BCCCM, CESMW*, MME42, GIE2H, CNRM2*,
BCCCM‘ ACCID‘ NOR1M, BCCC1, HADEE, CMCCE®, MRICS, ‘;;FDC;‘ o136 GIéHC BCC’CI CESMW?, C5136 MPIEL, CMCCE® GIEHC, HADC3*
i ' CESMW* ,BCCCM, CCSM4, CESMF* N ’ N . !
GFDEG . ‘ ! . MRIE1*, HADEE, | GIE2R, CSI3L*, GIERC,
CESMB, CESMF*, GIE2H, CESMB, GIEHC,
; N . " ’ Pl | M
CSI3L*, GIERC, GIE2R, GFDC3 MPIEL, MPIEM, GIEHC Becc
CNRMC, CSI36
BCCC1, CCSM4,
GIE2R, GIERC, GFDC3, GFDEM, CSI136, WIPIEL, INMCA, CESMB, CNRMC,
CMCCC, CANEZ, CNRM2*, GFDC3, | CSI36, BCCCM, MPIEL, | CCSM4, MPIEP®, GIE2H, GFOCS FGOG2. CMCCE® CESMF*, BNUEM, CANE2, CESMW?,
2-3% MRIE1®, MRIC3, MRIC3, HADC3*, ACC10, FGOG2*, CSI3L*, CESMF*, £GOG2. GEDEM CSI3L*. MPIEM, C5136, CNRM2®, MIRCC, MIRCE,
MMEA42, HADEE, MRIEL®, GIEHC, CSI3L*, MPIEM, BCCCM, INMC4, ACCL0, CESMWS®. MPIEP*, MIRCS, CANE2, ACC10, FGOG2*, MIRCS,
CESMW?, CSI3L*, | GIE2H, MIRCC, MIRCE | MPIEP*, MIRCS CESMB, FGOG2*, ' ACC10, ACC13, Cangz|  MRIC3, GFDEG, ACC13, INMC4
BCCC1, C5136 ACC10 g : HADEC, HADEE,
NOR1M, INMC4
MRIE1*, BCCCM,
MIRCC, INMC4, CESMW®. MIRCS MIRCS, ACC13, GFDC3, ACC13,
3-5°C HADEC,FGOG2*  |ACCI3, MIRCS, INMC4|  MIRCE, CESMW®, | o 0" 2 o [ IPCAM, MIRCC, MIRCC, MIRCE IPCAM, GFDEM,
CANE2, ACC13 ' ' MIRCE, CANE2 MIRCS, GIE2R, GIERC,
MIRCC
HADC3*, CNRMC,
25°C CNRM2*, IPCAM, | IPCBL, IPCAM, IPCAL | 1PCAM, IPCAL, 1PcaL |“ANE 'I';cczt"'wcm’ IPCAL, IPCBL IPCAM, IPCAL, IPCBL "ﬂlzii g::ﬁ ?p'i;r IPCAM, IPCAL, IPCBL
INMC4, IPCAL, IPCBL : i
TMAX
|SEASONAL BIAS| sw NW GP Mw NE SE AK us
CESMB, CC5M4,
ACC10, CESMF*,
0-1°C CMCCS, MPIEP®, MIRCS ?:E:; Pg:,:: INMC4, MME42, CESMW?*, MIRCC, MIRCE, MIRCC, GIEHC, GIE2R, GIERC, CESMC, INMC4,
CESMC NORIM‘ INM(‘»’; CESMC MIRCE, CESMB ACC13, MIRCS, MIRCS, GIE2ZH CESMB, CESMF*
v MMEA42, CESMW*,
CESMC
CMCCS, MPIEL,
MPIEL, MPIEM, MPIEM, MPIEP®,
' i GIE2H, CESMB, § ’ CNRMC, ACC10, 4 . MPIEM, MPIEL, N .
MME42, MIRCS ' iy CESMF*, GIEZH . . CESMC, CESMF* ‘ . CNRMC, MMEA42,
L 4 MMEA42, CESMF*®, ‘ N CNRM2*, ACC13, M ‘ CNRMC, CMCCS, MRIC3, MRIE1®, . ‘
1-2°C c:gxq'gs;tla' GIEHC, MIRCE, CSI3L*, G'éﬁ:ﬁi’;ﬁqs\:fm’ MPIEM, CCSM4, ﬁ:é;ﬂ‘“a;cé“:‘ CNRM2*, CMCCE*, MIRCE, MIRCC, M'T‘;EiE‘E‘:‘ich;
CMCCE’; M\Rté CCSMa, MIRCC, CNRM‘Z‘ ACCIB' NORIM, MIRCS, CANEZ' INMUI‘ NOR1M, BCCCl, CESMC, INMC4 MP\EP: NDRIM‘
: . CNRMC, ACC13, . ‘ CESMB, CESMF*, . " |GIEHC, HADEE, CSI3L*, . :
MIRCC, ACC10, NORIM CSI3L*, MIRCS, GIEHC. MPIEL, GIEH ACCE10 INMCa CMCCE®, HADEE,
HADEC, BCCCM, GFDEM, MRIEL*, ‘ Y GIEHC, GIE2H, CSI3L*
CNRMC MRIC3, GFDC3,
CNRMC
CNRM2*, ACC10, BCCC1, BNUEM,
GIEHC, C5I36, HADEE, | CSI36, CANEZ, IPCAL, CMCCS, MRIEL*, G\EZ:D;Fé:CNléilﬁiac CMCEC, HADC3® ':cpfchr& CNT;ELS‘
GIEZH, CNRM2*, BCCCM, GFDC3, GFDEG, HADEC,  |MRIC3, HADEE, GIERC, CN’RW. Elﬁzﬁ ! G\Ezni CANE2 ‘ eMecee ’HADC31
2-3°€ CANEZ, CESMW*, GIE2R, MRIEL*, HADC3*, MIRCC, MIRCE, MIRCC, sccet I\:APIEP" HADE& cswssi MMEA42, ACC13, HADE(E Bccel ’
NORIM, GIE2R, GIERC,|  MPIEP*, HADEC, | HADEE, MIRCE, C5136,|  CMCCC, GIEZR, cmccé' csusi MR\El”G\ERC‘ CANE2 CANE3 'BNUEN;
HADC3*, BNUEM, CMCCS, CESMW*, BCCCM CMCCE®, GFDC3, ; ’ ’ : ! .
GIEHC, HADEC, | MRIC3, GIE2R, GFDC3 €136, GIEZR, GIERC,
IPCAM GIERC, HADC3®, CSI3L*, HADEC, MPIEM MRIEL®, MRIC3
MRIC3, HADEE GFDEM i
GFDEM, C5136,
CESMW*, CNRMC,
. CESMB, CESMF*,
CMCCC, CMCCE*, *::':;’égc’ ai?gf CSI3L*, CCSMA4,
BCCC1, MRIET®, BCCC1, BNUEM, BCCCM, HADC3*, MRIEL" MRICS BCCCM, FGOG22, HADC3®, GFDC3, GFDC3, IPCAL,
3-5°C MRIC3, GFDC3, MPIEL, MPIEM, FGOG2* C5136, GFDEG, \PCBL cmccs, | GFDEM, IPCAL, IPCBL, | - GFDEG, CNRM2*, GFDEM, IPCBL,
GFDEM, GFDEG GFDEM, IPCBL, FGOG2Y, CANEZ | oo cne IPeaL, GFDEG CMCCC, FGOG2*, GFDEG, FGOG2*
FGOG2*, IPCAM GrDEG. ACCI0, MPIEP®,
BCCCM, HADEE,
CMCCS, NORIM,
HADEC
MPIEM, BCCC1,
. CANE2, IPCAL, IPCBL, MPIEL, BNUEM,
25°C FGOG2* GFDEG IPCAL, IPCBL, IPCAM FGOG2*, IPCAM IPCAM IPCAM
IPCAM ’ . g CMCCE*, IPCAL,
IPCAM, IPCBL

