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Uncertainty in near-term global surface warming
linked to tropical Pacific climate variability
Mohammad Hadi Bordbar 1, Matthew H. England 2, Alex Sen Gupta 2, Agus Santoso 2,3,

Andréa S. Taschetto2, Thomas Martin 1, Wonsun Park 1 & Mojib Latif1,4

Climate models generally simulate a long-term slowdown of the Pacific Walker Circulation in

a warming world. However, despite increasing greenhouse forcing, there was an unprece-

dented intensification of the Pacific Trade Winds during 1992–2011, that co-occurred with a

temporary slowdown in global surface warming. Using ensemble simulations from three

different climate models starting from different initial conditions, we find a large spread in

projected 20-year globally averaged surface air temperature trends that can be linked to

differences in Pacific climate variability. This implies diminished predictive skill for global

surface air temperature trends over decadal timescales, to a large extent due to intrinsic

Pacific Ocean variability. We show, however, that this uncertainty can be considerably

reduced when the initial oceanic state is known and well represented in the model. In this

case, the spatial patterns of 20-year surface air temperature trends depend largely on the

initial state of the Pacific Ocean.
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The tropical Pacific covers a vast area, ~10%, of the Earth’s
surface and is subject to intense ocean-atmosphere
exchanges of momentum, heat, and moisture, thus play-

ing a vital role in modulating regional and global climate1–3. This
region has undergone significant ocean and atmospheric changes4

over two recent decades (1992–2011). During the latter half of
this period and despite the steady buildup of atmospheric
greenhouse gases, the rate of global surface warming slowed, at
the same time that there were persistently cold surface and sub-
surface temperature anomalies in the central and eastern tropical
Pacific Ocean4–6. This multi-decadal change is La Niña-like, in
that the period also saw anomalously wet conditions and sea-level
rise in the western Pacific, a cool and dry eastern Pacific, an
intensified Indonesian Throughflow and an increase in wind-
driven Ekman divergence away from the equator4,6,7.

These changes were associated with an unprecedented inten-
sification of the equatorial trade winds that form the surface
component of the Pacific Walker Circulation (PWC)4–6,8. More
broadly, Pacific trade wind variations are associated with sea
surface temperature (SST) anomalies, predominantly in the Niño
3.4 region (5°N–5°S, 170°W–120°W), basin-wide changes in sea-
level pressure (SLP) and changes in upper-ocean thermal
structure4,6,9. Therefore, PWC anomalies are an indicator of the
state of the tropical Pacific surface climate state4,6,8,9.

Large internal decadal variability is evident in the tropical
Pacific in both observations and climate simulations, which can
enhance or reduce the rate of globally averaged surface
warming6,10–15. On multi-decadal timescales, an ENSO-like pat-
tern in anomalous SST, known as the Interdecadal Pacific
Oscillation (IPO), is observed and simulated in climate
models9,16–22. Changes in the IPO phase have been shown to
coincide with significant changes in the tropical and subtropical
Pacific climate and globally averaged surface air temperature
(SAT)4,6,23,24 (hereafter, termed the global mean temperature;
GMT). For example, the anomalous decadal intensification of the
Pacific trade winds between 1992 and 2011 was associated with
a decadal shift from the warm to cold phase of the IPO during
the late 1990 s or early 2000s4. Thus, understanding the causes of
transitions in the IPO and improving its simulation in climate
models is vital to enhancing our ability to make skillful decadal
climate predictions1,12,25. At present, perhaps owing to the large
impact of stochastic atmospheric variability on IPO evolution,
decadal predictions of the IPO exhibit limited skill; compared, for
example, with the Atlantic Multidecadal Oscillation21,26.

The sign and magnitude of Pacific trade winds response to
increased atmospheric greenhouse gas concentrations (GHGs) is
still uncertain. The majority of models participating in Coupled
Model Intercomparison Project Phase 5 project a future decrease
in the strength of the Pacific trade4,27–29, although there is large
inter-model spread in the magnitude of the change30,31. It is
consistent with theoretical arguments relating tropical warming
to a slowdown of the Walker Circulation3,8. Yet as noted, during
1992–2011 there was an unprecedented increase in observed trade
wind strength; with no model from the Coupled Model Inter-
comparison Project Phase 5 able to simulate the magnitude of this
intensification4,24. The magnitude of the Pacific trade wind
acceleration has been linked with internal variability6,20,29, as well
as multi-decadal surface warming in the Atlantic32 and Indian33

Oceans. Other work also indicates that low-frequency variability
is generally underestimated in the current generation of climate
models6,20,29.

