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ABSTRACT

Naturally occurring multiyear to decadal variability is evident in rainfall, temperature, severe weather, and

flood frequency around the globe. It is therefore important to understand the cause of this variability and the

extent to which it can be predicted. Here internally generated decadal climate variability and its predictability

potential in an ensemble of CMIP5 models are assessed. Global hot spots of subsurface ocean decadal var-

iability are identified, revealing variability in the southern Tasman Sea that is coherent with variability in

much of the PacificOcean and SouthernHemisphere. It is found that subsurface temperature variability in the

southern Tasman Sea primarily arises in response to preceding changes in Southern Hemisphere winds. This

variability is multiyear to decadal in character and is coherent with surface temperature in parts of the

Southern Hemisphere up to several years later. This provides some degree of potential predictability to

surface temperature in the southern Tasman Sea and surrounding regions. A few models exhibit significant

correlation between subsurface variability in the southern Tasman Sea and zonally averaged precipitation

south of 508S; however, the multimodel mean does not exhibit any significant correlation between subsurface

variability and precipitation. Models that exhibit stronger subsurface variability in the southern Tasman Sea

also have a stronger interdecadal Pacific oscillation signal in the Pacific.

1. Introduction

Multiyear to decadal variability is evident in rainfall,

temperature, severe weather, and flood frequency around

the globe, including the SouthernHemisphere (Power et al.

2017, manuscript submitted to CLIVAR Exchanges). This

can cause hardship and loss of life (see, e.g., Power et al.

2005; Power and Callaghan 2016). It is therefore important

that we understand the cause of this variability and the

extent to which it can be predicted. While the warming

trend in the oceans due to anthropogenic forcing in the late

twentieth century has been extensively studied (e.g.,

IPCC 2013; Rhein et al. 2013, and references therein), the

study of naturally occurring multiyear to multidecadal

climate variability is hampered by the relatively short and

sparse subsurface oceanic observations. This is particu-

larly true in the South Pacific and other parts of the

Southern Hemisphere (Power et al. 2017, manuscript

submitted toCLIVARExchanges). To better understand

the processes driving variability in oceans, and the extent

to which this variability might be predictable, long-term

simulations from climate models can be utilized (e.g.,

Kirtman et al. 2013). The multimodel mean and range of

modeled teleconnections can potentially improve our

understanding of the character, cause, and predictability

of multiyear variability. Although climate models are

imperfect (e.g., Flato et al. 2013), they have the potential
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to provide useful insights for instigating further research

(Power et al. 2017, manuscript submitted to CLIVAR

Exchanges).

In the ensemble from phase 5 of the Coupled Model

Intercomparison Project (CMIP5), the time scale of

variability in sea surface temperature (SST) and sea level

height has been found to be latitudinally dependent

(Monselesan et al. 2015). In the tropics, variability is

dominated by El Niño–Southern Oscillation (ENSO)

and occurs on approximately 5-yr time scales, whereas

at higher latitudes a greater fraction of the variability

occurs on decadal time scales (Power and Colman 2006;

Monselesan et al. 2015). Potential predictability studies

have shown that in CMIP3 and CMIP5 ensembles, the

fraction of predictable, internally generated decadal vari-

ability, for temperature and precipitation, is greatest in

mid-to-high latitudes (Boer and Lambert 2008; Boer 2011;

Boer et al. 2013, Kirtman et al. 2013). However, the rea-

sons for this predictability potential are still far from being

fully understood. Since the ocean interior contains stron-

ger decadal variability than the surface (e.g., Chikamoto

et al. 2013; Monselesan et al. 2015; Sloyan and O’Kane

2015), it is worth considering the extent to which the ocean

subsurface is involved in this potential predictability.

Here we assess subsurface ocean variability and

predictability in an ensemble of CMIP5 models. One

region known to have strong decadal variability and

potential multiyear predictability is the southern

Tasman Sea (SthTas; Hill et al. 2008, 2011; Holbrook

et al. 2011; Sloyan and O’Kane 2015). After a global

assessment of subsurface ocean variability, we focus pri-

marily on SthTas variability.We address two key questions

of interest: 1) What influences decadal variability in the

SthTas in the CMIP5 models? 2) To what extent can sub-

surface temperatures in the SthTas provide predictability

for surface temperatures or rainfall elsewhere?

The SthTas overlaps the southern extension of the East

Australia Current (EAC;Godfrey et al. 1980; Tilburg et al.