* Models for which RCP 4.5 and/or RCP8.5 simulations are not available.
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TABLE A2. Model ranking by absolute value of the JAN 1900 — DEC 2005 trend bias. Models
with biases significantly different from observations at the 90% confidence level are colored

TMIN
|BIAS| SW NW GP MwW NE SE AK us
CESMB, INMC4,
CNRM2*, GFDEM,
IPCBL, BCCC1, IPCAM, MRIE1*, BNUEM,
MME42, HADC3* INMC4, CESMF* CESMW*, MPIEP* HADEE, CANE2 FGOG2*, INMC4,
' . CESMW?*, GFDEM, ’ ' BCCC1, CESMF*, CESMW*, MIRCE, 2 ¢ 4 ; ’ 4
NOR1M, HADEE, FGOG2*, IPCBL, MRIC3, MIRCE, IPCBL, |  FGOG2*, GFDEM, IPCBL, CESMW*,
9:0:2 cesmes, secen, | TOBL MPIEL CESMF, | g1+ GroE, CESIW, MEIERS; FGOG2*, CESME:, FGOG2*, IPCAM IPCAL, MME42, IPCAM, CESMB,
¥ s R MC. MRIEL® : ) F . IE2R, CCSM4, ; ) 3 ), A 5 ,
C/century | Ceqpwe, MRic3, cssc':mrn ; IPCAM, CCSM4, CESN::MZ?GZ g Elz:c:hc: MPIE‘SSCI CSI3L*, CESMB, CESMW*, MIRCE, BCCCM, BCCCL,
MRIEL*, CESMC, BCCC1, MRIEL* 4 BCCCM, GIEHC, IPCAM, IPCBL CESMF*, MRIEL*
CNRMC, CSI3L*, GFDEG, BCCC1
CMCCC, CMCCE®,
GFDEG
CCSM4, MME42
N . g ,
BCCCM, CNRMC, MRIEL; SIEHC, INMCA, CESMES) CNRM2*, GFDEM,
CESMB, INMC4, CNRM2® RekiEaS MPIEL MRIEL® ACC10, INMC4, IPCBL, |  MME42, CCSM4, WPERS icaial®
FGOG2*, HADEC, CANE2, FGOG2* 2 § * $ MIRCS, MME42, NOR1M, ACC10, ! 4
‘ CESMB, MPIEP*,  |GFDEG, CNRMC, IPCBL, GIE2R, CESMC, INMC4,|  CNRMC, MRIC3,
02-08 CMCCS, MIRCE, IPCAM, MME42, i oMEce Ceoma, csiaLe, | CESMB, MRIC3, GIEZH, | CESMIC, CNRMC, Sl DK e b
5 7 CANE2, GIEHC, MIRCC, MPIEM, CCSM4, d % 4 i CMCCE*, BNUEM, |HADEE, 5136, CMCCC, 4 2 7 4 4
*C/ cantury A(2(1D MPIEM BcccEM emcece, CESMIW; OFDEM, MIRG:, CMCEE, HADEEE GFDEM, MPIDEL MG MBIEN, | M2, MRIELS, BOAG, SR
J ! ! g GIE2H, ACC10,  [GIEHC, MMEA2, GIE2R, 4 ’ 4 5 ’| GIE2H, MPIEL, MPIEM | NORIM, MPIEL,
ccsma MPIEP*, BCCC, # BCCCM, CMCCS, CANE2, CMCCE*, ke
p NOR1M, CMCCS, GIE2H,CNRM2* [ _ ™ e MIRCS, GIE2H, MIRCE,
CSI3L*, MRIC3 GIERC, MPIEL, GFDC3, [  CNRM2*, GIERC,
MIRCS, BNUEM CANE2, CMCCS,
IPCAL GIE2R, GIE2H -
CMCCE*
BNUEM, IPCAM,
BNUEM, ACCI10, h CNRMC, NOR1M,
GIE2H, ACC13, MPIEL, GIEHC, CNRMC EMCCEL I IEN CMOCES, A0, CANE2, CMCCC MIRCG, ACCLD, CESMC, BNUEM,
A 2, ! SM BN A,
i3 HCCEY g y HADC3*, CANE2, CMCCS, NOR1M, 4 ' - MPIEP*, CMCCC, = ek
GIERC, MIRCS, GFDEG, GFDC3, S . HADEC, ACC13, MIRCC, HADC3*, GIE2R, HADC3*,
05-1 L ' | MIRCC, GIEHC, MPIEL, | CANE2, IPCAL, BCCCM, e | GFDC3, amccs, o
o it BNUEM, MPIEP*, NORIM, HADC3®, [0 &' 0 eiae MRS GEOENS CNRM2*, MIRCC, ~|IPCAL, HADEC, GFDEM,| o "\ obr o [MPIEM, GFDC3, GIERC,
™ | GiE2R, GFDC3, CS136, |GIE2H, MIRCE, CMCCS, : y ¢ ¢ & HADC3*,CSI36,  |ACC13, GFDC3, CMCCS £ ' | IPCAL, HADEE, ACC13,
GIE2R, GIERC, GFDC3, | GFDC3, CS136, MIRCE HADC3*, MRIC3,
IPCAL GIERC, MIRCS, MIRCC, | _ y A CSI3L*, GFDEG, ke 4 €136, HADEC, MIRCC
