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1  |  INTRODUC TION

Climatic changes through time have important effects on the evo-
lutionary history and spatial distribution of species (Bontrager & 

Angert, 2019; Foden et al., 2013; Hopley & Byrne, 2019; Omann 
et al., 2009; Razgour et al., 2019; Velásquez-Tibata et al., 2012; 
Vieira et al., 2018). Historical changes in regional climate also play 
an important role in conditioning patterns of gene flow among 
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Abstract
Climate change has essential effects on patterns of population persistence, connec-
tivity, and divergence. We used mtDNA sequences and species distribution modeling 
to assess the impact of climatic changes in the past (Last Glacial Maximum [LGM: 
21 Kya] and Mid-Holocene [6 Kya]), recent (1970–2000), and future (2070) on the phy-
logeography and spatial distribution of populations of the Hyrcanian wood frog, Rana 
pseudodalmatina, in northern Iran. Based on two mitochondrial genes (cytochrome b 
and 16S ribosomal RNA), we found evidence for two regional patterns that diverged 
in the Pleistocene (1.6 Mya) and are distributed in the eastern and western sections of 
the current species range. Biogeographic analyses support the hypothesis that both 
vicariance (an increase in the Caspian Sea water levels) and dispersal events have 
been involved in shaping the species' genetic structure. Reconstruction of the ances-
tral distribution of R. pseudodalmatina suggests the species' range contracted in two 
independent eastern and western glacial refugia during the LGM, expanding from the 
Mid-Holocene to the present to occupy Hyrcanian forests continuously. According 
to future climate projections, the species' range shows a tendency to shift to higher 
altitudes. Landscape connectivity analyses support higher population continuity in 
the central part of the current range, with isolated populations in the easternmost and 
westernmost extremes. Our integrative study of R. pseudodalmatina provides support 
for the “refugia-within-refugia” scenario in the Hyrcanian forests.
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populations, with species-specific life histories and demographics 
also contributing to shaping species distributions and their tempo-
ral dynamics (Baek et al., 2018; Bell et al., 2010; Hua, 2013; Safner 
et al., 2011; Schierenbeck, 2017). Numerous phylogeographic stud-
ies have shown that during cold phases of the last glacial period the 
distribution ranges of many species contracted to climatic refugia 
(Bao et al., 2015; Leipold et al., 2017; Malekoutian et al., 2020; Song 
et al., 2018). Subsequently, as temperatures increased during the 
Holocene, distributions expanded again to occupy newly suitable 
habitats (Chen et al., 2017; Cox et al., 2019; Igea et al., 2013; Liepelt 
et al., 2009; Zhao et al., 2019). On shorter, more recent time scales, 
climate change has been linked to distribution shifts in many species, 
sometimes resulting in local or regional extinction (Devictor et al., 
2012; He et al., 2018; McCarty, 2001). According to 131 studies, ex-
tinction rates in response to climate change are estimated to range 
from 0% to 54%, with an average of 7.9% (Urban, 2015). Therefore, 
understanding how species respond to climate change is of funda-
mental importance in conservation planning.

Identifying Quaternary climatic refugia due to stable climatic 
conditions can be critical to the conservation of species for future 
climate change in terms of predicting the effects on population per-
sistence (Provan & Bennett, 2008), especially in globally threatened 
groups like amphibians (Alroy, 2015; Duarte et al., 2012; Pounds 
et al., 2006). Due to their biphasic life-cycles, highly permeable 
skin, and unshelled eggs, amphibians are particularly vulnerable 
to alterations in environmental conditions, and climate change has 
been identified as one of the most important factors threatening 
their populations (Carey & Alexander, 2003; Corn, 2005; Wake & 
Vredenburg, 2008). Amphibians are regarded as good bioindicators 
of environmental changes due to their physiological constraints and 
relatively low mobility (Carnaval et al., 2009). Genetic studies can 
provide evidence for historical distribution shifts of amphibian pop-
ulations in response to climatic oscillations during the Quaternary 
(Afroosheh et al., 2019; Chiocchio et al., 2017; Fouquet et al., 2012; 
Provan & Bennett, 2008; Yodthong et al., 2015; Zeisset & Beebee, 
2008; Zhang et al., 2016; Zhou et al., 2014). Integrative studies com-
bining phylogeographic analyses with species distribution modeling 
(SDM) can be used to assess the impact of past climatic changes 
on the evolutionary history and historical demography of popula-
tions and help predict future changes in their geographical ranges 
(Afroosheh et al., 2019; Ahmadzadeh et al., 2013; Nicolas et al., 
2018; Velo-Antón et al., 2013).