2001). It has been shown that large-scale, low-frequency

variability in the SST and upper-level thermocline can

be a reddened response to short time scale atmospheric

forcing such as white noise in the surface heat flux and

wind stress curl (Frankignoul and Hasselmann 1977). Pre-

vious observation-based studies have found that changes in

thewind stress curl over the SouthPacific correlate strongly

with changes in the strength of the EAC extension and sea

surface temperatures off the southeast coast of Tasmania

on interannual and decadal time scales (Hill et al. 2008,

2011). Additionally, Sloyan and O’Kane (2015) found, us-

ing model reanalyses, that decadal variability in the Tas-

man Sea is driven by nonlinear responses to basinwide

wind stress curl changes over the South Pacific. Several

model-based studies have also reinforced the importance

of Southern Hemispheric westerly winds on the oceans

(e.g., Cai et al. 2003; Oke and England 2004; Hirabara

et al. 2007). Oke and England (2004), for instance, found

that a simulated periodic 58 latitudinal shift of westerly
winds over the Southern Ocean drove temperature vari-

ations of up to 0.48C at depths of up to 900m.

There is also evidence that the interdecadal Pacific

oscillation (IPO; Power et al. 1999) modulates the effect

that ENSO has on variability in the Tasman Sea, with

ENSO having a larger effect on the mean wave direction,

and hence sea surface temperatures, during negative (La

Niña like) IPO phases (Holbrook et al. 2011). Addition-

ally, during negative IPO phases, subtropical winds are

enhanced, driving an increase in warm sea surface tem-

perature anomalies along the east coast of Australia

(Goodwin et al. 2006; Holbrook et al. 2011). Given this

earlier research, we will examine the role of the tropical

Pacific in driving multiyear and decadal variability in

the SthTas.

In section 2, we first identify oceanic ‘‘hot spots’’ where

40% or more of the 300-m ocean temperature variability

occurs on a decadal time scale. The rest of the study fo-

cuses on the SthTas. In section 3, we examine the link

between subsurface temperature variability in the SthTas

and both surface temperature and precipitation over the

Southern Hemisphere. In section 4 we examine the phys-

ical mechanisms driving SthTas variability in the models

through utilization of intermodel diversity. The results are

summarized in section 5.

2. Decadal subsurface variability in CMIP5 models

In this study we analyze the multimodel mean (MMM)

of 22 CMIP5 models from the preindustrial control (PiC)

simulations (Taylor et al. 2009, 2012). The PiC runs have

prescribed atmospheric concentrations of CO2 (time-vary-

ing) and aerosols (constant) at preindustrial conditions, and

are designed to simulate the internally generated, naturally

occurring variability only. For thePiC runs, we use 500yr of

output from each model. All model output is interpolated

to a regular 1.58 3 1.58 grid.
Annual means are computed from July to June the

following year so that ENSO events, which tend to peak

during austral summer, are fully contained within each

year. Data from the PiC runs are linearly detrended over

the entire 500-yr period to reduce the effect of internal

model drift. We note that other methods of correction

(e.g., quadratic or cubic detrending, or subtracting the

linear drift over a 150-yr period) can yield different drift

estimates in some models (e.g., Sen Gupta et al.2013).

However, as much of our analysis involves multimodel

means, we apply the same correction method to all

models. We follow the recommendation of Sen Gupta
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et al. (2013) of using long portions of the simulations

(i.e., .100–150 yr) to estimate the linear drift. Table 1

lists the models used in this study.

To identify regions where the contribution of decadal

variability to total variability in the subsurface is sig-

nificant, we analyzed temperatures at 300m (T300). This

depth encompasses the mixed layer in the Tasman Sea,

which varies seasonally from approximately 50 to 200m

(Rahmstorf 1992; Tilburg et al. 2002). Power and

Colman (2006) showed that the vertically averaged

temperatures from 0 to 300m in a particular coupled

model exhibited significant and predictable decadal

variability. The authors also found some modest lagged

association between 310-m temperatures in the South

Pacific and SST in the equatorial Pacific. In Fig. 1, we

show the multimodel mean of the ratio of variances of

10-yr running means T300dec to annual means T300ann,

that is, the mean of var(T300dec)/var(T300ann) for each

individual model. Equivalent figures for surface temper-

ature and precipitation are provided in the online sup-

plementalmaterial. Ten regionswere identified, as shown

in Fig. 1. For each region, we then constructed time series

using spatially averaged T300 values from each region.

Each time series was correlated with surface temperatures

(TS) at each grid point globally, at up to a 10-yr lead–lag.

Six regions, the Arctic (region 1), tropical Atlantic

(regions 3 and 4), IndianOcean (region 5), andAntarctica

(regions 8 and 10), show very weak or no significant cor-

relation between the regional T300 and global TS (figure

not shown).

Two hot spots in the South Pacific (regions 7 and 9)

show weak correlations with TS in other regions (figure

not shown). Region 7, across the South Pacific between

New Zealand and the South American coast (Fig. 1),

shows weak correlations with TS in the tropical and South

Pacific when TS leads T300 by 0–5yr. Region 9, between

1808 and 2208E just north of the Ross Sea, shows weak

correlation in some parts of the Southern Ocean when TS

leads T300 by 0–5yr. Previous studies have investigated

the drivers of decadal variability in these regions (O’Kane

et al. 2013, 2014). Subtropical storm tracks coinciding with

regions 6, 7, and 9 are associated with nonlinear baroclinic

disturbances driven by large-scale winds across the South

Pacific (O’Kane et al. 2014). Additionally, O’Kane et al.