The role of tropical Pacific internal variability in the recent
global surface warming slowdown is still unclear. Here, we
investigate the influence of low-frequency changes in the Pacific
climate in modulating GMT. Using multiple large ensembles of
global warming simulations subject to identical external forcing,

but starting from different initial conditions (Methods; Supple-
mentary Table 1), we explore the impacts of internal variability
on tropical Pacific climate hindcasts and projections and its
relationship to GMT. We mainly focus on 20-year timescale,
which is beyond the target range of decadal prediction but not so
long that multi-decadal variability is dominated by anthropogenic
GHG forcing34.

In this study, we mainly focus on the fluctuations of Pacific
trade winds, among other elements of tropical Pacific climate
variability. The wind forcing is an integral element of upper-
ocean circulation, fundamentally altering the state of the ocean,
both in the equatorial and off-equatorial regions. In particular,
the surface wind stress field drives the redistribution of ocean
heat content via the shallow meridional overturning cells and
equatorial thermocline displacements. Wind forcing also alters
the tropical Ekman transport that regulates ocean heat and water
mass exchange between the tropics and subtropics over decadal
timescales4,6,7.

Results
Impact of tropical Pacific climate variability on GMT.
Figure 1a–e show normalized time series of the low-frequency
fluctuation in the tropical Pacific zonal wind stress, the Tripole
Index35 (TPI, Methods), a proxy for the IPO, and the GMT
obtained from the unforced control runs. The linear correlation
between the annual mean wind stress and Niño3.4 index exceeds
0.86 in all three control runs (Supplementary Table 2). This
indicates that the wind stress and Niño3.4 are strongly coupled,
and thus the results of this study are qualitatively the same if
the Niño 3.4 index, instead of Pacific trade winds, is considered
(see also Fig. 2d). In general, acceleration (weakening) of the
equatorial trade winds are associated with a decreased (increased)
GMT with correlations of 0.31, 0.56 and 0.42 in the KCM, the
CSIRO-Mk3L and the CESM1-CAM5 control runs, respectively
(all significant at the 99% level; Supplementary Table 2; see
Supplementary Fig. 1). However, all models simulate certain
periods when this wind-GMT relationship breaks down. This
may be related to periods of only moderate trade wind variations,
insufficient to lead to a sustained acceleration or deceleration of
heat uptake in the subtropical overturning cells4. It could also be
owing to regional climate variability originating in other ocean
basins29,34.

To identify the regional impacts of the Pacific trade wind
trends, we compute the correlation between low-frequency Pacific
trade wind variations and local SAT anomalies in the control runs
(Fig. 1b–f). The spatial structures exhibit similar patterns in all
models. Weakened trade winds, i.e., eastward anomalies, are
generally associated with warming in the central and eastern
tropical Pacific, tropical and subtropical South America, and the
western part of the Indian Ocean, whereas it is accompanied by
cooling over the Northwest and Southwest Pacific and the eastern
sector of North America. Over the Pacific basin, the pattern is
somewhat symmetrical about the equator and reminiscent of the
IPO1,35. Eastward decadal anomalies in the Pacific trade winds
are associated with a weakening of the equatorial Ekman
divergence over the equatorial Pacific, which reduces poleward
surface heat transport. Changes in the trade winds can also affect
the Pacific mid-latitudes via atmospheric teleconnections forced
by equatorial Pacific SST anomalies1. Furthermore, the correla-
tion in the North and South Pacific is large and of the same sign,
indicating that decadal SAT anomalies in these regions evolve
coherently to some extent. This is suggestive of a pacemaker role
for the tropical Pacific in terms of broader scale climate variability
over decadal and multi-decadal timescales36 (see also Supple-
mentary Fig. 2). However, the details of the spatial patterns vary
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across the models (Fig. 1), which is not surprising given the
different space-time resolutions, model physics (e.g., atmospheric
convection, ocean mixing) and numerical schemes employed in
the models.

