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ABSTRACT: Two distinct features of anthropogenic climate change, warming in the tropical upper troposphere and
warming at the Arctic surface, have competing effects on the midlatitude jet stream’s latitudinal position, often referred to
as a “tug-of-war.” Studies that investigate the jet’s response to these thermal forcings show that it is sensitive to model
type, season, initial atmospheric conditions, and the shape and magnitude of the forcing. Much of this past work focuses on
studying a simulation’s response to external manipulation. In contrast, we explore the potential to train a convolutional
neural network (CNN) on internal variability alone and then use it to examine possible nonlinear responses of the jet to
tropospheric thermal forcing that more closely resemble anthropogenic climate change. Our approach leverages the idea
behind the fluctuation–dissipation theorem, which relates the internal variability of a system to its forced response but so
far has been only used to quantify linear responses. We train a CNN on data from a long control run of the CESM dry dy-
namical core and show that it is able to skillfully predict the nonlinear response of the jet to sustained external forcing. The
trained CNN provides a quick method for exploring the jet stream sensitivity to a wide range of tropospheric temperature
tendencies and, considering that this method can likely be applied to any model with a long control run, could be useful for
early-stage experiment design.
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1. Introduction

The eddy-driven jet stream drives much of the Northern
Hemisphere midlatitude weather (e.g., Nakamura et al. 2004;
Athanasiadis et al. 2010; Shaw et al. 2016; Madonna et al.
2017). Consequently, changes in the jet stream position and
strength can result in enormous societal impact by impacting
heat waves, droughts, and flooding events (Schubert et al.
2011; Coumou and Rahmstorf 2012; Bibi et al. 2020; Rousi
et al. 2021, 2022), extreme weather across the midlatitudes
(Mahlstein et al. 2012; Röthlisberger et al. 2016), hurricane
tracks (Mattingly et al. 2015), and crop production (Kornhuber
et al. 2020). Two robust features of anthropogenic climate
change, warming in the upper troposphere of the tropics and
warming at the surface of the Arctic, have been shown to inde-
pendently force opposite responses in the mean jet location
(e.g., Held 1993; Harvey et al. 2015; Stendel et al. 2021) These
competing responses are driven by changes in the pole to
equator temperature gradient (Blackport and Screen 2020;
Stendel et al. 2021). Warming in the tropical upper troposphere
drives a poleward shift in the mean jet location by increasing the

upper-tropospheric temperature gradient, while simultaneously,
warming at the Arctic surface drives an equatorward shift in the
mean jet location by decreasing the surface temperature gradi-
ent (Butler et al. 2010; Screen et al. 2013; Chen et al. 2020;
Stendel et al. 2021), The competing jet response stemming from
these two thermal forcings is commonly referred to as the “tug-
of-war” on the jet stream. Current consensus across climate
models is that the upper-tropospheric warming wins out over
the Arctic surface warming, causing a net poleward shift of the
jet (Yin 2005; Swart and Fyfe 2012; Barnes and Polvani 2013;
Harvey et al. 2015). However, there is still substantial disagree-
ment over the magnitude of the jet response due to uncertainty
in the strength and spatial extent of the regional heating anoma-
lies (Grise and Polvani 2016).

Warming in both the tropical upper troposphere and Arctic
surface are caused by distinctly different dynamical processes
that determine the characteristics of the thermal anomalies.
The tropical upper atmosphere warms more as a result of ad-
ditional water vapor stored in the warmer tropical tropo-
spheric air (i.e., a reduction in the moist adiabatic lapse rate;
Sherwood and Nishant 2015). The enhanced Arctic warming,
commonly referred to as Arctic Amplification, is occurring
3 times faster than elsewhere on the planet (Blunden and
Arndt 2012; Druckenmiller et al. 2021) and is driven by multi-
ple processes that include changes in poleward energy trans-
port (Hwang and Frierson 2010; Graversen and Langen 2019),
surface ice–albedo feedbacks (Manabe and Stouffer 1980; Dai
et al. 2019), cloud feedbacks (Abbot and Tziperman 2008) and
lapse-rate feedbacks (Pithan and Mauritsen 2014). To further
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increase the complexity of the processes driving the regional
warming, the two thermal forcings likely do not act entirely in-
dependently. Research has shown that increased transient
Rossby waves initiated in the tropics may drive increased heat
transport into the high latitudes and as a result drive further
warming in the mid- and upper troposphere of the Arctic (Lee
2014; Dunn-Sigouin et al. 2021). Uncertainties in the processes
that contribute to the magnitude and shape of warming in the
tropical upper troposphere and Arctic surface (Blackport and
Screen 2020; Stendel et al. 2021), in turn, make it even more
challenging to predict the magnitude of the jet response.

Despite the large body of work that investigates the re-
sponse of the midlatitude jet under climate change, multiple
challenges, such as the short observational record, isolating
the jet’s forced response from internal variability, and model-
ing ice and cloud feedbacks continue to make the question
difficult to answer (Tjernström et al. 2008; Kattsov et al. 2010;
Cohen et al. 2014; Pithan and Mauritsen 2014; Vihma 2014).
The studies that have investigated the response of the jet to a
thermal forcing have shown that the jet is sensitive to the shape,
location, and magnitude of the thermal forcing (Butler et al.
2010), the season in which the forcing is imposed (McGraw and
Barnes 2016), the current state of the atmosphere (i.e., position
of the jet stream; Gerber et al. 2008; Barnes et al. 2010; Kidston
and Gerber 2010; Garfinkel et al. 2013), and the climate models
used for the study (Meehl et al. 2007; Barnes and Polvani 2013).

