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Marine nitrogen fixers mediate a low latitude
pathway for atmospheric CO2 drawdown
Pearse J. Buchanan 1,2,3,4*, Zanna Chase 2, Richard J. Matear 3,5, Steven J. Phipps 2 &

Nathaniel L. Bindoff 2,3,5,6

Roughly a third (~30 ppm) of the carbon dioxide (CO2) that entered the ocean during ice ages

is attributed to biological mechanisms. A leading hypothesis for the biological drawdown of

CO2 is iron (Fe) fertilisation of the high latitudes, but modelling efforts attribute at most

10 ppm to this mechanism, leaving ~20 ppm unexplained. We show that an Fe-induced

stimulation of dinitrogen (N2) fixation can induce a low latitude drawdown of 7–16 ppm CO2.

This mechanism involves a closer coupling between N2 fixers and denitrifiers that alleviates

widespread nitrate limitation. Consequently, phosphate utilisation and carbon export increase

near upwelling zones, causing deoxygenation and deeper carbon injection. Furthermore, this

low latitude mechanism reproduces the regional patterns of organic δ15N deposited in glacial

sediments. The positive response of marine N2 fixation to dusty ice age conditions, first

proposed twenty years ago, therefore compliments high latitude changes to amplify CO2

drawdown.
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As much as 30 ppm of the total glacial-interglacial differ-
ence in atmospheric CO2 is attributed to marine biological
mechanisms1. The most prominent biological mechanism

is the fertilisation of Fe-limited high latitude regions, namely the
Southern Ocean2 and subarctic Pacific3, with dust-borne Fe under
dusty glacial conditions4,5. Today, phytoplankton that inhabit
these high latitude regions are unable to consume all available
macronutrients, which allows CO2 to escape to the atmosphere as
deep waters mix into surface layers. Iron fertilisation of the high
latitude glacial ocean therefore stands as a leading hypothesis to
explain a more efficient biological carbon (C) pump and the
associated drawdown of atmospheric CO2. Yet, modelling
focussed on the high latitudes has sequestered less than 10 ppm of
atmospheric CO2 via Fe fertilisation5–7 and indicates that addi-
tional biological mechanisms are required.

There are good reasons to accommodate the lower latitudes in
our search for additional mechanisms. First, the region is enor-
mous. Surface waters between 40°S and 40°N represent over two
thirds of CO2 outgassing to the atmosphere8 and more than half
of global C export9,10. Second, unconsumed phosphate (PO4) at
concentrations in excess of 0.1 to 0.2 mmol m−3 exists in surface
waters across the tropics, which is evidence for unrealised bio-
logical CO2 fixation. Third, tropical oceans produce organic
matter that is enriched in C because tropical phytoplankton are
adapted to fix more C per unit phosphorus (P) under P scarcity11.
Fourth, oxygen-deficient waters in the tropical Pacific, Indian and
Atlantic allow organic matter to sink deeper into the ocean
interior10,12,13. If these mechanisms are combined, the co-
occurrence of more complete PO4 utilisation and the produc-
tion of C-enriched organic matter near to oxygen-deficient zones
would constitute an effective pathway of CO2 drawdown.

Enabling greater PO4 utilisation and CO2 drawdown in the
lower latitudes, however, requires simultaneously relieving Fe
limitation in upwelling zones14, nitrate (NO3) limitation in the
tropics14,15 and their co-limitation at the boundary of both
regimes16. An aeolian Fe-induced stimulation of dinitrogen (N2)
fixation is therefore an obvious candidate to alleviate low latitude
nutrient limitation. Originally proposed by Falkowski17, this
mechanism is now supported by many independent lines of
evidence. N2 fixers are highly sensitive to the aeolian supply of
Fe18,19, they represent up to half of primary production and C
export in oligotrophic waters20–24, they are physiologically
adapted to P scarcity25,26, produce organic matter that is enriched
in C27–29, and previous modelling has demonstrated the potential
of N2 fixation to draw CO2 into the ocean30. Dinitrogen fixation
is also inextricably linked to suboxic zones (dissolved oxygen

(O2) < 10 mmol m−3) where denitrification strips NO3 from the
waters that upwell at the equator, creating a potential niche for N2

fixers across the wide expanse of the lower latitudes. The strength
of N2 fixation, which strengthens PO4 utilisation, whole com-
munity C:P ratios and C export20, is thus tied to the strength of
denitrification, which in turn strengthens N2 fixation.

In this study, we use an ocean model to demonstrate that
aeolian Fe supply to the tropical oceans under glacial
conditions31,32 relieves low latitude nutrient limitation14–16 by
stimulating N2 fixation, which in turn drives PO4 consumption,
suboxic zone expansion, the acceleration of the nitrogen (N) cycle
and a more efficient C export to the interior ocean. Furthermore,
we estimate the contribution of this mechanism to CO2 draw-
down and reveal evidence of its existence within glacial-
interglacial sedimentary records of N isotopes (δ15Norg).