These internal fluctuations can result in large multi-decadal
GMT trends (Supplementary Fig. 3; see methods), the
magnitude of which is model dependent. For example, 10, 20,
and 30-year unforced trends on average can reach up to ±0.34,
±0.14, and ± 0.08 (°C/decade), respectively (Supplementary
Fig. 3), which can exceed expected externally forced trends on
shorter timescales.

Uncertainty in near-term tropical Pacific climate hindcasts. We
begin by estimating the uncertainty owing to internal variability
in the 20-year climate hindcast by analyzing a large ensemble of
simulations (CESM-Hind-Proj; 35 members) for the CESM1-
CAM5 subject to historical radiative forcing (Methods). Owing to
large uncertainty in pre-satellite data6, we only consider the
observed wind stress after 1979. The time series of the simulated
annual mean trade winds (Fig. 2a) exhibits a large spread across
the ensemble members over the entire period, resulting in a wide
range of plausible trajectories in the tropical Pacific climate.
Despite this large spread, the time series of observed trade winds
(shown after 1979 in Fig. 2a) exceeds the envelope simulated by
the CESM1-CAM5 ensemble members (particularly in 2011).
Indeed, the observed 1992–2011 trend is clearly exceptional
compared to the corresponding trends from the model (Fig. 2e).
This discrepancy is common to other climate models4,24,29 and
could have a number of possible reasons. In particular, the
magnitude of low-frequency variability may be systematically
underestimated in models4,6,29. Also, the recent wind

intensification may have been partly enhanced by changes in
radiative forcing6,24,32, and these may not be properly simulated
by the model37,38. However, the time series of observed SST over
Niño3.4 region (Fig. 2b), which is another proxy for tropical
Pacific climate variability, is well within the range spanned by
the model. In each ensemble member, the annual anomaly cor-
relation coefficient between the wind stress and the Niño 3.4
index is statistically significant (99% confidence level) and higher
than 0.89.

With respect to the globally averaged SAT (GMT; Fig. 2c),
whereas the ensemble-mean captures its overall evolution, the
spread across individual members is notable. The ensemble
member trends can vary by ~±0.4 °C per 96-years (1920–2015)
relative to the multi-model mean trend; a significant fraction
of the ensemble-mean warming trend of ~0.9 °C over the same
96-year period. The uncertainty in the forced component of
the trend becomes larger at shorter timescales. For instance,
the 20-year trend over 1992–2011 in the simulated GMT varies
from 0.14 to 0.38 °C/decade across the ensemble set (Fig. 2e,
Supplementary Table 3) whereas the ensemble mean is ~0.26 °C/
decade. This range is approximately equal to the range of
internally driven 20-year trends in the corresponding control run
(Supplementary Fig. 3). The observed warming trend (0.2 °C/
decade) lies within the simulated range (Fig. 2e), although close to
the lowest end of the ensemble set.

For each ensemble member, the annual correlation between
GMT and wind stress is statistically significant (at 99%
confidence level) and varies from 0.32 to 0.66. For each ensemble
member, a similar correlation is found between the GMT and
Niño3.4 index (Fig. 2d). This implies using either the wind stress-
based or SST-based indices (Niño3.4) yields very similar results
for the tropical Pacific climate variability and its connection to
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GMT. Further, there is a clear relationship between the trend in
GMT and trend in Pacific trade winds across the members from
1992 to 2011 (r= 0.38, statistically significant at the 99%
confidence level): ensemble members with stronger easterly
(westerly) trade wind trend anomalies show reduced (enhanced)
rates of global surface warming (Fig. 2e). Although the 20-year
GMT trends always remain positive, the 20-year weakening and
strengthening of the Pacific trade winds are about equally likely
(Fig. 2e). Although strengthening of the trade winds is capable of
temporarily slowing global surface warming, it is not sufficient to
reverse the positive GMT trend, particularly if GHG concentra-
tions are increasing rapidly39. Even during the recent observed
two-decade period of unprecedented intensified Pacific trade
winds (1992–2011), the GMT trend remained positive4 (Fig. 2e).
The component of the trend that is related to internal variability
is reduced when longer timescales are considered (Supplementary
Fig. 3) and any forced signal becomes more dominant. For
example, the range of GMT 30-year trends is nearly half of that
related to 20-year trend (Supplementary Fig. 3). At longer
timescales, we expect less ensemble spread and more predictable

forced trend, as the forcing signal increases in magnitude relative
to the size of internal variability.