3 . CESMC, HADEE, ACC13|  MPIEM, HADC3*, A CNRMC, CS136, CESMB
CMCCE*, GIE2R MPIEM, CESMC
GIERC, CESMC, HADEE
CMCCE*, GIEHC
1-2 ACC13, CSI36, IPCAL, Mmu_' B,“’U\i]'
°¢ / centu o T e HADEC ACC13, MIRCC, HADEC CSI3L*, GFDEG,
sony ? CCSM4, ACC13,
CESMF*
" =2 - - - BNUEM
C / century
TMAX
|BIAS| SW NW GP MW NE SE AK us
GFDEM, CESMC,
MIRCE, NOR1M, IPCAM, MIRCE, INMC4, CMCCE*, RiEs a
CSI3L*, FGOG2*, MRIE1*, HADC3*, CESMC, CNRM2*,  [BCCCM, GIE2R, GIEHC, CMCCS, MRIC3, GIEHC, MIRCC, CESMC’ACClO'
CNRM2*, IPCAM, ACC10, CMCCS, CESMB, GFDEM, CANE2, CMCCS, BCCCM, HADEC, GFDEM, CMCCE*, ChiRNiC GFEEM
0-0.2 IPCBL, HADC3*, BCCC1, CNRMC, HADC3*, IPCBL, CESMC, CMCCE*, CNRMC, GIERC, CNRM2*, GIE2H, MIRCC, MRIE1*, CNRM2S MR
°C / century MME42, CNRMC, FGOG2*, CSI3L*, CMCCS, MIRCC, IPCBL, MRIC3, GIE2H, | MIRCC, MRIEL*, | HADEC, GIE2R, ACC13, | GIERC, IPCBL, MME42 |~ o "™
GFDEG, BCCC1, MME42, MIRCE, CNRMC, MRIC3, INMC4, MME42, GFDC3, CMCCC, CANE2, ACC10, MIRCS-CSL®. CANED
CESMC, CESMB,  |IPCAM, CANE2, GFDEG|  GIE2H, ACC10, ccsma CANE2, FGOG2*, MRIEL* RIS Fooase ipgat
BCCCM, CESMW* MME42, CSI36 CSI3L*, GIE2H, ! !
NOR1M, MME42
IPCAM, CNRM2*, HADC3*, GIERC, fiiieE et NOR1M, GIE2H,
MIRCS, CMCC MIRCC, NORIM GFDC3, CMCCE* GFDEM, ACC MPIEP*, MRIC3 t ’ HADC3*, GF
4 5 ORIV e E% DEM, ACCI0, | ) cc10, ACC13, GIEHC, P ' |CESMC, HADEC, IPCAL, DX OMDES,
GFDEM, CCSM4, MRIC3, CNRM2*, CANE2, BCCCM, MRIEL*, ACCL3, | o o o Giear | MMEA2, GFDC3, plissitis CMCCE®, GIE2R,
0.2-0.5 MIRCC, CESMF*, | GIERC, MIRCS, GFDC3, [ ACC13, MIRCS, GFDC3, HADC3*, CNRM2*, HADC3*, | HADEE, CESMB, CS136, | - acc1o|  BECCM, GIEHC
°C / century MRIE1*, ACC10, GIEHC, GIE2H, MRIE1*, CESMF*, HADEE, CESMB, || 00 CE MiRcs, | BECCL CNRMC, IPCBL [ o S, | GFDC3, ACCI3, GIERC,
CANE2, IPCAL, CMCCE*, IPCBL, CESMW*, FGOG2*, | CSI3L*, GIERC, CSI36, BceC MpiEps | CESMC,INMC4, o BCCC1, HADEE,
CMCCE* CESMC, ACC13 GIERC NOR1M, GFDEG, ¢ IPCAM, BCCCM, CESMW, HADEE CESMB, INMC4,
FGOG2* cMmccs ! MIRCC, CSI36
MRIC3, MPIEM, GFDEM, GIE2R,  |[NOR1M, GIE2R, GIEHC,|  MIRCS, CNRMC, . CSI3L*, cMcCC CMCCS, MPIEL,
€136, CCSM4, CCSM4, CESMW*,
MPIEP*, GFDC3, CS136,| CESMW?*, CESMB, CCSM4, CSI3LY, MIRCE, CESMF*, st NOR1M, MIRCS, MPIEP*, NORIM, Cee hRaipe
05-1 ACC13, HADEE, MPIEM, INMC4, BCCC1, GFDEG, MPIEP*, HADEC, WML’ IPCBL : FGOG2*, MIRCE, MRIC3, MPIEM, MC ('( m’\m( 1PC ;\L
°C / century INMC4, CMCCC, | MPIEL, CESMF*, CSI36, | HADEE, INMC4, IPcAL, | cmccc, Beect, cnmyw/- o CCSM4, CESMF*, CMCCE*, GIE2H, PO
BNUEM, GIERC, MPIEL,|  HADEE, CCSMA4, MPIEP*, BNUEM, CESMW*, MPIEL, i CESMW?*, GFDEG, CNRM2*, MIRCS, frtsats
GIE2H, GIE2R HADEC, BCCCM, IPCAL|  HADEC, MPIEM MIRCC BNUEM, IPCAL, MPIEM| CNRMC, BCCC1, CSI36
BCCCM, GFDEG
1-2 . MPIEP*, BNUEM, . S e 5
°¢/ centu GIEHC, HADEC e MPIEL, CMCCC  |BNUEM, IPCAL, MPIEM MPIEM MPIEL CSI3L*, GIEHC, CESMB,
v ' ACC13, CCSM4
22 s = CESMF*, BNUEM
°C / century