Results
A low latitude pathway. Inspired by these insights, we undertook
multi-millennial simulations using a global ocean biogeochemical
model to explore the link between Fe fertilisation, N2 fixation and
CO2 drawdown. The ocean biogeochemical model is part of the
Commonwealth Scientific and Industrial Research Organisation
(CSIRO) Mark 3L—Carbon of the Ocean, Atmosphere and Land
(Mk3L-COAL)33. The model is designed for long-term, global
oceanographic studies. It resolves multi-millennial timescales and
so produces equilibrium circulation states under a given set of
atmospheric conditions. It is equipped with prognostic C, PO4,
NO3, 15NO3, and Fe cycles34 (see Methods), and includes a
dynamic ecosystem component where phytoplankton alter their
nutrient requirements, stoichiometry and remineralisation rates
according to their environment33 (Supplementary Fig. 1). We
increased the supply of aeolian Fe to the ocean model from its
modern35 to glacial rate5 (see Methods; Supplementary Fig. 2)
under preindustrial physical conditions (Mk3Lmild state in
Table 1; Supplementary Note 1; Supplementary Figs. 3 and 4;
Supplementary Table 1) with an atmospheric CO2 held at 280
ppm, and assessed changes to elemental cycling. To isolate the
response of the lower latitudes, we nudged subsurface Fe con-
centrations to 0.6 μmol m−3 on a yearly timescale, which ensured
that Fe was near non-limiting in regions of strong mixing, like the
Southern Ocean and subarctic Pacific.

The glacial aeolian Fe supply increased the global rate of N2

fixation by 26 Tg N yr−1 and caused a large-scale change in its
distribution (Fig. 1a). Dinitrogen fixers exhibited a closer
coupling to regions of strong upwelling in the tropics (solid

Table 1 Global properties of the four ocean states

Variable Units GFDLwarm Mk3Lmild HadGEMcool Mk3Lcold

Tempa (°C) 5.3 3.9 3.5 1.4
Sala (psu) 34.72 34.50 34.38 35.49
δ14Ca (‰) −143.9 −151.5 −158.4 −184.2
Surface PO4

a (mmol m−3) 0.45 0.36 0.30 0.28
O2

a (AOUa) (mmol m−3) 172 (136) 188 (134) 222 (103) 243 (95)
Suboxiab (% ocean) 3.6 2.7 2.1 1.6
NO3

a (mmol m−3) 22.1 22.4 24.0 28.9
ΨAABW

c (Sv) 7.2 11.5 11.4 39.0
ΨNADW

d (Sv) 20.3 18.4 13.0 13.0
∂ρ
∂z (0–500m)e (kg m−3) 5.41 × 10−3 5.06 × 10−3 4.91 × 10−3 6.39 × 10−3
∂ρ
∂z (1–2 km)e (kg m−3) 0.51 × 10−3 0.45 × 10−3 0.65 × 10−3 1.62 × 10−3

aGlobal mean values. All other properties are integrated totals
bSuboxia refers to waters < 10mmol O2 m−3

cFormation rate of Antarctic Bottom Water (AABW)
dFormation rate of North Atlantic Deep Water (NADW)
eA measure of density change, and hence stratification, averaged over a depth interval
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contour in Fig. 1a) that are co-located with areas of denitrification
(dots in Fig. 1a). The greatest changes were observed in the
Pacific. Dinitrogen fixation decreased in the Northwest Pacific
and increased in the Eastern Tropical Pacific, which hosted low
rates of N2 fixation under modern Fe supply (Supplementary
Fig. 5a). As a result, surface PO4 was reduced throughout the
tropical Pacific by between 0.1 and 0.2 mmol m−3 (Fig. 1b;
Supplementary Fig. 5b). Pacific PO4 utilisation increased the C:P
ratio of exported organic matter by an average of ~14 units
(contours in Fig. 1b), which elevated local C export (Fig. 1c;
Supplementary Fig. 5c), caused a vertical expansion of suboxia
(dots in Fig. 1c), and enabled the permanent accumulation of 244
Pg of respired C in the eastern Pacific (Fig. 1d; Supplementary
Fig. 5d). As a result, 11.6 ppm of CO2 was permanently
sequestered (see “Quantifying CO2 drawdown” and Fig. 2).

Dust-borne Fe fertilisation therefore involved a set of
biogeochemical feedbacks, not possible by increasing the NO3

inventory (Supplementary Note 2; Supplementary Fig. 6), that
enabled CO2 drawdown. Tropical upwelling zones are highly
productive regions that drive strong subsurface O2 depletion,
which in turn stimulates denitrification and strips upwelling
waters of NO3. Consequently, the tropical Pacific hosts low NO3:
PO4 ratios (Supplementary Fig. 7a), which provides a competitive
niche for N2 fixers. Today, the low supply of aeolian Fe to the
tropical Pacific31,35 prevents N2 fixers from inhabiting this
niche24, and allows excess, unconsumed PO4 (>0.2 mmol m−3)
to spill 10–15° either side of the equator36 (Supplementary
Fig. 7b). In contrast, the glacial Fe supply allowed N2 fixers to
inhabit the low NO3:PO4 waters at the boundary to upwelling
zones where local Fe-N co-limitation prevails today14,16. This
shift in N2 fixation initiated strong biogeochemical feedbacks that
encouraged PO4 utilisation, C export, suboxic expansion,
denitrification, and a local NO3 supply via N2 fixation. Two
consequences of this simulated feedback, the local increase in C
export and a vertical expansion of suboxia, enabled the transfer of
large amounts of C-rich organic matter deep within the interior
of the Pacific basin (Fig. 1d).