To understand how the climate state differs in relation to
intensifying/weakening equatorial Pacific winds, we composite
20-year periods when these wind trend anomalies exceed ±
1 standard deviation (selected based on Fig. 2e). In the ensemble
members with large westward 20-year trend in Pacific trade winds
there is a cooling over the central and eastern tropical Pacific,
the Australian continent, over East and Southeast Asia and the
tropical and subtropical sector of South America along with
warming over the Northwest and Southwest Pacific, and the
eastern sector of North America (Fig. 3a). These changes are
associated with enhanced (reduced) SLP in the eastern (western)
Pacific. The spatial patterns are consistent with a strengthening of
the PWC, increased equatorial upwelling and wind-driven Ekman
divergence away from the equator, which cause anomalously large
ocean heat uptake in the Pacific interior4. In fact these spatial
patterns are similar to the observed trends over the 1992–2011
period (Supplementary Fig. 4), and are reminiscent of the
negative phase of the IPO4. On the other hand, largely mirrored
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changes in SAT and SLP are simulated in the ensemble members
associated with 20-year weakening trend in Pacific trade winds
(Fig. 3b). This model analysis demonstrates the large and
sometimes contrasting impact that internal decadal variability
can have on 20-year trends. It also indicates the key role of large-
scale ocean-atmosphere interactions in controlling the Pacific
climate in the analyzed model. However, we cannot rule out
remote influences from the Indian and Atlantic Oceans32,33,40.
Moreover, internal variability adds large uncertainty in regional
climate projections and can mask anthropogenic signals over the
20-year timescale4,6,41–43. For example, in most places the
ensemble spread in 20-year trends in SLP (Supplementary Fig. 5b)
exceeds the ensemble-mean trend (Supplementary Fig. 5a). In
addition, the ratio of ensemble-mean trend to the ensemble
spread, which defines the signal-to-noise ratio as a measure of the
robustness of the forced trend, is in general smaller than 1.0 over
the tropical region (Supplementary Fig. 5c), indicating the
dominant impact of internal variability at this timescale44.

Uncertainty in near-term tropical Pacific projections. Uncer-
tainty in projected (CESM-Hind-Proj) and idealized transient
(KCM-ICs, and Mk3L-ICs ensembles; starting from different
oceanic and atmospheric Initial Conditions; Methods) SAT is
next examined using large ensembles from three models. As with
the historical ensemble (Fig. 2e) there is a large spread in 20-year
trends in the Pacific trade winds and GMT across the ensemble
members (Fig. 4a–g; Supplementary Table 3). Composites of 20-
year trends in SAT, SLP, and wind stress based on ensemble
members with large positive and negative equatorial wind stress

trends (Fig. 4) reveal large differences in the warming trend over
regions where SATs are strongly correlated with equatorial winds
(Fig. 1). Relative cooling over the central and eastern tropical
Pacific and adjacent areas in South America, east Asia, Australia,
the western Indian Ocean along with relative warming in the
Northwest and the Southwest Pacific are displayed in those
ensemble members in which the Pacific trade winds are intensi-
fied (Fig. 4b, e, h). The opposite occurs when the Pacific trade
winds are reduced (Fig. 4c, f, i).