* Models for which RCP 4.5 and/or RCP8.5 simulations are not available.
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TABLE A3. Model ranking by absolute value of the 1900 — 2005 max-month trend bias. Models
with biases significantly different from observations at the 90% confidence level are colored

brown.
TASMIN
|BIAS| SW (MAY) NW (JAN) GP (FEB) MW (FEB) NE (FEB) SE (NOV) AK (OCT) US (FEB)
CESMB, MRIEL®,
0-02 INMC4, FGOG2®, | CESMF*, CMCCC, CMCCC, INMC3, IPCAL, .
Etrumery:| RGeS e IPCAM e CESMW CCSM4, IPCAL Acc13 IPCAM, INMCA
CMCCE*, MPIEP*
CNRMC, MPIEL, IPCAL,
CNRM2°, INMC3, HADC3", CESMB,
_02-0s GFDEG, MIRCC, pabeien MPIEP, 6000 — GFDC3, IPCAM, ey MRIC3, HADEC, MPIEP*, MPIEM,
C/century | Bccel, emecc, Cic BT MPIEM phaccylues HADC3 GFDEM, CMCCC
GFDEM, CESMW* d v
HADEC, CSIL*,
MRIC3, GIE2R, CESMC, CCSM8,
MME42, NORIM, MIRCS, MPIEP*, | CESMF*, CMCCE®, CESMW?*, GFDEG,
05-1 CANE2, BNUEM, ﬁZ:AM'CGC':x‘ INMC4, GFDEG, ~ MIRCE, IPCBL, CESMB, | CSI36, GIE2H, MIRCE, ;’f:ccssg:zis IPCBL, BNUEM,
°C/century | cCsM4, CNRM2®, e MPIEM, GFDEM CCSM4, HADEC, BCCCM, HADEE, ol GFDC3, MPIEL,
CESMF*, HADEE, INMC4 cEsMw® CESMB, BCCCM,
MIRCE, HADC3", FGOG2*
IPCAM, GIEHC
GFDEG, CMCCC, MRIE1*, GIERC,
MME42, BCCC1,
Y cmcec, cesma, GFDEM, CESMF*, BCCC1, MPIEM, CTO N
CANE2, MPIEM, FGOG2%, IPCBL | coogpe, pruem, | BCCCL NORIM, BIMRAL, CANEL, CESMF*, MIRCE,
ACC10, GFDC3, CSI3L*, CESMC, MMES2 ACC10, MPIEP®, MPIEL, GFDC3,
IPCBL, CSI36, GIERC GIE2R, GFDC3, e GFDEM, IPCAM, AL, fbie el sty CSI3L*, MIRCS
1-2 BCCCM, GIE2H MME42, BCCCl, : & MPIEP*, GFDC3, ; . J " | cane2, cnRm2®
. CANE2, MME42 FGOG2*, MPIEL, CMCCC, CESMC, CNRMC, ACC10, s
C/century | MIRCS, CESMC, | ACCIO, MIRCE, IPCAL, | - Jipyea” ancae MIRCE, CESMW?, ACC10, GIEHC, GFDEG, CNRMC, | INMCa, MIRce, csize, [ NORM: IPCAL,
ACC13, GFDC3, ACC10|  CESMW*, CSI36, awuze'n BCCCL CESMF*, MIRCS, cmccz" GIERé CSI3L, ACCI3. GFOGS (’:NRMZ" ‘| Acc13, MRIE1®
GIE2H, FGOG2*, . BCCC1, ACC10 » SING g GIERC, HADEC,
e MRIEL®, CNRM2®, BNUEM, ACC13, CNRM2°*, MRIC3 e
CESMF* CMCCS, CANE2, HADEC, INMC4, et
csisLt GFDEM, CMCCS ‘
BCCCM, MMEA2,
CSI3L?, GIEHC CMCCE®, MME42
CNRM2*, HADEC, CSI3L*, IPCAL, GFDEM,
IPCAL, CESMW*
’ CMCCS, CESMC, IPCAM, BCCCY,
'»ﬁglc':: c;:;’g G'E:(CC?::;RGC‘:ZH‘ CCSM4, NORIM, CNRMC, MRIC3, HADEE, GIE2R,
” CANE2, CESMB, GIE2R, BCCCM CESMW®, CANE2, GIE2R, MIRCC
22 HADEE, HADEC, IPCBL,|  NOR1M, CNRMC | norim, ipcam
. - CMCCE*, GIERC, | MIRCC, GIE2H, CSi36, : NOR1M, IPCBL, HADC3*, HADEE,
'C / century ACC13, CMCCS, MIRCS, HADEC, A = MIRCC, IPCBL
il hepsibnie] MRIC3, ACC13, MRIEL*, CNRM2 MIRCE, GIE2H, GIERC csiz6