Quantifying CO2 drawdown. We sought to quantify the sensi-
tivity of atmospheric CO2 drawdown to the physical conditions of
the ocean, as glacial conditions were distinct from pre-industrial37.
We produced four different ocean states that can be considered
broadly representative of glacial-interglacial conditions, encom-
passing warm to cold, well-mixed to stratified, and thus inter-
glacial to glacial (Table 1; Supplementary Fig. 8). Dust-borne Fe
supply was varied to 50, 80, 100, 500% (glacial) and 2500% of the
modern rate35 over these four ocean states (see Methods) to fully
encompass the glacial-interglacial range in conditions. Both high
Fe deposition scenarios (500 and 2500%) are based on the cli-
matology of Lambert5, meaning that the delivery of Fe is not
uniformly greater everywhere (Supplementary Fig. 2). The tropical
Pacific, for instance, receives roughly 2-fold more Fe than under
modern conditions consistent with recent estimates31,32. In
addition, we increased and decreased the Fe requirements of N2

fixers without varying aeolian Fe deposition (See methods), which
emulated variations in Fe supply but only to N2 fixers. If similar
changes occurred via both methods, then N2 fixation could be
considered the primary driver of CO2 drawdown.

The ocean states were GFDLwarm, Mk3Lmild (control state used
previously), HadGEMcool and Mk3Lcold. GFDLwarm was the
warmest, youngest (see δ14C), most deoxygenated, NO3-deplete
and PO4-rich ocean, with a rapid overturning circulation
dominated by the upper cell. Mk3Lmild and HadGEMcool were
cooler, fresher and formed greater quantities of Antarctic Bottom
Water than GFDLwarm. The key difference between Mk3Lmild and
HadGEMcool was the rate of North Atlantic Deep Water
formation, which was stronger for Mk3Lmild and elevated surface
PO4, C export, O2 consumption and denitrification rates.
Mk3Lcold represented full glacial conditions. It was the coldest,
saltiest, and oldest ocean state, featuring strong vertical density
gradients that restricted PO4 supply and a greatly expanded lower
overturning cell consistent with glacial conditions38.

An increase in Fe supply drew between 6.7 and 16 ppm of
atmospheric CO2 into the ocean (compare star and plus symbols
in Fig. 2). Different ocean states (colours in Fig. 2) therefore
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absorbed different quantities of CO2. However, all states
developed a positive, linear relationship between N2 fixation
and CO2 drawdown (coloured lines in Fig. 2). A consistent
relationship between N2 fixation and CO2 drawdown suggested
that all states absorbed atmospheric CO2 via the same low latitude
pathway described in previously. Approximately 0.58 ± 0.03 ppm
of CO2 was absorbed by the ocean for every additional Teragram
of N fixed per year (Tg N yr−1). The linear relationship was
generated as N2 fixation responded to variations in Fe supply
(circles) and as N2 fixation was made more or less sensitive to the
modern supply of Fe (triangles). Similar responses occurred via
both methods (altered Fe deposition and Fe requirements) and
strongly implicated N2 fixation as the driver of CO2 drawdown.

The sensitivity of each ocean state to changes in N2 fixation
was fundamentally linked to the strength of equatorial upwelling.
The greatest sensitivity was found in GFDLwarm, which featured
strong upwelling, and therefore high surface PO4 and large
suboxic zones (Table 1). Consequently, large regions of the
tropical ocean were low in NO3:PO4, which enabled large gains in
N2 fixation (88 Tg N yr−1) and CO2 drawdown (43 ppm) as Fe
supply increased from 50 to 2500% of its modern rate. In
contrast, Mk3Lcold featured the weakest rates of upwelling, lowest
surface concentrations of PO4, the smallest suboxic zones
(Table 1), and thus the weakest sensitivity. Phosphate availability
therefore emerged as the ultimate control on biological CO2

drawdown by setting N2 fixation potential, while Fe supply
modulated the extent to which this potential was realised.

A central role for N2 fixers. The previous experiments showed
that N2 fixers responded to Fe addition leading to reduced

atmospheric CO2. To elucidate the mechanisms through which
this occurred we considered several additional experiments with
the Mk3Lmild ocean state subject to variations in aeolian Fe
supply. First, we removed N2 fixers and denitrification com-
pletely, thereby holding the NO3 reservoir constant. Second, we
reinstated N2 fixers (NO3 supply) and a marine N cycle (active
denitrification), but removed their C export by setting their C:P
ratio equal to zero. Third, we decreased their C:P ratio to 165:1,
half its default of 331:139. Fourth, we reinstated their default C:P
ratio of 331:1, but increased their PO4 half-saturation coefficient

KD
PO4

� �
to 0.1 mmol m−3, which is the same as the general

phytoplankton group and so removed their competitive advan-
tage for PO4.