In an attempt to explore circulation sensitivities to a wide
range of possible thermal forcings, Hassanzadeh and Kuang
(2016b) used a control run from the GFDL dry dynamical
core (Manabe et al. 1974) and employed the fluctuation–
dissipation theorem (FDT) to compute the linear response
function of the circulation to a number of external thermal
and mechanical forcing. FDT relates the mean linear response
of a nonlinear system to a forcing through a linear operator
created from the internal variability of the system (e.g.,
Kraichnan 1959; Leith 1975; Marconi et al. 2008). With the
ability to explore a forced response from internal variability,
FDT has been proposed as a method to quickly estimate cir-
culation sensitivities in climate models (Fuchs et al. 2015) and
serve as a useful tool for planning expensive climate model
experiments (Leith 1975). There have been encouraging re-
sults using FDT to explore the circulation response to thermal
forcings in general circulation models (Gritsun and Branstator
2007) as well as more complex coupled climate models
(Phipps 2010) to estimate the response to realistic sea surface
thermal forcings (Fuchs et al. 2015).

In order for the linear operator of FDT to accurately pre-
dict the mean response to a forcing, the system must satisfy a
number of conditions (Marconi et al. 2008). The first condi-
tion is that the system must be in equilibrium, because FDT
assumes that small changes in the system’s state (internal vari-
ability) has a recovery back to equilibrium that is similar to
the system’s response to a small perturbation (Kraichnan
1959; Leith 1975). The second is that the perturbation must be
small enough so that the response is linear even though the
system that the operator is created from is not necessarily lin-
ear (Leith 1975). Last, the probability density function of the
system must be differentiable, and many applications of the

FDT assume the system probability density function is Gauss-
ian (Majda et al. 2005), though work has been done to make
versions of FDT where the system can be quasi-Gaussian
(Cooper and Haynes 2011). In theory, a system that satisfies
these conditions can use FDT to compute the systems’ linear
response to a forcing, though there are practical challenges in
applying FDT to high-dimensional systems, such as GCMs
(Lutsko et al. 2015; Hassanzadeh and Kuang 2016b; Khodkar
and Hassanzadeh 2018).

Instead of using FDT to relate a forcing to a response, this
study uses a convolutional neural network (CNN) to learn the
nonlinear relationship between a forcing and a response.
Moreover, using a CNN in place of the linear operator re-
moves the need to make some of the FDT assumptions (i.e.,
small forcing for a linear response, Gaussianity assumption).
Training is performed on data from a long control run with
the Community Earth System Model (CESM) dry dynamical
core. Once trained, the CNN is used to explore the jet sensi-
tivity to a variety of thermal forcings. Throughout this study,
we evaluate the CNN’s ability to quantify the CESM dry dy-
namical core’s jet sensitivity, placing particular emphasis on
the tug-of-war between the warming in the tropical upper tro-
posphere and the Arctic surface. Training a neural network
on internal variability alone and then using it to predict a
forced response is, to our knowledge, a novel application of
deep learning to climate analysis. Therefore, we assess the
strengths and weaknesses of this approach in multiple ways
(see section 3).

2. Methods

We train a CNN to predict the jet stream response to zon-
ally averaged regional temperature perturbations. The goal is
to investigate jet sensitivity to thermal features associated
with anthropogenic climate change. The CNN, detailed in
section 2b, is trained on a long control run from a dry dynami-
cal core, which is documented to reproduce the majority of
the Northern Hemisphere’s jet response to heating perturba-
tions along with simulating the correct sign of the jet shift
(e.g., Mbengue and Schneider 2013; Hassanzadeh et al. 2014;
McGraw and Barnes 2016; Baker et al. 2017). Once trained,
the CNN’s skill is examined by comparing it with additional
baseline prediction methods and dry core experiments that in-
clude an imposed thermal forcing. Details on the dry dynamical
core setup, the CNN architecture and training, additional base-
line prediction methods, and additional dry core heating experi-
ments are discussed in more detail in the following sections.

a. Training data

We use output from the CESM Eulerian spectral-transform
dry dynamical core (Lauritzen et al. 2018). The model runs
are completed with the Held–Suarez configuration (Held and
Suarez 1994), such that friction exists at the surface and the
temperature is relaxed to a prescribed hemispherically sym-
metric temperature field. The relaxation temperature field is
set to equinoctial conditions and there is no absorption of so-
lar energy by the atmosphere (i.e., there are no seasons or di-
urnal cycles). All runs are performed at T42 resolution with
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30 vertical levels, 64 latitude bands, and 128 longitude bands.
The simulation is run in the above configuration for one mil-
lion 6-hourly time steps. The first 20 000 time steps (13.7 yr)
are thrown out to account for model spinup.

All data processing is performed to create efficient training
data for a CNN (section 2b) to predict the zonally averaged
jet response to a range of tropospheric temperature perturba-
tions. Two variables are used in this study, zonally averaged
temperature and zonally averaged zonal wind speed. The zon-
ally averaged temperature data are used to calculate the tem-
perature tendency field used as input to the CNN. The zonally
averaged zonal wind speed is used to calculate the initial loca-
tion of the jet and the subsequent shift of the jet, which are
used as a CNN input and the CNN prediction, respectively.
We exclude data from 200 hPa and above, effectively remov-
ing the stratosphere, which is not well resolved in this model
without modification (Polvani 2002) and so focus can remain
solely on the troposphere for both the forcing and the jet re-
sponse. Given that this study focuses on hemispheric jets, we
take advantage of the hemispheric symmetry in the dry core
and use each hemisphere as a separate independent sample,
doubling the amount of available training data to two million.
After zonally averaging, removing the stratosphere, and consid-
ering each hemisphere as a separate sample, the resulting size of
the temperature field is 25 vertical levels by 32 latitude bands.

Backward differencing is used to calculate the temperature
tendency, which is then smoothed using a backward running
mean of 240 time steps (60 days) to remove higher-frequency
variability. Removing the high-frequency variability allows
the network to focus on learning the response to a forcing
that more closely mimics continuous climate change forcing.
This smoothing is also aligned with FDT calculations, in
which an integration over long time lags (often up to the de-
correlation time scale) is done; for example, see Eq. (3) in
Hassanzadeh and Kuang (2016b). Smoothing the data before
calculating the temperature tendency did not result in any
changes in the CNN skill (not shown).