(2013) identified the low-frequency South Pacific Intrinsic

Mode in region 9, which is driven predominantly by

baroclinic instabilities and may be enhanced by atmo-

spheric variability associated with ENSO and the southern

annular mode (SAM).

In the two remaining regions, the North Pacific (region

2) and the Tasman Sea (region 6), there is a stronger,more

persistent, and more widespread correlation between

TABLE 1. List of CMIP5 models used in this study. Asterisks indicate SIGNEG models, and plus signs indicate SIGPOS models.

(Expansions of acronyms are available online at http://www.ametsoc.org/PubsAcronymList.)

Group Model Institution

SIGNON ACCESS1.3 Commonwealth Scientific and Industrial Research Organisation

(CSIRO) and Bureau of Meteorology (BoM), Australia

BCC_CSM1.1 Beijing Climate Center, China Meteorological Administration, China

BNU-ESM College of Global Change and Earth System Science, Beijing Normal University, China

NorESM1-M Norwegian Climate Centre, Norway

CESM1-BGC National Science Foundation, U.S. Department of Energy, and NCAR, United States

SIGPOS GFDL CM31 NOAA/Geophysical Fluid Dynamics Laboratory, United States

GFDL-ESM2G1

GFDL-ESM2M1

IPSL-CM5A-LR1 Institute Pierre-Simon Laplace, France

MRI-CGCM31 Meteorological Research Institute, Japan

SIGNEG ACCESS1.0* CSIRO and BoM, Australia

CSIRO Mk3.6.0* CSIRO, Australia

CSIRO Mk3L-1.2*

FGOALS-s2* LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, China

FIO-ESM* First Institute of Oceanography, China

MIROC5* Atmosphere and Ocean Research Institute (The University of Tokyo),

National Institute for Environmental Studies, and Japan Agency for

Marine-Earth Science and Technology, Japan

MPI-ESM-LR* Max Planck Institute for Meteorology, Germany

MPI-ESM-MR*

MPI-ESM-P*

CanESM2* Canadian Centre for Climate Modelling and Analysis, Canada

CMCC-CMS* Centro Euro-Mediterraneo per I Cambiamenti Climatici, Italy

CNRM-CM5* Centre National de Recherches Météorologiques, Météo-France, France
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T300 and TS. Figure 2 shows correlations between TS and

T300 for region 2 (Figs. 2a–d) and region 6 (Figs. 2e,f) at

lags of 25, 23, 3, and 5yr. Negative lag values indicate

that TS leads T300. SSTs in the tropical and North Pacific

correlate strongly with T300 in the North Pacific up to 5yr

ahead (Fig. 2a). Meanwhile, the Tasman Sea subsurface

temperatures show significant correlations with TS in the

Southern Ocean and the Pacific, as far north as approxi-

mately 808N, at similar lead times. Over the Pacific, cor-

relation maps for both region 2 and 6 exhibit an IPO-like

pattern, indicating that the phase of the IPO may impact

the T300–TS relationship over the Pacific. When T300

leads TS, however, only the Tasman Sea subsurface tem-

peratures display a high level of model agreement on the

sign of the correlations with TS over large regions, spe-

cifically in the Southern Ocean and Antarctica. For the

remainder of this study, we therefore focus on the Tasman

Sea (region 6), examining the correlations between T300

and surface temperature, precipitation, wind stress curl,

and subsurface currents in the Southern Hemisphere.

3. T300, surface temperature, and precipitation in
the Southern Hemisphere

We present correlations between T300 in the SthTas

and the two potentially predictable variables of interest,

surface temperature and precipitation (PR), at various

lags and latitudinal bands in the Southern Hemisphere

(Fig. 3), with negative lag t indicating surface tempera-

ture or precipitation leading T300. The 5% statistical

significance level is calculated using the effective number

of degrees of freedom for two autocorrelated time series

(e.g., Chelton 1984; Pyper and Peterman 1998).

In the South Pacific, the MMM correlation pattern

for T300 in the southern Tasman Sea and surface

temperatures at t # 0 resembles a negative IPO phase

(Fig. 2), indicating that the subsurface temperature

variations in the SthTas may be modulated by the

IPO, or that the correlation between TS and T300 is

stronger during a particular phase of the IPO (e.g.,

Goodwin et al. 2006; Holbrook et al. 2011). For t $ 0,

T300 correlates positively with TS in regions of the

Southern Ocean and Antarctica up to several years

ahead.