These experiments revealed that N2 fixers were essential for C
accumulation via the low latitudes. If N2 fixers were removed and
the NO3 reservoir remained constant, greater Fe supply did not
cause respired C storage (ones in Fig. 3a). Insensitivity to Fe
supply was due to widespread NO3 limitation of lower latitude
ecosystems15. The simple addition of N2 fixers without changes in
Fe increased NO3 supply to surface waters (Supplementary Fig. 9)
and increased PO4 utilisation between 40°S and 40°N by 7%.
Dinitrogen fixers were, therefore, able to provide significant gains
to the oceanic C store over millennia, which extends insights of
in situ studies20–23 and prior modelling30 to the scale of the
glacial cycles, as originally proposed by Falkowski17.

Dinitrogen fixers were therefore essential for oceanic C storage
for the simple reason that they supplied fixed N to the upper
ocean. Fixed N supply was responsible for 70% of the C gains
(~5–11 ppm) and responsible for the increase in PO4 utilisation
as Fe supply increased (compare ones and twos in Fig. 3a).
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Included within this C storage was the increase in C:P ratios of
Pacific Ocean phytoplankton as PO4 concentrations declined (see
Fig. 1b). The final 30% (~2–5 ppm CO2) of additional C gain was
mostly due to export of N2 fixer’s C-rich organic matter as the
ocean became PO4-limited (compare ones, threes and fives in
Fig. 3a), while their efficient utilisation of PO4 provided a small
benefit to oceanic C storage (compare fours and fives in Fig. 3a).
As N2 fixers already inhabit a niche of low NO3:PO4

20, they are
already at a competitive advantage over non-N2 fixing phyto-
plankton for available PO4.

The linear relationship between N2 fixation and CO2 drawdown,
which was robust across different ocean states (Fig. 2), was
therefore built on two phases. The first phase (green-yellow shading
in Fig. 3b) occurred in a NO3-limited ocean, where N2 fixation
increased the supply of NO3 to surface communities and thereby
allowed excess PO4 to be consumed. The second phase (light blue
shading in Fig. 3b) occurred in a PO4-limited ocean. As N2 fixers
consumed proportionally more of the remaining PO4, their C
export became more important for overall C export (compare ones,
threes and fours/fives Fig. 3b). The slope of the linear relationship
presented in Fig. 2, therefore, rested on a C:P ratio of N2 fixer
organic matter equal to 331:139. While there is significant variation
around this number, under PO4-limiting conditions the C:P ratio
tends to increase, exceeding 500:1 among Trichodesmium species28.
Therefore, the C:P of N2 fixers could rise as PO4-limiting
conditions develop and steepen the linear relationship to enable
greater CO2 drawdown above that suggested here.

Glacial δ15N records. To test our proposed mechanism of low
latitude CO2 drawdown against observations, we simulated the
response of the isotopic composition of organic N (δ15Norg) to a
glacial increase in Fe supply, and compared this response to a
global compilation of glacial δ15N records (Supplementary
Data 1). These experiments were completed within each ocean
state presented in Table 1, so as to isolate the effect of Fe ferti-
lisation from the effects of physical changes. In the following, we

discuss the response using the Mk3Lmild ocean state, but each
ocean state gave a similar response (Supplementary Fig. 10).

An Fe-induced coupling of N2 fixers to the upwelling zones of
the eastern tropical Pacific increased δ15Norg in the west and
decreased it in the east, which broadly reproduced patterns of
glacial-interglacial change throughout the Pacific basin (Fig. 4).
The increase in the western part of the basin was due to local
decreases in N2 fixation and sedimentary denitrification, both of
which lower δ15N. Our simulation of higher δ15Norg in the west
Pacific, therefore, supports the interpretation of a recent
foraminifera-bound record in the South China Sea40 (star
marker). However, the simulated decrease in the δ15N of the
eastern Pacific was not caused by a decrease in water column
denitrification as suggested by numerous studies since the
seminal paper of Ganeshram et al.41. Instead, our simulated
decrease in eastern δ15Norg was caused by increases in both
sedimentary denitrification and N2 fixation (Fig. 1a).

However, poor agreement was found in other regions, namely
in the tropical western Atlantic and Southern Ocean where an
increase in δ15Norg was not simulated. In the west Atlantic, Straub
et al.42 presented a compelling relationship between δ15N and
orbital precession, leading the authors to surmise a dependence
on the upwelling of PO4 via changes in the circulation. In the
Southern Ocean, a glacial increase in δ15N in Subantarctic2 and
Antarctic zones43,44 is explained by a weaker physical delivery of
NO3 to the mixed layer combined with Fe fertilisation. We
therefore expected and found no response in both regions in these
experiments (Supplementary Fig. 10) because the only change
was an increase in dust-borne Fe and the Southern Ocean was
made insensitive to increases in Fe supply.