st CMees, nice ciear|  CNRMC, MPIEL, HADC3® FGOG2*, CESMC,
Csi36, NAéEE MIRCC, GIE2H MPIEP*, CCSM4,
MRIEL1*, GIE2R, GIEHC, BCCCM
HADEE, CSI36, BNUEM, CESMF*
HADC3*
TASMAX
|BIAS| SW (NOV) NW (NOV) GP (FEB) MW (FEB) NE (FEB) SE (JAN) AK (OCT) US (FEB)
0-02 | cFoec, mpieee, . MPIEM, IPCAL,
«C/ comtury | €513 CANEZ, ACC13 | 136, GIERR, CMCCE it GFDEG CESMW?*, MPIEM MRIC3 e
02-05 BCCCM, MPIEM, . . cMmccc, ACC13,
°C / contury | MRCC HADEC, Gienc | canez, accio, accas|  PCUL UL | Meiem, iNwmce, PcaL | GFocs, MiRcs CSI3L*, CMCCE s GFDEM
GIERG, NORIM, MPIEP*, GFDEG,
BCCC1, GFDC3, ACC10,| GIEHC, IPCAM, BCCC1,|  INMCA, CCSM4, MIRCE, HADEC, CESMC, CNRM2°, PR— bspliag by
05-1 CESMC, CESMF*, GFDEG, MRIC3, CESMC, MPIEL, cesmwe. Groem | PCAM, MPIEP®, CANE2, CMCCS, SRS tADCes e S
“C/century | CMCCE*, GIE2R, CESMC, HADEC, FGOG2*, MRIC3, 4 CMCCC, CESMC, accis, MRce, | e eat | Bccom ccemta
HADC3*, IPCBL, MIRCE GFDC3 cmece GFDEG BNUEM, INMC3, o N e S
BCCCM, GIE2R e
CSI3L*, CESMB,
MIRCC, HADC3®, CESMF*, CESMB, X A
ccow, o, [, PO MREE, | oy e, GFDEM, CMCCE, | GlE2H, Fo0G2" e, ncecs,
ncer cmcec, |peeumriere, ciean,| | SEES R CMCCC, MPIEP®, ACC10, IPCBL, | CSI36, GFDEG, GIEHC, |  INMC4, GFDC3, ey
Fomaa MMEA42, HADEE MRIEL", cangz. | IPCBL MIRCE, GFDC3, [ NOR1M, GIERC, HADEC, IPCAM, onmmc, mpiem, [ SRS S
1.2 |orpec mincs ciean| MPIEM, cmcce pbelbiiy FGOG2*, MIRCS, | CCSM4, MME42, | CESMW®,MME42, |  IPCAM, ACC10, Sl
Xl Lo INMC4, CNRMC NORIN, CEsmpe, |  BNUEM. Beccm, BCCC1,CSI3L%,  |ACC10, CNRMC, IPCAL,|  CESMB, MIRCC, ippsd s
okt phippesd GIERC, MIRCS SRR ocal. ACC10, CESMF®, INMC3, GIEHC, MIRCS, MRIEL®, | cNRM2¢, emccer, | oot CHREE
ot cesme, cesmwe, | o e CSI3L*, HADEC, HADEE, IPCAL, MPIEM, MPIEL MMEA2, CS136, i
nmse ceoms, | NORIM.cnRmze, | B ERINES | Mmea2, cmcce® FGOG2*, MPIEL, | CESMF®,GFDEM, | BCCC1, CESMW® e A
CCSM4, BCCCM UOIRG BNUEM, CMCCS HADC3*, GFDC3
MPIEP*, BNUEM HADEC, CMCCS,
BNUEM, CS13L* ACC13
HADC3*
BCCC1, CESMC,
CCSM4, NORIM, NOR1M, GFDEM,
MIRCE, GIEHC, | GIEHC, ACC13, MRIC3 GIE2R, CANEZ, CSI3L*
CMCCE*, CESMB, | MPIEL, cMces, Gierg, | 152 C1E2R BCCCMLL L nee Mic, MIRCE, FGOG2*
22 $APIEM, CCSMMY, || GMOCS, (PCAL MPIEL |  ~peam; M IPCAM, CESME, s it MPIEP*, MIRCE, HADEE, CESMC, MIRCC, GIE2R
o GFDEM, MPIEP* CNRMC, HADEC CNRM2*, CANE2 PRUES, Aot BCCC1, CMCCC, | GIE2H, IPCBL, GIERC HADEE, CSI36
IPCAL, MPIEL CESMB 2 CNRMC, CS136,
CMCCS, GIE2R, CS136, |  CNRMC, MRIE1® CESMB, CCSM4, IPCBL|  CCSM4, BCCem
CNRM2°, HADC3*
HADEE MIRCC, GIE2H MPIEP*, GIEHC
HADC3*, HADEE BNUEM, CESMF*
Cs136, GIE2R