In the 358–508S band (Fig. 3a), which encompasses the

SthTas, there is a significant MMM correlation between

T300 and surface temperature at 27 # t # 3 yr. Al-

though there is a considerable spread among individual

models, all models agree on the sign of the correlation

for t# 0, and all but one of the models agree on the sign

of the correlation for t $ 0. This indicates a robust,

persistent relationship between surface and subsurface

temperature in the SthTas region, where the surface

temperature influences T300 up to 7 yr later, and T300 in

turn exerts a weaker, but still significant, influence on

surface temperature up to 3 yr later. Farther south, in the

508–658S and 658–908S bands (Figs. 3b,c), there is a much

weaker MMM correlation between T300 and surface

temperature for t # 0. There is also very little model

agreement on the sign of the correlation for t # 0. For

t$ 0, on the other hand, there is a significant correlation

between T300 and surface temperature at positive lead

times up to t5 2 yr. This indicates that while the surface

temperature at the 508–658S and 658–908S bands does

not drive T300 in the SthTas, variations in T300 are

coherent with changes in surface temperature farther

south up to 2 yr ahead, with the relationship weakening

in going farther south.

The other potentially predictable variable of in-

terest is precipitation. The T300–precipitation corre-

lations for the latitude bands 358–508S, 508–658S, and
658–908S are shown in Figs. 3d–f. In the 358–508S band

that encompasses the SthTas, the mean correlation

shows a significant anticorrelation between precipita-

tion and T300 for t # 0, and a smaller positive corre-

lation for 1# t # 5 yr. While more than 85% of the

models have a significant correlation for t # 0, less

than half the models show a significant correlation for

t $ 0. In the 508–658S band (Fig. 3e), the mean cor-

relation switches sign for t# 0 but remains positive for

t$ 0. Again, 90% of models agree on a significant and

positive correlation for t # 0, but there is a large

amount of disagreement on the sign and degree of

correlation for t$ 0. Over Antarctica, however, in the

658–908S band (Fig. 3f), there is a significant positive

mean correlation at positive t values, with 50% of the

FIG. 1. Multimodel mean of R 5 var(T300dec)/var(T300ann) from

CMIP5 preindustrial control runs, where var(T300dec) is the vari-

ance of 10-yr running means of the temperature at 300m, and

var(T300ann) is the variance of annual means of the temperature at

300m. This gives the fraction of variability in 300-m temperature

occurring on decadal time scales. Stippling indicates regions where

at least 70%ofmodels haveR. 0.4. Ten ‘‘hot spots’’ that exhibit the

largest amount of decadal variability are marked and labeled.
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models showing a significant correlation. These figures

indicate that in the southern midlatitudes (358–658S),
the atmospheric drivers of precipitation variability,

such as wind stress, can influence T300 almost a decade

later. There is some indication in about half the models

that T300 influences rainfall several years later in the

Southern Hemisphere, although there is a considerable

spread in the models that diminishes the MMM cor-

relation. However, all models agree on the sign of the

correlation between T300 and Antarctic precipitation

at lead times up to t 5 2 yr. A more detailed analysis of

the range of modeled correlations is presented in the

next section.

An important link between atmospheric precipitation

and the subsurface is salinity (e.g., Lukas 2001; Schmitt

2008). A study of internally generated variations in sa-

linity and upper ocean stability in CMIP5 models shows

that, like SSTs, variations in salinity occur at decadal

time scales at the mid-to-high latitudes (O’Kane et al.

2016). In the subtropical Pacific, salinity plays a role

in destabilizing the stratification of the upper ocean

(O’Kane et al. 2016). We do not analyze salinity in this

study, but we note that variations in salinity and pre-

cipitation are closely linked.

4. The drivers of subsurface variability in the
Tasman Sea

From Fig. 3, it is clear that the relationship between

T300 and surface temperature and precipitation is ro-

bust in the 358–508S band, specifically when the surface

variables lead T300. Farther south, there is more dis-

agreement amongst models regarding the sign and

amplitude of the correlations which leads to a low

overall MMM correlation. In this section, we examine

the range of modeled behavior and the different

drivers of T300 variability in the models. An inspection

of individual T300–TS correlation maps at t # 0 shows

that the models can be divided into three groups:

1) models that exhibit a widespread significant posi-

tive correlation throughout the Southern Hemisphere

(SIGPOS, denoted in red in Fig. 3), 2) models that

exhibit an IPO-like correlation pattern, with nega-

tive correlation in the tropics and over Antarctica

FIG. 2. Correlation between annual means of T300, averaged over (top) region 2 (North Pacific) and (bottom) region 6 (southern

Tasman Sea), and global TS at each grid point, at lead time 25 # t # 5 yr. Negative t indicates that TS leads T300. The multimodel

mean of 22 models from the CMIP5 preindustrial control runs is shown. The maps are stippled where more than 80% of the models

agree (i.e., more than 18 models out of a total of 22 models) on the sign of the correlation.
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(SIGNEG, denoted in blue in Fig. 3), and 3) models

that have weak correlation throughout the Southern

Hemisphere (SIGNON, denoted in gray in Fig. 3).