Following established methods (Woollings et al. 2010; McGraw
and Barnes 2016), the jet location is defined as the latitude of the
maximum wind speed at a pressure level near the surface. Zonal
wind speeds from the 850-hPa level are used here and are first
smoothed with a 240-time-step (60 days) backward running
mean. Then, a second-order polynomial is fit to the peak of
the smoothed 850-hPa zonal wind profile and the jet location
is defined as the latitude of the maximum wind speeds.

Now that a smoothed zonal temperature tendency and a jet
location are calculated, the data are split into training, valida-
tion, and testing data. Splitting is completed by chunking the
data into three groups where training data is the first chunk,
validation the second, and testing the last.

Last, the jet response to a given temperature tendency is
defined by the change in jet latitude from the time of input to
120 time steps later (i.e., the jet shift). A positive jet shift indi-
cates a poleward shift in jet location and a negative jet shift in-
dicates an equatorward shift in jet location relative to the jet’s
latitude at the time of prediction. The jet shift is calculated
within each dataset (training, validation, and testing) by sub-
tracting a 240-time-step backward running mean of jet stream

locations from a 240-time-step forward running mean of jet
stream locations 120 time steps into the future. This processing
results in 359 280 training samples, 199280 validation samples,
and 1399558 testing samples. Training the CNN required fewer
samples than expected because adding more samples to the
training dataset did not improve the CNN skill, explaining why
the testing dataset is much larger than the training and valida-
tion datasets.

b. Convolutional neural network

CNNs are commonly used for image recognition and classi-
fication tasks as the convolutional layers can extract spatial
features in the input image that help the network to learn the
correlations between the inputs and output (Fukushima 1980;
Yann et al. 1998; Zeiler and Fergus 2014). While a fully con-
nected feedforward network (e.g., LeCun et al. 2015) has the
ability to learn the same features extracted by the convolu-
tional layers within a CNN, it may require a larger network
and more training data to do so (Yann et al. 1998; Ingrosso
and Goldt 2022). In this study, we utilize a CNN so that the
network can efficiently learn the correlation between temper-
ature tendencies and the jet response while also trying to min-
imize the amount of training data required.

The CNN has two inputs: a smoothed temperature ten-
dency field (K day21) and an initial jet location (degrees lati-
tude). Including the temperature tendency as an input allows
us to investigate the jet response to regional temperature ten-
dencies and including the initial jet location supplies the CNN
with essential information about the current state of the jet at
the prediction time, an important factor for the jet response
to forcing (Gerber et al. 2008; Barnes et al. 2010; Kidston and
Gerber 2010; Garfinkel et al. 2013). Before the data are input
into the CNN, the smoothed temperature tendency field is
multiplied by a factor of 10, and the initial jet location is stan-
dardized using the standard deviation and mean jet location
from the training data. Scaling and standardizing are done so
that both inputs have similar magnitudes (order of 1).

The network consists of four convolutional layers: two aver-
age pooling layers, three dense layers, and three dropout
layers (Fig. 1). Convolutional and dense layers use the hyper-
bolic tangent activation function. Data are passed through
the network as follows: the scaled temperature tendency goes
directly into the first convolutional layer with 32 filters of
size 33 3 and a stride of 1 followed by a second convolutional
layer with the same attributes. The second convolutional layer
is then connected to an average pooling layer with a kernel
size of 2 3 2. These three layers, two convolutional and a sin-
gle average pooling, are repeated with the same attributes
with the exception of containing 64 filters rather than 32 in
the convolutional layers. The output from the second average
pooling layer is flattened and the standardized initial jet loca-
tion is concatenated to the end. This layer is then fed into the
first dense layer with 500 nodes and then goes through a drop-
out layer with a dropout rate of 30%. The data pass through a
combination of dense layers with 500 nodes followed by drop-
out layers with a dropout rate of 30% two more times. The
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data from the final dropout layer then pass into the output
layer consisting of two nodes.

The CNN outputs two values denoted as m and s, which
represent a mean and standard deviation of a Gaussian distri-
bution where m denotes the predicted jet shift and s repre-
sents its uncertainty. Estimating values of a distribution is
commonly known as maximum likelihood estimation and is
regularly used in statistics (Duerr et al. 2020). A neural net-
work that predicts the parameters of a Gaussian distribution
is used to quantify network uncertainty (Nix and Weigend
1994a,b), and Gordon and Barnes (2022) recently showed the
utility of incorporating uncertainty into a regression neural
network for climate science applications. The network learns
to predict m and s for each sample i through the implementa-
tion of the negative log-likelihood loss function:

Li 52log(pi), (1)

where p is a value of the predicted Gaussian distribution eval-
uated at the true jet shift for the ith sample. To ensure the
network is calibrated we employ the probability integral
transform (PIT) probability calibration scheme (Gneiting et al.
2007; Nipen and Stull 2011; Barnes et al. 2023). The PIT histo-
gram for this CNN can be found in the online supplemental
material.

To train the CNN, we use the Adam stochastic gradient de-
scent optimization algorithm (Kingma and Ba 2014) with a
learning rate of 1027, a batch size of 256, and a random seed of
300. We apply early stopping to halt the training process once
the validation loss fails to decrease for 10 consecutive epochs
and restore the model weights to the version with the lowest
validation loss (Prechelt 2012).

c. Baselines

We establish two baselines in this study to assess the perfor-
mance of the CNN and demonstrate that the CNN has

learned relationships between the jet response and the re-
gional temperature tendencies. The first baseline is called
persistence, similar to “persistence forecasting” (MacDonald
1992), where future conditions are predicted to be identical to
the current conditions. In our case, this translates to the jet’s
future location being the same as its location at the time of
prediction (i.e., jet shift equal to zero). Comparing this base-
line with the CNN ensures that the CNN is predicting jet
shifts that are more accurate than predicting a jet shift of
zero. The second baseline is called average evolution and de-
scribes the average movement of the jet based on its position
at the time of prediction. For this baseline calculation, the
training data is separated into 100 different bins according to
the initial jet location, essentially grouping samples with simi-
lar initial jet locations together. The average jet shift for each
bin is calculated, resulting in an average jet response that is
solely dependent on the jet stream’s starting position. The av-
erage evolution baseline is not sensitive to the number of bins
or their exact spacing (not shown). This baseline ensures that
the CNN is not just predicting the average evolution of the jet
based solely on the initial jet location but is also using the
temperature tendency input to make its prediction.