For each ensemble set, the range in the GMT trend is comparable
with the ensemble-mean trend (Supplementary Table 3), again
indicating the importance of internal variability on these
timescales (Fig. 4a, d, g). As with the historical analysis, there
are statistically significant positive correlations between the zonal
wind stress trends and GMT trends across ensemble members
(Figs. 2, 4) with correlations of 0.57, 0.66, and 0.67 in the CESM-
Hind-Proj, the KCM-ICs and Mk3L-ICs, respectively (Fig. 4a, d,
g). However, the regressions are different from model to model
(Fig. 4a, d, g), implying that the SST response to the tropical
winds (i.e., the strength of the wind-SST feedback) is very
different across the three models. Given the large relative
uncertainty in the GMT 20-year trend in each ensemble
(Supplementary Table 3; Supplementary Fig. 6), there is
inherently low predictability in the magnitude of the GMT
increases on this timescale, unless the Pacific wind trends (and
associated IPO phase) can themselves be predicted. In general, the
rate of global warming in Mk3L is relatively low compared with
that simulated in KCM and CESM1-CAM5 (Fig. 4a, d, g). It was
previously shown that Mk3L has a lower transient climate
response compared with other climate models, which is mainly
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owing to parametrization of key radiative feedback processes such
as water vapor, lapse rate, snow, and ocean heat uptake in the
model38,45.

Incorporating oceanic initial conditions into decadal predic-
tions. Recent work using initialized simulations in a single
model25 suggests that the state of upper-ocean heat content can
provide some predictability around phase transitions of the IPO.
Here, we extend this work to examine the potential to improve
the predictability of 20-year trends in two distinct model
ensembles, given knowledge of the initial phase of the IPO. In
particular, we examine climate trends from perturbed atmosphere
ensembles starting from a positive and negative IPO state in
the KCM and Mk3L models (termed KCM-IPO-Warm, KCM-
IPO-Cold, and Mk3L-IPO-Warm, Mk3L-IPO-Cold, respectively).

The connection between the Pacific trade winds and regional
changes in temperature and circulation and with global surface
warming in these IPO experiments is consistent with previous
ensembles used in this study (Fig. 4; Supplementary Fig. 7,
Supplementary Fig. 8). Time series shown in Fig. 5 are the GMT
in each ensemble member. In each experiment, the GMT is
computed relative to its average over the first 20-years. For the
first few years, the ensemble spread in GMT in the simulations
initiated during the peak of either a positive or negative IPO
phase is smaller than that obtained from an ensemble initiated
from random ocean states (i.e., KCM-ICs and Mk3L-ICs; Fig. 5d,
h). On longer timescales, the ensemble spreads in the annually
averaged GMT become very similar across the three ensembles
for each model. The rapid increase in the spread of GMT is a
result of various factors limiting the climate forecast skill in
multi-year to decadal timescales, such as stochastic forcing and

strongly nonlinear climate dynamics46,47. The rate of global
warming, indicated by the ensemble mean, differs across these
ensembles (Fig. 5d, h). Namely, when the projections start
from the negative phase of the IPO (i.e., KCM-IPO-Cold, Mk3L-
IPO-Cold; Fig. 5d, h) the ensemble-mean warming is faster over
the first decade than in the randomly initialized ensemble,
for both models. The opposite is true for the ensembles started
from the positive IPO state (Fig. 5d, h; Supplementary Fig. 9).
Indeed, the decadal trend (10-year) in the annual mean GMT in
each ensemble derived from the forecast data show significant
differences across the experiments. The trend in the ensemble
mean of KCM-ICs, KCM-IPO-Cold, and KCM-IPO-Warm is
0.21 ± 0.17, 0.31 ± 0.14, and 0.03 ± 0.14 °C/decade, respectively.
The corresponding trends in Mk3L-ICs, Mk3L-IPO-Cold, and
Mk3L-IPO-Warm are 0.12 ± 0.08, 0.15 ± 0.04, and 0.08 ± 0.09 °C/
decade, respectively (Supplementary Fig. 9). In both models, there
is a significant difference (95% confidence interval) in the GMT
decadal trends in the ensemble set initiated from the positive IPO
and that initiated from the negative IPO. Computing a similar
trend as above but starting from the second year of simulation in
each ensemble mean (Supplementary Fig. 9) leads to similar
conclusion: KCM, Mk3L-IPO-warm experiments display reduced
global warming compared with the KCM, Mk3L-IPO-Cold
experiments. Thus, despite the presence of the rapidly varying
atmospheric forcing and other predictability barriers over the
tropical Pacific46,47, GMT decadal prediction can be significantly
improved by implementing the past climate trajectory in the
model. This essentially demonstrates that knowledge of the
oceanic initial conditions has the potential to improve the
accuracy of near-term GMT projections over a decadal timescale.