Note that there are 12 SIGNEG models, 5 SIGPOS

models, and 4 SIGNONmodels (see notations in Table

1). In the rest of this study, we focus only on the

SIGPOS and SIGNEG models. Over most of the

Southern Hemisphere, the T300 correlates positively

with TS in the SIGPOS group, whereas the opposite is

true for the SIGNEG group (Fig. 4). For the SIGPOS

and SIGNEG groups, the correlation between T300

and TS, PR, wind stress curl (WSC), zonal currents at

300m (U300), meridional currents at 300m (V300),

and net surface heat flux (HF) are shown at lags 22, 0,

and 12 yr (Figs. 4, 5, and 6, respectively).

We first discuss the similarities between the groups of

models. For both SIGPOS and SIGNEG models, the

pattern of correlation between the WSC and T300 im-

plies that wind stress curl, particularly over the South

Pacific, is involved in driving T300 variability. This is

shown by statistically significant correlation that is

strongest when the wind stress leads T300 by 1–5 yr (e.g.,

Fig. 4, fourth row from top). The correlation drops to

almost zero globally at lag zero and when the WSC lags

T300 (e.g., Figs. 5 and 6, fourth row from top). This in-

dicates that while wind stress over the South Pacific is an

important driver of T300 variability in the southern

Tasman Sea, T300 does not, in turn, influence or remain

connected to wind stress variability. This is consistent

with previous observation- andmodel-based studies that

have found that the wind stress over the South Pacific

plays an important role in driving variability in the

Tasman Sea and surrounding regions. Hill et al. (2008,

2011) found that the temperature and salinity changes in

the Tasman Sea were correlated with basinwide winds,

whereas Sloyan and O’Kane (2015) found that the re-

sponse of the Tasman Sea to basinwide wind stress curl

was determined by nonlinear, dynamical processes.

In both sets of models, the positive wind stress curl

anomaly at the latitude of Tasmania at t522 yr depicts

enhanced Southern Ocean westerly winds to the south

of SthTas and weakened subtropical westerlies to the

FIG. 3. Correlation between subsurface T300 averaged over the southern Tasman Sea with (a)–(c) TS and (d)–(f) PR zonally

averaged over (a),(d) 358–508S, (b),(e) 508–658S, and (c),(f) 658–908S at lead time28# t # 8 yr. Negative t indicates that TS and PR

lead T300. The thick black lines denote the Fisher weighted multimodel mean correlation of the 22 CMIP5 models, and thin lines

show each individual model (red for SIGPOS and blue for SIGNEG models). Thin dotted lines indicate the MMM of 5%

significance levels.
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north around the Tasman Front. The impact can be seen

in the subsurface ocean circulation whereby the corre-

lation pattern for U300 (which is positive eastward)

consistently shows westward and eastward current

anomalies to the north and south of SthTas (Figs. 4 and 5,

bottom). This indicates an anticyclonic gyre anomaly,

which remains coherent with T300 up to 5 yr later

(e.g., Fig. 6, fifth row from top).

FIG. 4. Correlation between annual means of T300 and (top)–(bottom) TS, PR, HF, WSC, U300, and V300, at

a lead time of t522 yr. (left) Themultimodelmean of the SIGPOS group, and (right) Themultimodelmean of the

SIGNEG group (see text for details). Maps are stippled where more than 70% of models in each group show

a significant correlation at the 5% level.
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Off the east coast of Australia, north of the SthTas,

there is an input of heat at the surface (sinceHF is positive

upward) at t # 0. Concurrently, the anomalous westward

current along the Tasman Front supports a stronger

southward EAC extension, which provides an advective

pathway for this heat into SthTas, leading to SthTas

warming at 300-m depth several years later. There is also a

negative correlation between HF and T300 in the south-

eastern Pacific off the South American coast, again in-

dicating an input of heat into the ocean prior toT300 in the

SthTaswarming, whichmay then be transportedwestward

into the SthTas via the subtropical gyre circulation.

FIG. 5. As in Fig. 4, but at zero lag.
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Despite these similarities, the two groups of models

display marked differences. The relationship between

T300 andWSC at lag22 yr is significant only across the

South Pacific basin in the SIGPOS models, with a

positive correlation extending southwest from ap-

proximately 358–458S off the South American coast to

approximately 458–608S south of Australia (Fig. 4,

fourth row from top). In the SIGNEG models, on the

other hand, the correlation between T300 and WSC is

stronger over the tropical Pacific, and the positive re-

sponse to WSC has a more zonal and circumpolar

structure, spanning the entire South Pacific and south

Indian Ocean, between approximately 358–558S (Fig. 4,

fourth row from top).