Every test sample is thus associated with three jet shift pre-
dictions, one from the CNN and two from the additional persis-
tence and average evolution baselines. Although comparing
results between the CNN and the two baselines is useful for
placing the CNN’s predictions into context, we highlight that
the baselines make predictions based solely on information
about the initial location of the jet while the CNN is provided
additional information in the form of the temperature tendency.
Thus, the CNN is able to explore the correlations between a
temperature tendency and a jet response.

d. Heating experiments

The main goal of this study is to investigate the jet stream
sensitivity to thermal forcing driven by anthropogenic climate

FIG. 1. Schematic of the convolutional neural network with an example of an input and output.
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warming. However, as we have designed it, the CNN only
trains on data from a long control run (i.e., internal variabil-
ity), and thus, only provides insights into the forced response
if the idea of the FDT holds (Kraichnan 1959; Leith 1975;
Marconi et al. 2008). To investigate whether this assumption
is valid, we run additional dry core simulations (referred to as
heating experiments) with zonally symmetric imposed thermal
forcing (F) that take the form of a two-dimensional Gaussian
in the latitude/pressure plane:

F(Q, p) 5 qo exp
(Q| | 2 Qo)2

Q2
w

2
( p| | 2 po)2

p2w

[ ]
, (2)

where Qo and po are the horizontal and vertical centers, re-
spectively; Qw and pw define the width and height; and the
magnitude of the forcing is given by qo. Gaussians that fall
near the edge are cut off and therefore are not complete two-
dimensional Gaussians. For all 29 Gaussians created in this
study, Q, Qw, p, pw, and qo are reported in Table 1.

Eighteen heating experiments with either one or two
Gaussian thermal forcings imposed in the dry dynamical core
are run out to equilibrium to quantify the true jet shift (see
experiments 1–18 in Table 1). To perform a direct comparison
between the CNN-predicted jet responses and the dry core jet
responses, the CNN is given the same temperature tendency
that is imposed in each of the dry core heating experiments.
For the CNN’s initial jet location input, the average jet loca-
tion from the long control run is used (42.48). By comparing
the true forced response from the dry core with the predicted
forced response by the CNN, we are able to investigate the
CNN’s ability to predict the jet response to thermal forcing
from training on internal variability alone. Only experiments
1–18 in Table 1 have true jet responses calculated from forced
dry core simulations. All other experiments are used only to
evaluate the CNN, and the true jet responses are unknown.

Each heating experiment is initiated at the end of the long
control run (time step one million; 684.9 years), and therefore,
have the same initial conditions. The heating experiments are
run for an additional 20 000 time steps with the first 4000 re-
moved to ensure that the model has reached its new equilib-
rium. The 850-hPa zonal winds are then used to compute the
location of the jet (see section 3a). Last, the true response of
the jet to an imposed thermal forcing is defined as the average
jet location during the long control run subtracted from the
jet location in the corresponding heating experiment.

3. Results

a. Evaluation of CNN skill

We begin our discussion of the results with a focus on the
deterministic predictions by the CNN (m). The deterministic
skill on the testing data, which we define as the mean absolute
error between the predicted jet shift and the true jet shift, re-
veals how well the CNN generalizes to unseen samples within
the control simulation. The first look at the entire testing data-
set will appear to show a modest difference; a closer look within
the testing dataset will prove more interesting. Figure 2a shows

the relationship between the predicted jet shift and the true jet
shift where predictions with higher accuracy are closer to the
gray diagonal line (one-to-one line). Using orthogonal distance
regression (Boggs and Rogers 1990; Virtanen et al. 2020), which
takes into account error in both the x and y variables as well as
the CNN-predicted uncertainties in y, we calculate the slope
from the testing data to be 0.58 poleward/(8 poleward). This pos-
itive slope demonstrates the CNN has learned relationships be-
tween the jet shift and the inputs. However, the slope of the
CNN predictions is less than that of the one-to-one line imply-
ing that the CNN underestimates the magnitude of the largest
jet shifts. This is likely a result of the imbalanced training data
as they include more samples with smaller jet shifts than larger
ones (shown in Fig. 2a by the density contours). During training,
the goal of the CNN is to minimize the negative log-likelihood

TABLE 1. Parameters for two-dimensional Gaussians for the
forced dry core heating experiments and CNN thermal forcings;
“V” indicates a varying parameter. Jet responses to experiments
1–18 have been simulated in the dry dynamical core.