Discussion
Our study confirms that N2 fixation is a key component of the
global C cycle. We extend a theoretical proposal made over 20
years ago17 to a quantifiable mechanism of CO2 drawdown. The
main biogeochemical feedbacks are illustrated in Fig. 5, where a
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respired C and N2 fixation. The marker numbers refer to how N2 fixers are represented. Ones: no N2 fixers and no active N cycle. Twos: N2 fixers and N
cycle (i.e., denitrification) reinstated but no N2 fixer carbon export (C:P= 0:1). Threes: N2 fixers C:P ratio increased to 165:1, half its default value. Fours: N2

fixers PO4 limitation enforced by increasing their half saturation coefficient KD
PO4

� �
from 10−10 to 0.1 mmol m−3. Fives: N2 fixers with default

parameterisation. Colour shading of the markers indicates the mean surface PO4 concentration of the experiment. Background shading in b is a qualitative
indicator of the transition from NO3 to PO4 limitation, where dark green to yellow indicates NO3 limitation and light blue indicates PO4 limitation. Source
data are provided in the source data file
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coupling of N2 fixers to upwelling zones is the catalyst that drives
CO2 drawdown.

The importance of N2 fixation for CO2 drawdown is relevant
when assessing prior modelling work. Simulations of the glacial
climate have struggled to explain the full drawdown of roughly 90
ppm45, unless they make manual, and therefore non-mechanistic,
changes to biological functioning38,46. Furthermore, model stu-
dies that explore Fe fertilisation without considering variable
stoichiometry and remineralisation rates6,7 have struggled to
sequester more than 10 ppm of CO2. The permanent sequestra-
tion of 7–16 ppm solely via the low latitudes, therefore, represents
a new and complementary pathway to explain the glacial CO2

drawdown. Thinking conservatively given the stratified and
therefore PO4-limited conditions of a glacial ocean37,42, we pro-
pose that one third, or 10 ppm, of the 30 ppm attributed to Fe
fertilisation1 can be explained by a closer coupling of N2 fixation
to tropical upwelling zones.

It is important to recognise, however, that our simulations
rendered eutrophic regions insensitive to Fe fertilisation. Conse-
quently, we neglect the response of Fe-limited regions like the
Southern Ocean that not only have demonstrated potential for
CO2 drawdown5–7,38,45, but also influence low latitude bio-
geochemistry through mode and intermediate waters47. This
work should therefore not be interpreted as a globally integrated
response to Fe fertilisation. Instead, it isolates the response of the
lower latitudes and offers important lessons. First, that the
debated32,48,49 CO2 drawdown via the tropics is possible. Second,
that this drawdown can accompany and thus complement high
latitude mechanisms of CO2 drawdown. Third, that this draw-
down requires simultaneous relief from both Fe and NO3 lim-
itation14–16, which is plausibly achieved by stimulating N2 fixers
with dust-borne Fe.

Our confidence in this N2 fixer-mediated mechanism is bol-
stered by our simulation of the glacial-interglacial changes in
δ15Norg within the Pacific basin. However, both the drawdown of
CO2 and the reproduction of the δ15Norg patterns in our study
hinge on an acceleration of N cycling in the Eastern Tropical
Pacific. By acceleration of N cycling, we mean an acceleration of
the rates of N2 fixation and denitrification. Such an acceleration
conflicts with a long-assumed deceleration of N cycling. Since
Ganeshram et al.41, glacial records of low δ15Norg are interpreted
to reflect a massive deceleration of water column denitrification,
which must have exceeded a deceleration of sedimentary deni-
trification caused by a loss of shelf area50. Instead, our simula-
tions produced an increase in sedimentary denitrification under
Fe fertilisation. While both possibilities can explain the trends in
Pacific δ15Norg because they both involve more sedimentary over
water column denitrification, they diverge in the inferred inten-
sity of N cycling.

New evidence questions a glacial deceleration of the N cycle
in the Eastern Tropical Pacific. Recent work has revealed a
vertical expansion of Pacific suboxic zones32,51, a feature
reproduced by our Fe fertilisation simulations. While it is not
well known whether sedimentary or water column denitrifica-
tion is more sensitive to increases in suboxia, it seems unlikely
that both would decrease as suboxic zones expanded. In fact, it
seems more likely that sedimentary denitrification was stimu-
lated as waters overlying the sediment became deoxygenated52

and as more organic carbon was buried within sediments53,
while water column denitrification, which is centred within the
thermocline54, was reduced in line with reduced rates of par-
ticle export55. If suboxic zones did expand vertically32,51,52 and
local N cycling accelerated, then the coupling of N2 fixers to
eastern upwelling zones and subsequent CO2 drawdown is
legitimate.