FIG. 6. As in Fig. 4, but for a lag of 12 yr.
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In the tropical Pacific, the stronger response of the

ocean toWSC in the SIGNEGmodels results in stronger

anomalous patterns in subsurface currents—a feature

that is lacking in the SIGPOS models. In particular, the

SIGNEG models show a positive correlation with V300

in the tropical Pacific at lags t # 0 (Figs. 4 and 5, bot-

tom), which implies that heat is transported toward the

equator. An additional anticyclonic gyre structure is

seen in U300 in the SIGNEG models between 08 and
308S (Figs. 4–6, fifth row from top), implying more effi-

cient redistribution of heat in this region. The equator-

ward transport of heat and additional gyre near the

equator result in the negative correlation between T300

in the southern Tasman Sea and TS in the equatorial

Pacific and parts of the Southern Ocean. In the SIGPOS

models, the ocean responds less to wind stress curl var-

iability in the tropics, thus heat from the Southern

Ocean remains largely confined to the mid-to-high lati-

tudes, southward of approximately 308S.
The SIGPOS and SIGNEG models also exhibit very

different correlations betweenT300 and PRovermuch of

the Southern Hemisphere. As opposed to the SIGPOS

models, the SIGNEG models exhibit more statisti-

cally significant correlations over the tropical and

South Pacific for t # 0 yr (e.g., Figs. 4 and 5, second

row from top), with a pattern similar to the T300–TS

map. Over Antarctica, however, the SIGPOS models

exhibit a positive correlation between T300 and PR,

whereas the SIGNEG models exhibit a weaker, neg-

ative correlation. To further investigate the factors

influencing precipitation variability in the models, we

correlate the July–June annual means of global pre-

cipitation with the DJF Niño-3.4 index (Fig. 7a) and

July–June annual means of wind stress curl averaged

over 458–658S (Fig. 7b). In the tropical Pacific, pre-

cipitation variability is driven primarily by ENSO

(Fig. 7a). In the South Pacific, while there is still a

significant contribution from ENSO, precipitation

has a stronger correlation with the 458–658S averaged

wind stress curl (Fig. 7b), which is expected given the

association of storm tracks with the meridional posi-

tion of the Southern Ocean winds. Therefore the

SIGNEG models, which exhibit a stronger T300 re-

sponse to surface temperature and wind stress in the

tropical and South Pacific, also exhibit a stronger

correlation with precipitation in this region.

The extent to which T300 can provide multiyear pre-

dictive capability can be gauged from Fig. 6, which

shows that at t 5 12 yrT300 is positively and signifi-

cantly correlated with TS in the Southern Ocean, south

of Australia, for both groups of models. The SIGPOS

models exhibit marginally stronger and more wide-

spread correlation extending across the south Indian

Ocean and into the South Atlantic. This is likely due to

the more efficient heat transport toward the equator in

the SIGNEG group. The correlation between T300 and

PR at most grid points in the Southern Hemisphere is

relatively weak in all models. However, as seen in Fig. 3,

the correlation between T300, TS, and PR at positive

lead times is higher when considering the zonal means of

FIG. 7. Correlation between annual means of global precipitation and (a) the Niño-3.4 index, and (b) zonal mean

wind stress curl from 458 to 658S. The Fisher weightedmultimodel mean of 22models from the CMIP5 preindustrial

control runs is shown. The maps are stippled where more than 80% of the models agree on the sign of the

correlation.
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TS and PR, and statistically significant for TS between

508–658 and 658–908S (Figs. 3b,c).

5. Links with ENSO, SAM, and the IPO

The significant correlations between T300, TS, and

wind stress in the Pacific imply that variability in T300

may be influenced by large-scale climate modes such as

ENSO and SAM, which are dominant onmultiyear time

scales, and by the IPO on longer time scales. We explore

this possible link in the SIGPOS and SIGNEG models

using cross-correlation analysis between T300 and the

climate indices (Figs. 8a–d). We utilize the SAM index,

the difference between the zonal mean sea level pres-

sures at 408 and 658S (Gong and Wang 1999), averaged

over austral winter to spring [June–November (JJASON)]

and austral summer to autumn [December–May

(DJFMAM)], the DJF Niño-3.4 index, and the tripole

index (TPI) which was developed byHenley et al. (2015)

as a measure of the IPO. We use a 13-yr filtered TPI,

which is defined as the difference in SST anomalies from

the central equatorial Pacific, and the average of the

northwest and southwest Pacific regions.

Most of the SIGNEG models (MMM in thick blue

lines, individual models in thin blue lines) exhibit a

statistically significant correlation between T300 and the

SAM and Niño-3.4 indices at negative t values, in-

dicating that T300 variability is influenced by these

processes (Figs. 8a–c). On the other hand, four out of

five SIGPOSmodels show no correlation with the Niño-
3.4 index (Fig. 8c), and all exhibit a weak correlation

with the SAM indices (Figs. 8a,b). The differences be-

tween the two groups are most striking and statistically

significant at negative lags (as marked with squares in

Fig. 8a). The correlation between T300 and TPI is higher

as both vary on decadal time scales (Fig. 8d), with the

SIGNEG models exhibiting a stronger correlation

at 23 # t # 0 yr.