The Hyrcanian wood frog, Rana pseudodalmatina Eiselt & 
Schmidtler, 1971, is a brown frog (Anura, Ranidae) endemic to temper-
ate forests in northern Iran (also known as Hyrcanian forests). It ranges 
from the Talesh region to the Golestan National Park, on the northern 
slopes of the Alborz Mountains and the southern edge of the Caspian 
Sea of Iran (Najibzadeh et al., 2018). The species composition and di-
versity of the Southwest Asian forests, rich in endemic species, sug-
gests that the Hyrcanian region has likely acted as a glacial refugium 
for many taxa during the Quaternary glaciations (Röhrig, 1991; Saberi-
Pirooz et al., 2018). Phylogeographic studies and climatic models have 
shown that the southern Caspian Sea has acted as a glacial refugium 

for a broad range of taxa, including Iranian rock lizards (Darevskia chlo-
rogaster and Darevskia defilippii, Ahmadzadeh, Flecks, et al., 2013), 
Iranian brown bears (Ursus arctos, Ashrafzadeh et al., 2016), fat dor-
mouse (Glis glis, Ahmadi et al., 2018), Persian mountain salamanders 
(Paradactylodon persicus, Ahmadzadeh et al., 2020), and Caspian green 
lizard (Lacerta strigata, Saberi-Pirooz et al., 2021). During the last half-
century, the climate became warmer in the Hyrcanian forests, with 
the average annual temperature increasing between 1.28 and 2.45℃ 
and annual precipitation declining between 55.6 and 409.4  mm 
(Tohidifar et al., 2016). Due to the close relationship between tem-
perature and rainfall and amphibian distributions (Ortiz-Yusty et al., 
2013), this warming trend is expected to have a negative impact on the 
distribution of R. pseudodalmatina. This species is categorized as Least 
Concern (LC) in the IUCN Red List, but few studies have assessed the 
species’ conservation status and threats (Sharifi et al., 2009).

The main aims of this study are (a) to investigate the evolution-
ary history and demographic history of R.  pseudodalmatina based 
on two mitochondrial DNA fragments (cytochrome b, cytb, and 16S 
ribosomal RNA, 16S); (b) to assess the impact of past (Last Glacial 
Maximum and Mid-Holocene) and more recent (1970–2000) climate 
fluctuations on the spatial distribution pattern of the species using 
Species Distribution Models (SDMs); and (c) to investigate whether 
R. pseudodalmatina will behave as a single distributional unit in re-
sponse to future climate change (2070).

2  |  MATERIAL S AND METHODS

2.1  |  Sampling

Twenty specimens of R. pseudodalmatina and five specimens of Rana 
macrocnemis were collected across their distribution range in the 
Hyrcanian forests (Figure 1, Appendix 1). Tissue samples consisted 
of third toe clips; all sampled individuals were subsequently released 
at the site of capture. Samples were preserved in 96% ethanol and 
kept at −20℃ prior to DNA extraction. Details of sampling locations, 
accession numbers for newly generated mtDNA sequences, and 
code ID are presented in Appendix 1.