On a 20-year timescale, the difference in the rate of global
warming across model ensembles seems to be less consistent
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(Supplementary Fig. 9). For example, in the KCM ensembles, 20-
year global warming in the ensemble set initialized from the
positive IPO (KCM-IPO-Warm) is approximately the same as
that for the randomly chosen ICs ensemble (KCM-ICs; ~0.43 °C)
although faster warming is indeed simulated in the simulation
initiated from the negative IPO (0.67 °C; Supplementary Fig. 9).
In contrast, Mk3L ensembles show almost the same distribution
of warming over the first 20-years (Supplementary Fig. 9)
regardless of initial conditions. Thus, the state of the IPO affects
predictions of GMT on a 10-year timescale, but shows weaker
importance at longer timescales as greenhouse effect dominates.

Why the IPO state could significantly affect GMT prediction
might come down to the fact that the IPO is a quasi-steady
process (i.e., stationary time series) with tendency to revert
toward its climatological mean over a ~20-year timescale. As
such, the subsequent 20-year trend after any maximum IPO
phase is very likely to be negative. This basically leads to a
tendency for decadal cooling over the tropical Pacific and a
decline in GMT following the maximum positive IPO phase. The
opposite is true after minimum IPO phases. This notion is
supported by composite analysis based on IPO extremes ( ±1 SD)
in the control runs (Supplementary Fig. 10). In general, 20-year
trends in GMT after maximum IPO cold phases tend to be large
and positive, while these trends tend to be large and negative after
IPO warm phases (Supplementary Fig. 10, b, e, h). Indeed, the
spatial structures of the SAT trend obtained from the composite
analysis are very similar to the IPO patterns (Supplementary
Fig. 10,c,f,i), further supporting this mechanism for drivers of
decadal variability in GMT.

How the state of the IPO could lead to such decadal trends of
GMT is not fully understood. As shown in previous studies1,4,6,
IPO cycles have a critical role in redistribution of heat storage
through changes in the equatorial Ekman divergence over the
equatorial Pacific, which is accompanied by anomalous poleward
surface heat transport to the mid and high latitudes. Another
potential mechanism may be through altered incoming shortwave
radiation, particularly since the GMT and globally averaged net

shortwave radiation are strongly correlated48. Specifically it could
be that incoming solar radiation is reduced following the IPO-
Warm owing to increasing cloud cover, thus leading to decreased
GMT. Preliminary analysis with the KCM control run shows that
such tendency exists but somewhat weak (not shown). Further
study is needed to clarify the pertinent mechanisms, which are
beyond the scope of this paper.

The spatial structures of ensemble-mean 20-year SAT trends
are noticeably different across the different cases of initial
conditions for each of the models (Fig. 5a–c, e–g). Compared with
the ICs trends in both models IPO-Cold trends display larger
warming over the central tropical and subtropical Pacific and
adjacent continents, North America, Asia and relative cooling
over the Northwestern Pacific (Fig. 5). The opposite behavior is
obtained in the IPO-Warm trends in both models (Fig. 5). Over
large parts of the basin and adjacent continent, the difference
between the KCM-IPO-Cold and the KCM-IPO-Warm is
statistically significant (at 95% confidence level), which is similar
to results obtained from the composite analysis based on IPO
maxima and IPO minima in the control runs (Supplementary
Fig. 10). These spatial structures are reminiscent of the positive
phase of the IPO (Supplementary Fig. 11a). A similar structure,
but smaller magnitude, is obtained from the difference between
the Mk3L-IPO-Cold and the Mk3L-IPO-Warm ensemble sets
(Supplementary Fig. 11b). In addition, most members, ~17 (14)
out of 22, in the KCM-IPO-Cold (the Mk3L-IPO-Cold) ensemble
set display an IPO-positive-like pattern in the first two decades of
integration, whereas the IPO-positive-like and the IPO-negative-
like patterns are rather equally likely in the KCM-ICs (the Mk3L-
ICs; see Supplementary Fig. 12-S18). Roughly opposite patterns
were simulated when the simulations started from the positive
phase of the IPO (see Supplementary Fig. 14, S17, S18). Thus, on
regional scales, the state of the IPO appears to have significant
influences on the magnitude of 20-year SAT trends over large
parts of the Pacific and adjacent continents.