Expt
Q0

(8 poleward)
Qw

(8 poleward)
p0

(hPa)
pw

(hPa)
q0
(K)

1 90 16 1000 250 1.0
0 27 300 125 20.1

2 90 16 1000 250 0.5
0 27 300 125 20.1

3 0 27 300 125 20.1
4 90 16 1000 250 20.5

0 27 300 125 20.1
5 90 16 1000 250 21.0

0 27 300 125 20.1
6 90 16 1000 250 1.0
7 90 16 1000 250 0.5
8 90 16 1000 250 20.5
9 90 16 1000 250 21.0

10 90 16 1000 250 1.0
0 27 300 125 0.1

11 90 16 1000 250 0.5
0 27 300 125 0.1

12 0 27 300 125 0.1
13 90 16 1000 250 20.5

0 27 300 125 0.1
14 90 16 1000 250 21.0

0 27 300 125 0.1
15 60 15 1000 200 0.25
16 60 15 700 200 0.25
17 30 15 1000 200 0.25
18 30 15 700 200 0.25
19 V 10 V 150 1.0
20 12 15 850 200 V
21 75 15 850 200 V
22 45 15 550 200 V
23 12 15 300 200 V
24 75 15 300 200 V
25 90 16 1000 250 V

0 27 300 125 V
26 0 27 300 125 V
27 0 27 300 75 V
28 0 13.5 300 125 V
29 0 27 500 125 V
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loss function [see Eq. (1)], but with an unbalanced dataset, the
CNNmay never predict the most extreme cases. Applying meth-
ods to make the network predict extremes, such as balancing the
dataset, using samples weights, or creating custom loss functions
(He and Ma 2013; Krawczyk 2016), either caused a severe de-
crease in skill or did not succeed in solving the problem (not
shown). Nonetheless, as we will show next, the CNN outper-
forms the two benchmark baselines and is an effective tool for
exploring jet sensitivity to external forcing.

Comparing the CNN’s skill on the testing data with that of
the two baselines [average evolution (Fig. 2b) and persistence
(Fig. 2c)] allows us to place the CNN’s skill into context
against other basic prediction methods. Persistence has the
lowest performance with a mean absolute error of 2.228. Av-
erage evolution performs only slightly worse than the CNN
with mean absolute errors of 1.868 and 1.778, respectively. Un-
like persistence, which can only ever predict a jet shift of zero,
average evolution makes a prediction based on the average
relationship between the initial jet location and the jet shift of
the training data, allowing it to capture the mean jet response.
Regardless, average evolution is limited to predicting 1 of
the 100 jet shifts resulting from the methods used to calcu-
late it (see section 2): hence the stripes in Fig. 2b. Based on
the mean absolute error alone, the CNN outperforms both
the persistence and average evolution baselines for the test-
ing data from dry dynamical core long control run.

The mean absolute errors in Fig. 2 represent the error over
the entire testing set, which is prone to obscuring interesting
details hiding within the distribution. For a more comprehen-
sive analysis of the CNN’s skill, the testing data are thus sepa-
rated into groups based on the initial jet location. The mean
absolute error for each group is shown for the CNN and the
baselines in Fig. 3 and describes how the CNN’s skill and the
baselines’ skill depend on the initial state of the jet. The gray
violin plots behind each bar indicate the CNN’s mean abso-
lute error distribution within that bin (i.e., the data used to
calculate the CNN mean absolute error in each group). The

violin plots are smoothed with a kernel estimator using Scott’s
rule and 100 points, which are the default parameters of the
Matplotlib library (Hunter 2007). The numbers at the bottom
of each bar denote the number of samples in that bin. For all
bins in Fig. 3, the CNN outperforms the baselines as demon-
strated by the CNN’s error (black line) falling below the base-
line errors (cyan and orange lines). When the initial jet
location is equatorward of 428 (labeled as “Avg.” along the
x axis of Fig. 3), the CNN does considerably better than
the baselines, but when the jet location is poleward of 428, the
CNN and average evolution achieve similar skill. That is, in
the cases where the initial jet is near the pole, it appears that
the CNN does not learn more than average evolution but in-
stead learns this average behavior to make its prediction.

When the initial jet location is near this climatological aver-
age position (42.48), the errors of the CNN and baselines con-
verge (Fig. 3). About 30% of the samples in the training data
have initial jet locations within 28 of the climatological aver-
age and 14% of these samples have a jet shift between 20.58
and 0.58. Since so many samples near the climatological aver-
age have small jet shifts and because the persistence baseline
can only predict a jet shift of zero, the mean absolute error
for persistence is at its lowest near the jet’s climatological
average position. The average evolution baseline converges
to a near zero prediction when the initial jet location is near
the climatological average, resulting in persistence and aver-
age evolution exhibiting similar errors. Although the persis-
tence and average evolution baselines have an advantage near
the climatological average, the CNN still outperforms both
baselines, implying that the CNN is using the additional infor-
mation provided by the input temperature tendencies.

Next, we focus on evaluating CNN’s ability to predict a jet
stream forced response from an artificially constructed ideal-
ized temperature tendency not encountered within its noisy
training environment. These temperature tendency inputs
contain a two-dimensional Gaussian (see Methods) with a
prescribed magnitude, size, and location (latitude and pressure).

FIG. 2. Predicted jet response (y axis) vs the true jet response (x axis) for the (a) CNN, (b) average evolution baseline, and (c) persis-
tence baseline using the testing data from the control simulation; (a) is a contoured-by-density plot, and (b),(c) scatterplots. Mean absolute
errors are shown in the bottom-right corner of each panel. Gray lines represent a perfect prediction (one-to-one line). The green line in
(a) represents the best-fit line from the CNN predictions.
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Outside of the Gaussian, the temperature tendency field is filled
with zeros. Although some of these thermal forcings have mag-
nitudes larger than any temperature tendencies found in the
internal variability training data, we will provide strong evi-
dence to support the CNN’s ability to extrapolate in the coming
sections. CNN predictions made from a thermal forcing use an
initial jet location defined by the average jet location of the
training data (42.48). Therefore, differences in predicted jet
shifts between temperature tendency inputs are a response to

the thermal forcing alone and not the presumed initial state. Ex-
ploring sensitivities of the jet response to initial jet location can
also be completed. Here we focus on the jet response to a ther-
mal forcing alone.

The shading in Fig. 4 shows the CNN-learned jet sensitivity
to the location of heating by holding the magnitude and the
shape of a thermal forcing constant and changing only its loca-
tion (Fig. 4; see experiment 19 in Table 1). An example of a
thermal forcing is shown in the gray contours, where the “x”

FIG. 3. The mean absolute error from the three prediction methods: CNN (black line), average evolution (cyan
line), and persistence (orange line), grouped by initial jet locations. Gray violin plots show the density curves of the
CNN’s error distribution, where the width corresponds to the frequency of the data. Numbers at the bottom of each
bar indicate the number of samples in each group, and the average initial jet location from the training data is marked
on the x axis (“Avg”; 42.48).