FIG. 8. Correlation between T300 and the (a) JJASON SAM index, (b) DJFMAMSAM index, (c) DJF Niño-3.4
index, and (d) TPI index, and correlation between the DJF Niño-3.4 index and the (e) JJASON SAM index and

(f) DJFMAM SAM index for lags 28 # t # 8 yr. Thick lines indicate the multimodel mean of the SIGPOS (red)

and SIGNEG (blue) groups, and thin lines indicate individual models. Squares indicate lags at which the SIGPOS

and SIGNEG groups are significantly different at the 5% level.
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Although the two groups have significantly different

oceanic responses to ENSO and SAM, the Niño-3.4–SAM

index correlations are similar (Figs. 8e,f). This indicates

that the differences in the two groups stem primarily

from the ocean component’s response to wind stress

curl and SST changes rather than from a difference in

atmospheric teleconnections.

To further understand the lack of T300–Niño-3.4
correlation in the SIGPOS models, we examine the

power spectra of the T300 and theNiño-3.4 indices in the
SIGPOS and SIGNEGmodels (Fig. 9). Figure 9a shows

that T300 in both groups of models exhibit very similar

spectral characteristics in variability that peak over

multidecadal time scales. However, the SIGPOS group

has significantly weaker variability. Furthermore,

Fig. 9b shows that the Niño-3.4 indices for both groups

have similar power spectra at interannual time scales,

but the SIGPOS group has significantly less power at

multidecadal time scales. This means that the ENSO in

the SIGPOS models lack multidecadal variability—the

dominant time scale in T300 variability (Fig. 9a)—thus

explaining the weaker correlation between T300 and

Niño-3.4 in the SIGPOS models (Fig. 8c). This is also

supported by the weak correlations with TPI (Fig. 8d).

Power spectra of the SAM and TPI indices are shown in

the supplemental material. While the power spectra of

the SAM indices are similar for both groups, the TPI

indices in the SIGPOS group also exhibit significantly

less power at decadal time scales.

Finally, we test the hypothesis that the phase of the

IPO influences the impact of ENSO on the Tasman Sea,

namely that ENSO has a larger impact during negative

IPO phases (Goodwin et al. 2006; Holbrook et al. 2011).

For each model, we calculate the 13-yr low-pass-filtered

tripole index. For each positive or negative phase of the

TPI lasting at least 9 yr, we calculate the correlation

FIG. 9. Power spectra of (a) T300 in the southern Tasman Sea and (b) Niño 3.4 indices for SIGPOS (red) and SIGNEG (blue) groups. Thick

lines indicate the multimodel mean of the SIGPOS and SIGNEG groups, and thin lines indicate individual models. Vertical lines indicate

1- and 10-yr periods. Squares indicate periods at which SIGPOS and SIGNEG groups are significantly different at the 5% level.
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between T300 and the Niño-3.4 index during those

years, at lags from 22 to 12 yr (not shown). We found

no significant differences in the strength of the correla-

tions for positive or negative phases of the TPI, in-

dicating that in the models the impact of ENSO on the

Tasman Sea is independent of the IPO phase.

6. Summary and discussion

In this study, we identified several oceanic ‘‘hot spots’’

that exhibit a large fraction of decadal variability (rela-

tive to interannual variability) in the CMIP5 pre-

industrial control simulations. Of these, only two regions

in the Pacific displayed a statistically significant corre-

lation with surface temperatures elsewhere. We focused

on the Tasman Sea, where the subsurface temperatures

correlate significantly with surface temperatures across

the Pacific and Southern Oceans up to 5 yr prior and

2–3 yr later. This relationship appears to be driven pre-

dominantly by basinwide surface wind stress anomalies,

which drive a response in the South Pacific subtropical

gyre. The anomalous subsurface currents transport at-

mospheric heat content from the southeastern Pacific

and the Tasman Front into the SthTas region. The

importance of surface wind stresses in driving changes

in the Tasman Sea temperature is consistent with ear-

lier research (Hill et al. 2008, 2011). However, we note

that Sloyan and O’Kane (2015) showed that this re-

lationship is nonlinear, and that dynamical responses to

wind stress variability also play an important role in

driving Tasman Sea variability. Our results are

also consistent with the work of Frankignoul and

Hasselmann (1977), who showed that high-frequency

white noise in atmospheric variables such as surface

heat flux and wind stress can drive a reddened, low-

frequency response in sea surface temperatures and the

thermocline.

A closer examination of the individual models shows

that 5 models display a statistically significant positive

correlation between subsurface and surface tempera-

tures in the mid-to-high southern latitudes (the SIGPOS

group), while 12 models display a mostly negative or

IPO-like correlation pattern (the SIGNEG group). A

number of factors play a part in causing this difference.

First, the subsurface variability in the SIGNEG models

is significantly stronger than in the SIGPOS models.