Thus, our results suggest that taking into account the state of
oceanic conditions associated with the IPO could hold the
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potential to narrow down uncertainty in multi-decadal regional
SAT projections. However, owing to the nonlinear nature of the
climate system and large exchanges of heat and momentum
between the ocean and atmosphere, combined with the stochastic
nature of the atmosphere, this uncertainty reduction might be
strongly state-dependent. Future studies aiming to provide more
precise estimates of the associated uncertainties would be
beneficial to the climate prediction community. This will likely
involve even larger ensembles than considered here, across a
diverse but coordinated set of model experiments.

To summarize, we have analyzed several ensembles of
climate change simulations across three fully coupled climate
models, subject to different external forcing and initial states.
Our goal was to examine and quantify the uncertainty in
estimates of forced globally averaged SAT trends in hindcast
and projection simulations associated with internal variability
and the associated regional signatures. In the presence of
identical external forcing, a large spread in 20-year tropical and
subtropical Pacific trends was found, in each model ensemble,
arising from internal climate variability. We showed that in
each ensemble set, the rate of global warming over a 20-year
timescale is closely linked to tropical Pacific internal climate
variability, whereby intensified trade winds, as a good
representative of tropical Pacific climate, are associated with
reduced globally averaged warming, and weaker trade winds
with accelerated global warming (Fig. 6). The range of GMT 20-
year trends sometimes exceeds the ensemble-mean warming
trend in each ensemble set. We further showed that, on decadal
or even multi-decadal timescales, there is the potential to
narrow this range if the observed ocean state is known and used
to initialize the model forecasts (Fig. 6). Furthermore, our
findings indicate that when the model integration starts from a
negative (positive) phase of the IPO, the subsequent decade is
more likely to exhibit accelerated (reduced) global warming.
This suggests that there is an increased likelihood of accelerated
global warming in the coming decade since we have, in recent
years, been in a strongly negative IPO state4. Our idealized
experiments support the use of initialized climate model
projections for making decadal predictions. Our findings

nonetheless suggest that internal variability can potentially
obscure the forced signal in the tropical Pacific sector and in the
GMT on decadal timescales. However, the relative importance
of this will decline as atmospheric GHG concentrations
continue to increase into the future.

Methods
Model experiments. To quantify the uncertainty in tropical Pacific climate pro-
jections owing to internal climate variability, we examine multiple realizations
(ensemble members) from a number of large ensemble experiments from different
climate models. Ensemble members from each experiment are subject to identical
external forcing but are started from different initial conditions. Our analysis is
based on three different fully coupled climate models (Supplementary Table 1):
namely the Kiel Climate Model49 (KCM), CSIRO-Mk3L45,50, and CESM1-
CAM551. These models employ different physical parameterizations and numerical
schemes and have different ocean and atmosphere resolutions, which allow us to
assess the robustness of the results to structurally different models.

We perform a millennial timescale control run with the KCM at approximately
present-day CO2 levels (348 ppm). Branching off from this control simulation we
undertake three 22-member ensemble 100-year global warming experiments based
on idealized transient radiative forcing according to a 1% per year (p.a.) CO2

warming scenario44,52. In the first ensemble set, integrations start from different
oceanic and atmospheric initial conditions (ICs) at different times of the control
run. These initial conditions cover a broad range of climate regimes (Fig. 1a). This
ensemble is termed KCM-ICs. The ICs indicates the method of the ensemble
generation. In the second and the third ensemble set, the ensemble spread is
produced by only perturbing the atmospheric initial conditions while the oceanic
initial conditions remain fixed (i.e., from a single point in the control simulation;
Fig. 1a). In this case, any spread is owing to atmospheric variability and nonlinear
climate dynamics. In the second ensemble, termed as KCM-IPO-Cold, the oceanic
initial state corresponds to negative phase of the IPO, whereas it matches the
positive phase in the third ensemble, termed as KCM-IPO-Warm (Fig. 1a).
Comparison between the ICs and the latter ensemble sets allows us to estimate the
contribution of the IPO initial state to the GMT projections and to isolate the
uncertainty related to chaotic atmospheric fluctuations from those owing to the
oceanic initial state44,53.