FIG. 4. The thermal forcing with a magnitude of qo 5 0.25 K day 21 is moved around the latitude and pressure plane where the shading
represents the CNN-predicted (a) jet shift and (b) uncertainty, respectively. An example of a thermal forcing is seen in the gray contours
in both panels. The “x” marks the center as well as the predicted jet shift and predicted uncertainty associated with that thermal forcing.
Gaussian parameters are found in Table 1 (experiment 19).
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denotes its center and the color of the shading beneath repre-
sents the predicted jet shift (Fig. 4a) and the predicted uncer-
tainty (Fig. 4b) from the temperature tendency.

Figure 4a exhibits multiple known features of the jet response
to tropospheric thermal forcings. For example, thermal forcings
located higher in the troposphere are known to be more effec-
tive at perturbing the jet than thermal forcings located lower in
the troposphere (Hassanzadeh and Kuang 2016a; Kim et al.
2021). This feature is learned by the CNN and is shown in
Fig. 4a as darker shading at higher pressure levels. In addition,
warming in the tropical upper troposphere has been previously
shown to cause the jet to shift poleward (Chen et al. 2008; Lim
and Simmonds 2009; Butler et al. 2010). This poleward jet shift
is seen in Fig. 4a as denoted by the red shading in the tropical
upper troposphere. Last, heating at the polar surface has been
shown to cause the jet to shift equatorward (Butler et al. 2010;
Deser et al. 2010; Screen et al. 2013). This is not seen in Fig. 4a
but is seen in later figures (Figs. 5c, 6a,c, and 7). The absence of
this feature in Fig. 4a is likely caused by the size of the two-
dimensional Gaussian.

Figure 4a also highlights how moving the center of the heat-
ing by a few degrees or pressure levels can change the direction
of the jet shift. Take for instance heating at the polar surface,
where moving the heating from 808 latitude to 758 latitude
changes the jet response from an equatorward shift to a pole-
ward shift. Baker et al. (2017) investigates the jet sensitivity to
the location of heating by running 306 dry core experiments
with an imposed Gaussian shaped temperature tendency that is
moved around the latitude-pressure plane, just as we have done
here with a trained CNN. In Baker et al. (2017), they show that
changes in the latitude of the heating most strongly impact the
sign of the jet shift while changing the pressure level has very
little impact. Similar behavior is found here with the CNN, al-
though with a few exceptions. A more in-depth discussion about
the failure of the CNN to capture the correct direction of the jet
shift at the surface of the midlatitudes is found in the online
supplemental material.

Recall that the CNN predicts both the jet shift m as well as
its uncertainty s. Figure 4b displays the predicted uncertainty
values and highlights three regions where the CNN is less cer-
tain. The CNN is less certain when heating occurs around
108 latitude and 600 hPa (s ’ 48) and additionally has large
uncertainty when the heating is centered near 858 latitude and
900 hPa and the 608 latitude and 550 hPa (s ’ 1.58). The rea-
sons behind the greater uncertainty in these regions require
further investigation.

b. Nonlinearities learned by the CNN

Ideally, a benefit of using a CNN is that it learns a nonlinear
relationship between the temperature tendency input and the
jet shift output. The hyperbolic tangent activation functions in
the convolutional and dense layers of the CNN allow it to
learn nonlinear relationships between the inputs and outputs
if nonlinearity is present in the data. However, this does not
necessarily mean the CNN has learned nonlinear relation-
ships. To evaluate the nonlinearity learned by the CNN we
complete two analyses. The first analysis examines how the
CNN-predicted jet shift varies as a function of the thermal
forcing magnitude. The second analysis looks at scenarios
where two thermal forcings are simultaneously present in the
temperature tendency input and explores whether the CNN
has learned a nonlinear interaction between the two. Keep in
mind that neither of these analyses has a ground truth, and so
we are exclusively exploring what the CNN has learned. In
the next section, we will then further test the accuracy of the
CNN with additional dry core simulations.

The first nonlinear analysis explores how the jet shift varies
as a function of the thermal forcing magnitude by separately
inputting thermal forcings of different magnitudes in five differ-
ent locations (Fig. 5a; see experiments 20–24 in Table 1). We
use 10 different magnitudes that vary from 21.0 to 1.0 K day21

in increments of 0.2 K day21 for each location. For all cases, the
initial jet location input is fixed at the average jet location of
the training data (42.48). Figures 5b and 5c compare a linear

FIG. 5. The CNN learned nonlinear responses: (a) an example thermal forcing with magnitudes of 1 K day21 at the five locations, and
(b),(c) the linear response (dashed line) and the predicted response from the CNN (solid lines). Note the different y axes in (b) and (c).
Gaussian parameters are found in Table 1 (experiments 20–24).
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relationship (dashed lines; linear response between end points)
and the CNN’s learned relationship (solid lines) between the
thermal forcing magnitude and the jet shift. The jet response to
temperature tendencies near the polar surface and the midtro-
pospheric midlatitudes are the most linear as shown by the cyan
line in Fig. 5b and the blue line in Fig. 5c. In both of these cases,
the CNN-predicted jet shift is most similar to the linear dashed
line. In contrast, temperature tendencies in the tropics and the
upper troposphere of the polar region have the largest nonlin-
ear response (pink line in Fig. 5b and red line in Fig. 5c; yellow
line in Fig. 5c) because these cases vary greatly from the dashed
linear line.