This is associated with a stronger response to wind stress

curl in the tropical Pacific than in the SIGPOS group,

which generates an anticyclonic gyre and stronger me-

ridional currents that transport heat from the Southern

Ocean equatorward. In the SIGPOS models, the heat

from the Southern Ocean is largely confined to the mid-

to-high latitudes, resulting in a more persistent and

widespread correlation between T300 and TS at positive

lead times and higher potential predictability in this

region. Second, in the SIGNEG models, the Niño-3.4
indices display significantly stronger variability at mul-

tidecadal time scales. The SIGNEG models have a

strong correlation with the TPI at negative lead times,

indicating that IPO-driven changes in the sea surface

temperature in the Pacific also play a role in modulating

the T300–TS relationship in these models.

The subsurface variability in the southern Tasman Sea

is coherent with surface temperature changes more

broadly across the Pacific and it propagates southward

over the next several years, providing a predictive ca-

pability in surface temperatures south of 358S. In the

SIGPOS models, the southern Tasman Sea subsurface

temperatures are coherent with surface temperatures

over a larger fraction of the Southern Hemisphere, and

for longer. This is likely due to the SIGPOS models

exhibiting weaker subsurface variability, as well as

having a weaker response to variability in the tropics,

enabling heat in the Southern Ocean to remain confined

to the Southern Hemisphere for longer.

A full analysis of the differences in the physical

mechanisms driving the SIGPOS and SIGNEG model

behavior is outside the scope of this study. However,

some possibilities include differences in how the models

simulate tropical climate variability, such as ENSO and

the IPO, and how they handle cloud dynamics. This, can

influence convective activities in the tropics and conse-

quently the simulation of ENSO (Bellenger et al. 2014),

and at high latitudes cloud-dynamics biases can affect the

atmospheric radiative balance (Grise and Polvani 2014).

Three out of the five SIGPOS models belong to the

GFDL group of climate models, which share the same

atmospheric component [GFDLCM3uses the version 3 of

the GFDL Atmospheric Model (AM3), whereas GFDL-

ESM2MandGFDL-ESM2GuseAM2;Griffies et al. 2011;

Dunne et al. 2012]. The othermodels in the SIGPOSgroup

are the IPSL-CM5A-LR, which uses LMDZ (Dufresne

et al. 2013), and theMRI-CGCM3 (Yukimoto et al. 2012).

A previous analysis of nine atmospheric general cir-

culation models showed that only the AM2 and

LMDZ4 provide an accurate representation of nega-

tive feedback from cloud albedo and atmospheric

transport over the equatorial cold tongue (Sun et al.

2006). However, a separate study (Grise and Polvani

2014) dividedCMIP5 coupledmodels into twogroups, one

with a more realistic representation of cloud dynamics

over the Southern Ocean. This group includes the three

GFDL models, MRI-CGCM3, and three models from

the SIGNEG group (ACCESS1.0, MRI-CGCM3, and

CSIRO Mk3.6.0). The second group comprised IPSL-

CM5A-LR, three SIGNON models, and three SIGNEG
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models. Additionally, Henley et al. (2017) identified nine

CMIP5 coupled models with a well-represented IPO, of

which six belong to the SIGNEG group, two to the

SIGNON group, and one to SIGPOS. Therefore, while

atmospheric radiative feedbacks may play a role in the

results presented in this study, amore detailed analysis is

required to distinguish the physical mechanisms driving

the SIGPOS and SIGNEGmodels as they do not appear

to have a clear-cut distinction when evaluated on a range

of processes.

While the maps in Fig. 6 show weak correlation be-

tween T300 and precipitation in the Southern Hemi-

sphere at a12-yr lag, correlations between T300 and the

zonal means of precipitation are larger, especially in the

658–908S band (Fig. 3). For surface temperature, T300

also shows significant MMM correlation with zonal

means of TS at all three latitude bands from 358 to 908S
at a 12-yr lag. We note also that at positive lags, most

models (.80%) agree on the sign of the T300–TS cor-

relation over most of the Southern Hemisphere, despite

the SIGPOS and SIGNEG models having different

correlation patterns at negative lags.

Our results are consistent with the potential pre-

dictability studies of Boer (2011) and Boer et al. (2013),

who found that the potential predictability skill for in-

ternally generated variability in the Southern Hemi-

sphere is largest in the Southern Ocean for surface

temperature, and largest at high latitudes for pre-

cipitation [note that Figs. S1 and S2 in the supplemental

material are comparable to Fig. 4 of Boer and Lambert

(2008)]. One issue that warrants further study is that the

potential predictability on the multiyear to decadal time

scale may be seasonally dependent, as temperature and

rainfall are influenced by different drivers on seasonal

time scales. Future experimental work is planned to

further investigate the role of tropical variability on heat

transport and its effect on potential predictability in the

Southern Hemisphere.
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