* Models for which RCP 4.5 and/or RCP8.5 simulations are not available.
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TABLE A4. Model ranking by absolute value of the JAN 1900 — DEC 2005 monthly time series
standard deviation bias. Here, the MME is the mean of individual model standard deviation values.
Models with biases significantly different from observations at the 95% confidence level are
colored brown.

TASMIN
ISTDDEV BIAS| SW NW GP MW NE SE AK us
MRIEL®, MPIEL, s cc10, HADEC, MRIC3, CNRMC, CESMC, MIRCS, ACC13, MIRCE
MADEE, MIRCS, ACCL0, 'y 2 csizg, GIERe, | MRIEL" CESMG, MRIEL, ACC10, GIERC, MIRCC, GIEZH,
CESMW*, GFDC3, HADEE, GIER "| INMC4,CMCCE®, | GIE2H, GIERC, CANE2, | GIEHC, MIRCE, GIE2R, Mmcslc,mcsr GFE}EM oS :
0-0.1°C | GIEHC, MRIC3, CSI36, : % GFDEM, CESMW*, CMCCE®, GFDEG, | GIE2H, MIRCS, MIRCC, 4 ‘ Acc13 : :
HADC3*, GFDC3, GFDEM, BNUEM, GFDC3, GIE2R, GIEHC,
FGOG2*, GIE2H, MIRCE, MRiELe. | BNUEM, GIERC,CSi36,| - CMCCC, ACC13 CCNRMC, GFDEM e i i
MPIEP*, GIE2R, 2 : cmecce St ¥ 7
MIRCC, HADEC CSI3L*, MIRCS FGOG2
GFDEG, ACC13, GIE2H > ANE
ACC10, 1 MIRCS, GIE2R, “G'u"’i‘,mn' o s
01-02°C QUM GIE2R, CMCCC, GIERC
by MMES2
MME4S2
02-05°C
05-1°C
L, 8
21°C
TASMAX
|STDDEV BIAS| SW NW GP MW NE SE AK us
MPIEM, MIRCC, CSI36,
CMCE, SFOCS, MPIEL, CESMC, Acc‘f;)?:ﬁ;":::;ca
CESMW*, MPIEL, 2 y CESMC, NORIM, | CSI36, INMC4, MIRCE, d 4 i
£ £, CESMW*,ACC10, [ACC13, CSI36, BNUEM, » € | cesms, ipcaL, ccsma, MPIEL, NORIM,
MPIEP*, NORIM, MIRCC, CSI3L*, MIRCE,|  ACC13, CNRMC,
" MPIEP*, ACC13, FGOG2*, CANE2, CESMF*, ACC13, MRIE1*, CMCCC,
0-01°C CMCCE®, IPCBL, HADED. ADES® HBACA N, CANE2, INMC4, CMCCC, GIERC, . GRS Acc13 MIRCE, IPCAL, MIRCS
PIEM, MIR( . 4 > d E . 3 s 5 +
ACCNl'J :;""'m' f‘i’m MMEA2, CNRMC, CNRM2* CI;C:[([ ccr::c;s, "Z?;rs' glon(c’é ’ CANE2, CMCCE* CESMC, CMCCS,
s ‘| CNRM2*, HADEE J ' CNRMC, MME42,
IPCAM, GIERC, CSI3L"
BCCC1, MRIE1®,
1
GIEH, CESMC, | (136, IpcaL, INMcs, MRIC3, CMCCE®, GFDEM, CESW CUSCGACCLY,
" CMCCE®, MPIEP®, et £ 3
MPIEM, B BACES FGOG2*, MIRCS, €2
01-02°C GFDC3, M ACCI0, GEDGS, GFDC3, MPIEM, MRIE1®, CSI136
cerae neces tean| GFOEG, GFDEM,
) Lo MME42
02-05°C
05-1°C o BCCCM MIRCE, MRigrs  [°CCCh ACCIO MADER \ 5 a3
21°C - PC8 - -