For the CSIRO-Mk3L, we undertake a 1100-year control run with constant CO2

at preindustrial levels (280 ppm). Again, a 22-member ensemble with 1% p.a.
increasing CO2 is performed with a similar configuration to the KCM ensemble
sets; i.e., with different oceanic and atmospheric initial conditions (termed Mk3L-
ICs; Supplementary Table 1) and fixed oceanic initial conditions in negative
(termed Mk3L-IPO-Cold) and positive (termed Mk3L-IPO-Warm) phases of the
IPO (Fig. 1c; Supplementary Table 1).

We also analyze output from CESM1-CAM5 experiments. For this model a
1800-year control run at preindustrial CO2 concentration (280 ppm) was
integrated. A single realization was integrated for 71 years with the external forcing
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according to that observed from 1850 to 1920. Thirty-five global warming
experiments are undertaken by perturbing atmospheric initial conditions with the
same oceanic state at 1920. They are then subject to historical radiative forcing
from 1920 to 2005 and are extended according to the Representative Concentration
Pathway 8.552 scenario until 2100. This ensemble set is termed CESM1-Hind-Proj.
Hind and Proj here refer to hincast and projection, respectively.

The KCM and Mk3L global warming simulations (with 1% CO2 warming
scenario) were performed as part of this project. The long control simulations
predated this project (which is the reason for them being subject to different
greenhouse levels representative of present day and preindustrial conditions).
The CESM runs are pre-existing simulations that have been made available to
the community51; however, only the Representative Concentration Pathway 8.5
projections are provided.

Observations. The model results are compared to observational reanalysis pro-
ducts. For SAT, we use the gridded reanalysis from the Goddard Institute for Space
Studies (GISS)54, and for wind stress and SLP we utilize the interim European
Centre for medium-Range Weather Forecast (ECMWF) Re-Analysis (ERA-
Interim)55. We also use SST observations from HadISST56 to evaluate the areal
averaged of SST over Niño3.4 region (5°N–5°S, 170°W–120°W).

Metrics. The strength of the Pacific trade winds is estimated by taking the area average
of zonal wind stress over the western and central tropical Pacific (160°E–150°W, 5°S–5°
N) where the trade wind anomaly pattern shows the most pronounced interannual to
multi-decadal variability57. To examine the link between the IPO and the trade winds,
we use the TPI as a proxy for the IPO35. This index is defined as the difference between
the SST anomaly over the central tropical Pacific (10°S–10°N, 170°E–90°W) and the
average of the SST anomalies over the Northwest (25°N–45°N, 140°E–145°W) and
Southwest Pacific (50°S–15°S, 150°E–160°W). These regions are shown with rectangular
boxes in Fig. 1d.

To reduce the impacts of the long-term spurious climate drift on our results,
linear trend simulations was subtracted from control runs58,59. To estimate the
range of uncertainty in the GMT projections on different timescales, which result
from internal variability alone, we utilized moving trends (with a window size
ranging from 5 to 35 years) on annually averaged GMT control run time series. For
each window size, the 1 and 99 percentile range in ensemble trends is used to
quantify the uncertainty owing to internal variability.

Historical uncertainty in the 20-year climate simulations is estimated by
analyzing the periods corresponding to 1992–2011 in the CESM-Hind-Proj
ensemble set. The uncertainty is defined as the spread in the 20-year trends across
the model ensemble members. In regard to future climate projections, the
uncertainty is estimated from the 20-year period corresponding to 2016–2035 in
the CESM-Hind-Proj and the first 20-year period of simulation in the other
ensembles.

Data availability
Yearly mean gridded data from the KCM and the Mk3L simulations are available
through https://data.geomar.de/thredds/catalog/open_access/bordbar_et_al_2019_nc/
catalog.html and citable using the following https://doi.org/10.1038/NCLIMATE2569,
https://doi.org/10.1002/2016GL072355, https://doi.org/10.1175/JCLI-D-11-00287.1,
https://doi.org/10.1175/JCLI-D-12-00108.1. Simulated data from the CESM1-CAM5
experiments can be downloaded from http://www.cesm.ucar.edu/experiments/cesm1.1/
LE/.

Code availability
Data processing codes are available from the corresponding author upon request.
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