The legitimacy of our proposal then requires explaining
another apparent inconsistency in glacial records: how could
less particle export55 in the tropical Pacific coincide with more
C export? Our results suggest that an answer may be found in
the combination of variable stoichiometry and deoxygenation.
Strong PO4 utilisation and aeolian Fe supply enriches the C
content of exported organic matter11,56, while deoxygenation
enables a strong transfer of particles to depth10,12,13. If both
features were present during glacial periods, then lower rates of
particle export55 do not preclude more C export, and therefore
CO2 drawdown.

Today, there are compelling signs that N2 fixation has
strengthened within the Pacific since the industrial revolution57,58

and that suboxic zones are expanding59,60. Our experiments
suggest that these changes are symptomatic of a stronger biolo-
gical C pump, but even so, we propose that gains in N2 fixation
remain unrealised. Evidence that N2 fixation is operating well
below full capacity can be found in the excess PO4 that spreads
10–15° outwards from tropical upwelling zones36 (Supplementary
Fig. 7b) and the spatial decoupling of N2 fixation from deni-
trification24. Realising the full potential of N2 fixation appears
primarily dependent on the delivery of aeolian Fe to the surface
ocean. Like the high latitudes2,3, we find that the strength of the
lower latitude biological C pump demonstrates a strong link to
the Fe cycle. However, how the oceanic Fe cycle will change in the
future is uncertain61, and undermines our ability to predict the
ocean’s role in atmospheric CO2 drawdown in the coming
centuries.

Methods
Model. Model simulations were performed using the ocean component of the
Commonwealth Scientific and Industrial Research Organisation (CSIRO) Mark 3L
—Carbon of the Ocean, Atmosphere and Land (Mk3L-COAL) Earth system
model. The ocean component is comprised of an ocean general circulation model
(OGCM) described in Phipps et al.62 and an ocean biogeochemical model
(OBGCM) described in Buchanan et al.33 and Buchanan et al.34. A more specific
description of the N cycle and Fe cycle are presented in the supplement. The ocean
model has a horizontal resolution of 2.8° in longitude by 1.6° in latitude, with 21
vertical levels. It is a coarse resolution, z-coordinate OGCM, allowing millennial
timescales to be resolved.

The OBGCM is equipped with 13 prognostic tracers that can be grouped into
carbon chemistry fields, oxygen fields, nutrient fields and age tracers. Carbon
chemistry and air-sea gas exchange is parameterised according to the latest ocean
model requirements63. Nitrogen isotope routines are described in Buchanan
et al.34. The cycling of organic matter considers three forms of phytoplankton.
These are a general phytoplankton group (G), N2 fixers (otherwise known as
diazotrophs; D) and calcifiers. The general phytoplankton group is controlled by
dynamic equations for organic matter production, remineralisation and
stoichiometry according to the study of Buchanan et al.33. These equations allow
the general phytoplankton group to represent variations in the biogeochemical
properties of the marine ecosystem, which has positive effects on the simulation of
global ocean biogeochemistry, particularly the N cycle. Meanwhile, N2 fixers and
calcifiers follow more static equations. N2 fixers have fixed nutrient limitation
functions and stoichiometry based on laboratory studies, but are also remineralised
according to community composition. Remineralisation of both forms of organic
matter is also conserved and passed to deeper grid boxes if oxygen is not sufficient.
The calcifying group, which only interacts with DIC and ALK species, produces
particulate inorganic carbon at 8% of the rate at which the general phytoplankton
group produces organic carbon. Its remineralisation rate is also fixed according to
an e-folding depth-dependent decay, which transfers a large fraction of particulate
inorganic carbon to the deep ocean.

Nitrogen cycle. Nitrate is introduced to the ocean through atmospheric deposition
and N2 fixation. Atmospheric deposition adds 11.3 Tg N to the surface ocean each
year using a prescribed monthly climatology64.

The addition of NO3 by N2 fixation is calculated by considering marine N2

fixers as a unique group of phytoplankton. N2 fixers consume PO4 and Fe at the
surface ocean, and release PO4, Fe and NO3 at depth during remineralisation. The
stoichiometry of N2 fixers is static, with a C:N:P:Fe ratio of 331:50:1:0.00064
according to physiological studies39,65,66. With this stoichiometry, we apply Orem:P
and Nrem:P requirements of 431 and 294.8, respectively, using the equations of
Paulmier et al.67.
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The export of phosphorus by N2 fixers ðPD
expÞ is calculated using a maximum

growth rate μD(T) that is temperature dependent68, limitation terms dependent on
the availability of PO4, NO3 and Fe, and minimum thresholds to account for cold
water N2 fixation69. These terms are applied against an export:production ratio
ðSDE:PÞ in units of mmol P m−3 day−1. PD

exp is calculated via:

PD
exp ¼ SDE:P � μDðTÞ �maxð0:01;minðPO4Dlim

;NO3Dlim
; FeDlimÞÞ � ð1� icoÞ ð1Þ

where,

μDðTÞ ¼ maxð0:01;�0:0042T2 þ 0:2253T � 2:7819Þ

PO4Dlim
¼ PO4

PO4 þ KD
PO4

NO3Dlim
¼ e�NO3

FeDlim ¼ maxð0:0; tanhð2Fe� KD
FeÞÞ

The Fe half saturation coefficient (KD
Fe) was kept at 0.3 μmol m−3, 3× that of

other phytoplankton, unless otherwise clearly defined as another value in our
discussion of the results below. The PO4 half saturation coefficient (KD