* Models for which RCP 4.5 and/or RCP8.5 simulations are not available.
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Tables and Figures

Table 1. CMIP5 models used for this study.

Model Code Modeling Center Country
ACCESSI-0 ACCI10* | commonwealth Scientific and Industrial Research Australia
ACCESS1-3 AcCc13* | Organization (CSIRO) and Bureau of Meteorology (BOM)
BCC-CSM1.1 BCCC1* . . . o )
Beijing Climate Center, China Meteorological Administration China
BCC-CSM1.1m BCCCM*
BNU-ESM BNUEM* | Beijing Normal University China
CanESM2 CANE2* | Canadian Centre for Climate Modelling and Analysis Canada
CCSM4 CCSM4*
CESM1-BGC CESMB*
- *
gEgMi_CAMS CESMC National Science Foundation, US Department of Energy, and USA
FASTCHEM CESMF | National Center for Atmospheric Research
CESM1-WACCM CESMW
CMCC-CESM CMCCE
CMCC-CM CMCCC* | Centro Euro-Mediterraneo sui Cambiamenti Climatici Italy
CMCC-CMS CMCCs*
CNRM-CM5 CNRMC* | Centre National de Recherches Meteorologiques/Centre
Europeen de Recherche et Formation Avancees en Calcul France
CNRM-CM5-2 CNRM2 Scientifique
Commonwealth Scientific and Industrial Research
CSIRO-Mk3.6.0 CSI36* | Organization, Queensland Climate Change Centre of Australia
Excellence
CSIRO-Mk3L-1-2 CSI3L University of New South Wales Australia
) LASG, Institute of Atmospheric Physics, Chinese Academy of .
FGOALS-g2 FGOG2 Sciences and CESS, Tsinghua University China
GFDL-CM3 GFDC3*
GFDL-ESM2G GFDEG* | NOAA Geophysical Fluid Dynamics Laboratory USA
GFDL-ESM2M GFDEM*
GISS-E2-H GIE2H*
GISS-E2-H-CC GIEHC* . .
GISS-E2-R GIE2R* NASA Goddard Institute for Space Studies USA
GISS-E2-R-CC GIERC*
HadCM3 HADC3
HadGEM2-CC HADEC* | Met Office Hadley Centre UK
HadGEM2-ES HADEE*
INM-CM4 INMC4* | Institute for Numerical Mathematics Russia
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IPSL-CM5A-LR IPCAL*
IPSL-CM5A-MR IPCAM* | Institut Pierre-Simon Laplace France
IPSL-CM5B-LR IPCBL*
MIROC5 MIRC5*
MIROC-ESM MIRCE* | Japan Agency for Marine-Earth Science and Technology,

Atmosphere and Ocean Research Institute (The University of Japan
MIROC-ESM- MIRCC* | Tokyo), and National Institute for Environmental Studies
CHEM
MPI-ESM-LR MPIEL*
MPI-ESM-MR MPIEM* | Max Planck Institute for Meteorology Germany
MPI-ESM-P MPIEP
MRI-CGCM3 MRIC3* ) )

Meteorological Research Institute Japan
MRI-ESM1 MRIE1
NorESM1-M NOR1M* | Norwegian Climate Centre Norway

* Models with output available for the historical experiment from 1900-2005, and for the RCP 4.5 and RCP
8.5 experiments from 2006-2100.
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Table 2. Tmin and Tmax RMBAD MME models and total points for each model.