We next explore the nonlinearities learned by the CNN
when two thermal forcings are present. The thermal forcings
are centered on two key regions, the tropical upper tropo-
sphere and the polar surface. As discussed previously, warm-
ing in the tropical upper troposphere forces the jet to shift
poleward (e.g., Chen et al. 2008; Lim and Simmonds 2009;
Butler et al. 2010) and warming at the polar surface forces the
jet to shift equatorward (e.g., Butler et al. 2010; Deser et al.
2010; Screen et al. 2013). When they occur simultaneously,
they force competing effects that can result in a tug-of-war
scenario on the jet stream (e.g., Harvey et al. 2015; Chen et al.
2020). To explore the jet sensitivities to this climate change in-
duced tug-of-war, the temperature tendency inputs are com-
posed of a Gaussian thermal forcing at the polar surface and
another in the upper troposphere of the tropics. Both vary in-
dependently in magnitude during the analyses (see experi-
ment 25 in Table 1); Fig. 6a shows the predicted jet shift m,
and Fig. 6b shows the predicted uncertainty s for each forcing
pattern. With regard to the tug-of-war, studies use a variety of
atmospheric models to show that despite opposite forced jet
responses, the jet will likely shift poleward (Yin 2005; Harvey
et al. 2015). The upper-right quadrant of Fig. 6a depicts the
situation in which both thermal forcings are positive (warm-
ing). In this scenario, the CNN predicts a poleward shift of the
jet in agreement with past work, however, the CNN is not
equally certain for all predictions. As shown in Fig. 6b, the

CNN is more confident with cooling at the pole and warming in
the tropics and less confident with warming in the pole com-
bined with cooling in the tropics. Understanding why these sce-
narios are more uncertain requires further investigation.

Figure 6a shows the CNN-predicted jet response when two
thermal forcings are present in the temperature tendency in-
put. To test whether the CNN has learned a nonlinear impact
on the jet from two simultaneous forcings, we task the CNN
to predict the jet shift from the two thermal forcings indepen-
dently (upper tropical troposphere and polar surface) and add
the two predicted jet shifts together subsequently. If the CNN
exclusively learned a linear response between two forcings,
Figs. 6a and 6c would be identical, as predicting a jet shift
from combined forcings would be equal to predicting the jet
shifts from individual forcing and adding the predictions to-
gether. Instead, Fig. 6d shows the difference in predicted jet
shifts from these methods and provides evidence of the nonli-
nearity learned by the CNN where inputs that contain stron-
ger thermal forcings (scenarios in the corners of Fig. 6d) have
greater learned nonlinearity.

c. Out-of-sample tests

Thus far we have compared the CNN-predicted jet shifts
with our established baselines, true jet shifts harvested from
the internal variability of the control run, and past work. We
next evaluate the ability of the CNN to predict the explicit
simulated jet response to an imposed idealized steady thermal
forcing outside the training set. The FDT states that the linear
response of a nonlinear system to external forcing can be re-
lated to the internal variability of the system. Under the as-
sumption that FDT holds, our CNN trained on internal
variability may also be able to predict a forced response. We
next explore this by comparing the true forced jet shift calcu-
lated from additional dry core experiments with the predicted
jet shift by the CNN.

We perform 14 additional forced heating experiments with
the dry dynamical core (see the methods section and Table 1
experiments 1–14). These 14 heating experiments are motivated

FIG. 6. (a) The CNN-predicted jet shift from when two thermal forcings vary with magnitude, one at the surface of the pole (x axis) and
the other in the upper troposphere of the tropics (y axis). (b) The predicted uncertainty for the predictions of (a). (c) As in (a), but the
CNN predicts the jet shift from the two thermal forcings independently. (d) The difference between (a) and (c), representing the CNN
learned nonlinearity.
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by the tug-of-war on the jet resulting from anthropogenic cli-
mate change (Harvey et al. 2015; Chen et al. 2020; Stendel et al.
2021). To mimic the tug-of-war, each experiment contains a
thermal forcing in the tropical upper troposphere and at the
polar surface. The left side of Fig. 7 includes the magnitude
of each Gaussian shaped thermal forcing. The forced jet re-
sponse from the dry dynamical core experiments and the CNN-
predicted jet response from 14 heating experiments are shown
on the right side of Fig. 7. In comparing the true forced jet shift
simulated by the dry core (green dots) and the predicted jet
shift by the CNN trained on internal variability (black lines), we
see that across all experiments, the CNN accurately captures
the sign of the jet shift. Experiments 1–7 exhibit a negative jet
shift and 8–14 exhibit a positive jet shift. Furthermore, nearly all

of the experiments (excluding 3, 4, and 14) have forced jet shifts
that fall well within the uncertainty bounds predicted by the
CNN (62s; gray boxes).

Heating experiments 6, 7, 8, and 9 contain only a thermal
forcing at the polar surface (no thermal forcing in the tropical
upper troposphere) and are therefore useful for investigating
the difference in CNN-predicted uncertainty between polar
warming and polar cooling. In heating experiments 6 and 7,
which contain polar warming, the CNN is less certain (larger
s), in contrast to heating experiments 8 and 9, which contains
polar cooling, where the CNN is more certain (smaller s).

The CNN’s uncertainty when there is a thermal forcing in
the upper troposphere of the tropics is more difficult to dis-
cern from Fig. 7 because the CNN’s uncertainty is impacted

FIG. 7. The 14 heating experiments (experiments 1–14 in Table 1), their resulting jet shift in the dry core, and the
jet shift as predicted by the CNN. The left side of the figure includes the magnitude of each Gaussian-shaped thermal
forcing. The right side of the figure shows the true forced dry core jet shift (green dots), the predicted CNN jet shift
(black line), and the CNN-predicted uncertainty (gray boxes;62s).
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considerably by the thermal forcing at the polar surface. How-
ever, heating experiments 3 and 12 include only a thermal
forcing in the tropical upper troposphere, one cooling and
one warming, respectively. These heating experiments suggest
that the CNN is less certain when the upper tropical tropo-
sphere is cooling rather than warming.