PO4
) was

10−10 unless otherwise clearly defined as another value to emulate N2 fixers
efficient utilisation of P25,26. Light was also not considered as a limiting factor. A
dependency on light was omitted because of the strong correlation between
incident radiation and sea surface temperature70 and its negligible effect on N2

fixation in the Atlantic Ocean71. Finally, the fractional area coverage of sea ice (ico)
is included to ensure that no cool-water N2 fixation69 occurs under ice. The
remineralisation of N2 fixer export occurs at the same rate as other labile organic
matter produced by the general phytoplankton group.

Two processes remove NO3 from the ocean model: water column and
sedimentary denitrification. Water column denitrification occurs when O2

concentrations are less than a particular threshold ðRO2
limÞ, which is set at 7.5 mmol

O2 m−3. We calculate the fraction of organic matter (Porg) that is remineralised by
water column denitrification via:

fden ¼ 1� e�0:5�RO2
lim þ eO2�0:5�RO2

lim

� ��1 ð2Þ

and then apply the appropriate stoichiometric requirements of NO3 to this fraction
of Porg:

ΔNO3ðWCdenÞ ¼ fden � Porg � Nrem : P ð3Þ
Following this, the strength of water column denitrification is reduced if the

ambient concentration of NO3 is deemed to be limiting. Water column
denitrification depletes NO3 towards concentrations between 15 and 40 mmol m−3

in modern suboxic zones36. Without this additional constraint, here defined as rden,
NO3 concentrations quickly go to zero in simulated suboxic zones. We calculate
rden by prescribing a lower limit at which NO3 can no longer be consumed ðRNO3

lim Þ,
which was set to 30 mmol NO3m−3:

rWCden
¼ 0:5þ 0:5 � tanhð0:25 � NO3 � 0:25 � RNO3

lim � 2:5Þ ð4Þ

if rWCden
< fden; then fden ¼ rWCden

ð5Þ
Sedimentary denitrification was calculated using the paramaterisation of Bohlen

et al.72, where the removal of NO3 is dependent on the rain rate of organic carbon
to the sediments (Corg) and the ambient concentrations of O2 and NO3.

ΔNO3ðSdenÞ ¼ αþ β � 0:98ðO2�NO3Þ
� �

� Corg ð6Þ
The α term was 0.08, while the β term was halved compared the original value

of Bohlen et al.72 to β= 0.1 in an attempt to increase the deep NO3 inventory. The
availability of NO3 for sedimentary denitrification was accounted for according to
the equation:

rSden ¼ 0:5þ 0:5 � tanhð10 � NO3 � 5Þ ð7Þ
Thus, sedimentary denitrification was relaxed towards zero as NO3

concentrations became low.
If NO3 was limiting, the remaining organic matter was remineralised using O2,

so long as the environment was sufficiently oxygenated. The availability of oxygen
in the sediments was estimated to be two-thirds of the overlying bottom water
concentration, based on observations of transport across the diffusive boundary
layer by Gundersen and Jorgensen73. Furthermore, an additional limitation was set
for sediments underlying hypoxic waters (O2 < 40 mmol m−3), where aerobic
remineralisation was diminished towards zero according to the hyperbolic tangent
function:

rSrem ¼ 0:5þ 0:5 � tanhð0:2 � O2 � 5Þ ð8Þ
If both NO3 and O2 were limiting, the remaining organic matter was assumed

to be remineralised via sulfate reduction.

Subgrid-scale bathymetry. A large amount of sedimentary remineralisation was
not included using these parameterisations because the coarse resolution OGCM
enables it to resolve only the largest continental shelves. Many small areas of raised
bathymetry in pelagic environments were also unresolved. To address this insuffi-
ciency, we coupled a sub-grid scale bathymetry to the course resolution OGCM

following the methodology of Somes et al.74 and using the ETOPO5 1
12
th of a degree

dataset. For each latitude by longitude grid point, we calculated the fraction of area
that would be represented by shallower levels in the OGCM if this finer resolution
bathymetry were used. At each depth level above the OGCM’s deepest level, the
fractional area represented by sediments on the sub-grid scale bathymetry was used to
remineralise all forms of organic matter via the sedimentary processes defined above.

Iron cycle. Our simulated Fe cycle involves a prescribed external source via the
aeolian deposition of dust35, and an internal control in water masses in contact
with the ocean floor. The internal control relaxes Fe concentrations to a set con-
centration given in the control file, which is set to 0.6 μmol m−3 over a period of 1
year. The iron cycle, therefore, considers an atmospheric source, internal cycling
via organic matter, and deep ocean sources and sinks via the sediments.