TMIN  POINTS TMAX POINTS

ACC10 2 ACC10 3
ACC13 3 ACC13 3
BCCC1 4 BCCCM 3
BCCCM 3 CCSM4 4
CCSM4 3 CESMB 3
CESMB 2 CESMC 1
CESMC 1 CMCCC 4
CMCCC 3 CMCCS 1
CMCCS 3 CNRMC 3
CSI36 4 INMC4 4
GFDC3 4 IPCAL 3
GFDEG 2 IPCAM 4
GFDEM 3 IPCBL 1
GIE2H 3 MIRC5 3
GIEHC 2 MIRCC 2
GIE2R 4 MIRCE 1
HADEE 2 MPIEL 3
MIRCS 2 MPIEM 3
MIRCC 2 NORIM 2
MIRCE 3
MPIEL 3
MPIEM 3
MRIC3 2
NORIM 3

Table 3. Tmin and Tmax TOP5 MME models and total points for each model.

TMIN  POINTS TMAX POINTS

ACCi10 2 CESMC 1
CESCM 1 CMCCS 1
GIEHC 2 IPCBL 1
MIRCS 2 MIRCE 1
MPIEL 3 MPIEL 3
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Figure 1. The eight study areas shown over ASTER global DEM topography on our 1°x1°
common grid. AK=Alaska, NW=northwest, SW=southwest, GP=great plains, MW=midwest,

SE=southeast, NE=northeast, and US=United States.
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Figure 2. Bias in seasonal and annual mean Tmin and Tmax for the period 1900-2005 (where W,
S, S, F, and A on the x-axis stand for winter, spring, summer, fall, and annual, respectively). The
MME-average is shown with a square marker and individual models are shown with dots along
grey vertical model spread bars. Colored markers indicate bias significance at the 90% confidence

level after adjusting for serial lag-1 autocorrelation.
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Figure 3. May time series of Tmin for the southwest region, where the solid line shows the
observations, the blue dash shows the MME-average, and the gray shade shows the model spread.

The green dash shows an example of one individual model.
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Figure 4. Annual average (a) and monthly average trends (b) in Tmin and Tmax. Only the month with the
greatest MME-average trend bias is shown for each region in (b). Large circles are observations, large
squares are the MME-average values, and individual models are shown with dots along grey vertical
model spread bars. Filled large markers indicate MME-average and observed trends that are significant at
the 90% confidence level, after adjusting for serial lag-1 autocorrelation. Color indicates that the modeled
and observed trends are significantly different from each other at the 90% confidence level, after adjusting

for serial lag-1 autocorrelation.
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Figure 5. Alaska max-month (October) trend in Tmax for (a) observations, (b) the 42-model MME-average,

(c) the model with the smallest trend bias (MRIC3), and (d) the model with the largest trend bias (CESMF).

Filled markers indicate that the trend is significant at the 90% confidence level, after adjusting for serial

lag-1 autocorrelation (p<0.1), while open markers are used for insignificant trends (p>=0.1). The Pearson

linear correlation coefficient (r) of each trend is shown for reference.
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Figure 6. The time series standard deviation (a) where circles are the observations, dots along grey vertical
model spread bars are individual models, and squares represent the average of all individual models. Color
indicates models with variability that is significantly different than observations at the 95% confidence
level, adjusted for serial lag-1 autocorrelation. (b) The detrended Tmax AK time series with mean removed
for the 1960’s, where the black line is the observed time series, the blue dashed line is the model with the
smallest variability bias (ACC13) for the 106 year study period, and the green dashed line is the model

with the largest variability bias (CMCCE). Gray shading shows the model spread.
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Figure 7. Linear regression between 20 century biases for 42
models. (a) Regression between annual trend bias and max-
month trend bias for the GP region. (b) Regression between
max-month trend bias and variability bias for the US region. (c)
Regression between seasonal average mean bias and variability
bias for the SW region. The regression line is shown in solid
black with the corresponding correlation coefficient, r, located
at the top center of each plot. A second regression that
excludes the 10% of models (4) with the largest magnitude x-
axis variable bias is shown with a dashed line and the
corresponding r value is in parentheses at the top right of each
plot. Colored r values represent significance at the 95%

confidence level, adjusted for reduced model independence.
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Figure 8. Linear regression of 20" century bias to 21° century RCP 8.5 (a,b,c) and RCP 4.5 (d,e,f) projected
change for the southwestern US using 33 models. Regression mean bias versus variability change (a,d),
spring mean bias versus variability change (b,e), and annual trend bias vs annual trend change (c,f). The
regression line is shown in solid black with the corresponding correlation coefficient, r, located at the top
center of each plot. A second regression that excludes the 10% of models (3) with the largest magnitude
X-axis variable bias is shown with a dashed line and the corresponding r value is in parentheses at the top
right of each plot. Colored r values represent significance at the 95% confidence level, adjusted for

reduced model independence.
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Figure 9. Comparison of historical biases between the TOP5, RMBAD and ALL-model MMEs, for Tmin
(top) and Tmax (bottom) using annual mean, March-April-May seasonal mean, annual trend, May trend,
and standard deviation bias metrics. Large markers indicate the MME-average and individual models are

shown with dots along grey model spread bars.
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Figure 10. Same as Figure 9, except for RCP 8.5 projected change.
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