4. Implications for sensitivity analysis

Given the CNN’s ability to replicate the sign of the jet
stream’s forced response as validated with the additional
forced dry dynamical core experiments, we propose that our
approach can be deployed as a computationally efficient tool
to aid in the design of forced model experiments. To demon-
strate this, we next revisit a historical study (Butler et al. 2010,
hereinafter B10) and show how the pretrained CNN can be
used to replicate the study’s results as well as to document
possible sensitivities not included in the initial work. In B10,
differences in dry core atmospheric circulations due to varia-
tions in the location and shape of thermal forcings were iden-
tified and documented. To test the atmospheric sensitivity,
B10 ran multiple experiments with different imposed thermal
forcing patterns in the Colorado State University general cir-
culation model (Ringler et al. 2000). Although B10 did not
quantify a shift of the jet stream the same way as we do here,
the study showed the zonal-mean zonal wind response and

discussed which heating experiments resulted in a stronger
wind response. From this information, we are able to infer the
relative magnitude of the jet shift for each experiment.

Here, we focus on four specific heating experiments within
B10 that aim to investigate how sensitive the circulation re-
sponse is to the height and shape of tropical upper-tropospheric
heating. Examples of the thermal forcing patterns imposed in
B10 are shown in Figs. 8a–d and will be referred to as heating
experiments 26, 27, 28, and 29 for this discussion. In the original
study, B10 found that the jet shifts poleward in response to all
heating experiments, but that the magnitudes of the shifts var-
ied. B10 shows that heating experiment 26 had the strongest jet
response and compressing the forcing vertically (heating experi-
ment 27) or compressing the forcing in the meridional direction
(heating experiment 28) weakened the wind response. In the
last experiment (heating experiment 29), B10 showed that
when the forcing was compressed vertically and moved lower in
the troposphere, the wind response was even weaker.

Using values reported in Table 1 of B10, we recreated the
thermal forcing patterns (see experiments 26–29 in Table 1) and
input them into the CNN with the initial jet location set to the
average jet location of the training data (42.48). In addition to
the magnitude of heating used in B10 (qo 5 0.5 K day 21), here
the jet sensitivity to the magnitude of the thermal forcing is also
included since it is trivial to explore once the CNN is trained.
Figure 8e shows the predicted jet shift from the four heating

FIG. 8. (a)–(d) Example thermal forcings of magnitude 0.5 K day21 respectively representing the four heating experiments used in
B10; Gaussian parameters are found in Table 1 (experiments 26–29). The colors of the panel outlines correspond to the predicted jet shifts
(y axis) in (e), which are shown as a function of the magnitude of the temperate forcing (x axis). The vertical gray line at 0.5 K day21

corresponds to the magnitude of the heating experiments used in B10.

C ONNO L LY E T A L . 11APRIL 2023

Unauthenticated | Downloaded 11/10/23 04:50 AM UTC



experiments with varying magnitudes, and the vertical gray line
indicates the 0.5 K day 21 magnitude used in B10. The CNN
predicts the same relative relationship between the heating ex-
periments as found in B10, where heating experiment 26 exhib-
its the strongest jet response and heating experiment 29 exhibits
the weakest. Furthermore, by exploring the jet sensitivity to the
magnitude of heating, Fig. 8e shows new information about jet
sensitivity. For example, as the magnitude of the thermal forc-
ing increases, heating experiment 27 (compressed vertically)
and heating experiment 28 (compressed meridionally) converge
to the same jet shift. Alternatively, when the magnitude of the
thermal forcing decreases, heating experiment 28 and heating
experiment 29 (compressed vertically and lower in the tropo-
sphere) converge to the same jet shift. These two results could
be confirmed with a few targeted forced dry core simulations
(not done here), though it was the ability provided by the CNN
to quickly explore jet shifts in response to thermal forcings that
allowed us to discover these possible jet sensitivities.

In this section, we show a successful example of using the
CNN to explore the jet sensitivities inside the dry dynamical
core. The CNN is not perfect in its predictions, which may be
due to a lack of predictability, nonoptimal training of the CNN,
a breakdown of the FDT, or a combination of the three. How-
ever, as demonstrated throughout this paper, the comparisons
in the CNN-predicted jet shifts have the same sign and similar
magnitudes to the forced jet shifts from the dry core in response
to a range of temperature tendencies and once trained, can
make predictions quickly. We emphasize that this method
should not replace the need to run designed climate model ex-
periments. Rather, training CNN on an existing long control
run could provide the opportunity to explore a large number of
forcing experiments before any forced model runs are simu-
lated, and it could be especially helpful for planning forced ex-
periments in dynamic model simulations.

5. Conclusions

We explore the jet stream’s response to external forcing by
training a CNN on smoothed temperature tendencies from a
dry dynamical core long control run to predict a shift in the jet
stream’s location 30 days later. The main motivation of this
work is to explore the potential for training a CNN on internal
variability alone and then using it to examine possible nonlinear
responses of the jet to tropospheric thermal forcing that more
closely resemble anthropogenic climate change. Because the
CNN is trained entirely on data from a control simulation, it ex-
clusively learns from internal variability. Nevertheless, by com-
paring the CNN-predicted jet shifts with established baselines,
peer reviewed literature, and additional dry core heating experi-
ments, we show that the CNN can predict the forced jet shift to
sustained forcing. The trained CNN is then used to investigate
jet sensitivities to scenarios that mimic the tug-of-war between
the tropics and poles under anthropogenic climate change.
Given the CNN’s ability to predict the jet response to thermal
forcings, we propose training a CNN on long control runs that
are increasingly becoming more available to explore model sen-
sitivities to various forcings as a tool to aid in early-stage climate
model experiment design. Future work could include extending

this method to evaluate whether it generalizes to different ex-
perimental frameworks, including, but not limited to, evaluating
it with three-dimensional predictors, training on coupled cli-
mate model simulations, and learning complex nonlinear cli-
mate responses from forced simulations where FDT does not
hold.
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