Simulations. All experiments were simulated for 10,000 years to achieve steady-
state solutions of major biogeochemical tracers. Unless clearly defined otherwise,
all experiments were run under preindustrial conditions, Mk3Lmild, driven by
monthly climatologies of surface conditions over an annual cycle. Surface cli-
matologies required to force the OGCM and OBGCM under Mk3Lmild conditions
were generated by a 10,000 year pre-industrial (PI) control run of the flux corrected
CSIRO Mk3L v1.2 climate system model in fully coupled mode62.

We forced the OGCM with three sets of additional boundary conditions to
generate cold, cool and warm ocean states in addition to Mk3Lmild. The glacial
ocean state (Mk3Lcold) was generated by forcing the CSIRO Mk3L climate system
model with glacial conditions as simulated in Buchanan et al.38. Warm and mild
conditions of GFDLwarm and HadGEMcool, respectively, were provided by the pre-
industrial control runs of the GFDL-ESM2G and HadGEM2-CC climate system
models from the Climate Model Inter-comparison Project phase 5 (CMIP5) multi-
model ensemble75. More thorough physical analyses of these ocean states are
contained in Buchanan et al.38 and Buchanan et al.33.

Iron deposition experiments that varied Fe supply to the surface ocean involved
altering the field of Mahowald et al.35 with constant factors to achieve 25, 50, 75, 80,
90, 100, 125, 150, 200, 300, and 400% of the modern flux. Higher fluxes representative
of the glacial field were undertaken using the dust deposition fields of Lambert et al.5

assuming 3.5% Fe content and 0.4 and 2% solubility, respectively, to achieve 500 and
2500% of the modern Fe supply rate (Supplementary Fig. S2). The glacial dust
deposition rate referred to in the main text is the 500% version of the Lambert et al.5

field (Supplementary Fig. 2). These rates of Fe deposition were applied to the
Mk3Lmild state and discussed in “A central role for N2 fixers”, while a subset of these
Fe deposition experiments, as well as variations in the Fe half-saturation constant for
N2 fixers (see Supplementary description of the N cycle), were undertaken in with
multiple physical states discussed in “Quantifying CO2 drawdown”.

For those experiments with a freely evolving atmospheric CO2 concentration (within
section “Quantifying CO2 drawdown”), we initialised each with the near-equilibrium
solution produced by holding atmospheric pCO2 at 280 ppm and with the modern Fe
deposition (stars in Fig. 2), such that experiments with modern Fe deposition
maintained atmospheric pCO2 near to 280 ppm. Altering Fe deposition then caused
changes in air-sea CO2 exchange that altered the atmospheric and oceanic C reservoirs.
The atmospheric C reservoir was calculated assuming a constant atmospheric weight of
5.1 × 1021 g and a mean molecular weight of air of 28.97 gmol−1.

All experiments involved a relaxation of deep ocean Fe to values of 0.6 μmolm−3

over a period of 365 days. Areas of connection between the deep and surface ocean,
such as the high latitudes and deep upwelling zones, were therefore either non-Fe
limited or almost non-Fe limited. This parameterisation rendered the high latitudes
insensitive to greater Fe supply, while stratified lower latitudes were sensitive to Fe
supply but NO3-limited.

δ15Norg records. Glacial minus interglacial values of δ15Norg records were calcu-
lated by averaging values during the Last Glacial Maximum, defined as between 20
and 26 kya, and the Late Holocene, defined as between 0–5 kya. The early Holocene
was ignored due to transient changes in the δ15N records since the deglaciation.
The global compilation of δ15Norg was composed of bulk sediment and diatom- and
foraminifera-bound measurements, and is available in the supplementary material.
A slight correction to simulated δ15Norg was applied to correct for diagenetic effects
that increase with depth in the water column. The addition of 0.9 per 1000 metres
to the raw, simulated δ15Norg values was applied and substantially improves
comparisons between simulated and coretop values34.

Data availability
The model output data that support the findings of this study are available for download
from Australia’s National Computing Infrastructure (NCI) at https://researchdata.ands.
org.au/marine-nitrogen-fixers-output-v10/1385710 with the identifier https://doi.org/
10.25914/5d730c40c2729. Source data underlying Figs. 2 and 3 are provided in the
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Supplementary information as a source data file. Glacial-interglacial differences in
δ15Norg are held in Supplementary Data 1. Code for making Figs. 1–4 is freely available at
https://github.com/pearseb/Marine-nitrogen-fixers-paper-python-code.

Code availability
The source code for CSIRO Mk3L-COAL is shared via a repository located at http://svn.
tpac.org.au/repos/CSIRO_Mk3L/branches/CSIRO_Mk3L-COAL/. Access to the
repository may be obtained by following the instructions at https://www.tpac.org.au/
csiro-mk3l-access-request/. Access to the source code is subject to a bespoke license that
does not permit commercial usage, but is otherwise unrestricted. An “out-of-the-box”
run directory is also available for download with all files required to run the model in the
configuration used in this study, although users will need to modify the runscript
according to their computing infrastructure. Any queries may be directed to the lead
author.
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