2.2  |  Laboratory procedures and sequence analysis

DNA was extracted following a standard high-salt protocol (Sambrook, 
1989). The primers L14841 (Kocher et al., 1989)/CB3H and 16SA/16SB 
(Palumbi et al., 1991) were used to amplify fragments of two mito-
chondrial genes: Cytochrome b (cytb; 700 bp) and 16S ribosomal RNA 
(16S; 560 bp), respectively (Table S1). PCRs were run in a total vol-
ume of 25 µl containing 12.5 µl of Master Mix Red (Ampliqon), 0.5 µl 
of each primer (10 µM), 10.5 µl ddH2O, and 1 µl of template DNA. 
Amplification of each gene was carried out under the conditions de-
scribed in Veith et al. (2003) (see Table S1). PCR amplifications were vis-
ualized on 1% agarose gels including negative controls. PCR products 
were sequenced by Macrogen Inc. Chromatographs were checked and 
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edited using Codon-Code Aligner v.6.0.2.X (CodonCode Corporation). 
All new sequences were submitted to GenBank (Appendix 1).

2.3  |  Phylogenetic analysis

For phylogenetic analysis, some sequences were obtained from 
the NCBI (www.ncbi.nlm.nih.gov) and were added to our dataset 
(see Appendix 1). The sequences of the two mtDNA genes (cytb 
and 16S) were aligned with MAFFT v.6 (Katoh et al., 2017) (https://
mafft.cbrc.jp/; algorithm: Auto; scoring matrix: 200  Pam/k  =  2; 
Gap open penalty: 1.53) and were then combined, resulting in 
a 937 bp alignment (cytb: 442 bp; Alignment S1 and 16S: 495 bp; 
Alignment S2). The best-fit model was selected using MrModeltest 
v.2.3 (Nylander, 2004) under Akaike's information criterion (Akaike, 
1974). GTR+G+I (Rodriguez et al., 1990; Yang, 1996) was selected 
as the best-fit model for both cytb and 16S genes (G = 1.05 and p-
inv = 0.55; G = 0.47 and p-inv = 0.41). A maximum likelihood (ML) 
tree was reconstructed using RAxML v.7.2 (Stamatakis, 2006) under 
the GTR+G+I model with 1000 bootstrap pseudoreplicates to as-
sess branch support. The Bayesian inference (BI) analysis was per-
formed using MrBayes v.3.2 (Huelsenbeck & Ronquist, 2001) with 
two simultaneous runs and four chains with 107 generations. We 
subsampled trees and parameters every 100th generation, which 
produced 105 trees. The first 10% of these trees were discarded as 
burn-in, and the remaining trees were used to reconstruct a con-
sensus tree. The final standard deviation (SD) of split frequencies 
for the combined dataset (two genes) was 0.0015. The parameters 
were separately calculated for each gene partition. We assessed 
run performance, convergence of parameters, and effective sample 
size (ESS) with Tracer v.1.6 (Rambaut et al., 2007). The statistical 
significance of alternative tree topologies using the Shimodaira-
Hasegawa (SH) (Shimodaira & Hasegawa, 1999) was evaluated with 
1000 bootstrap pseudoreplicates likelihood ratio test (SH-aLRT; 
Anisimova et al., 2011) as implemented in IQ-Tree v.1.6.12 (Nguyen 
et al., 2015).

Uncorrected p-distances between two western and eastern 
groups (see results) were calculated with PAUP v.4.0a10 (Swofford, 
2002) for each mtDNA gene separately.

2.4  |  Estimating divergence time

The divergence times were estimated with BEAST v.1.7.2 
(Drummond & Rambaut, 2007) using the combined data set (cytb 
and 16S). For calibration of the molecular clock, a secondary cali-
bration approach was taken based on two calibration points: first, 
we set the age for the R.  pseudodalmatina/R.  macrocnemis – Rana 
tavasensis clade at 5.18 million years ago (Mya) based on Ehl et al. 
(2019); and second, we set the time of the most recent common an-
cestor (henceforth MRCA) of Rana arvalis, Rana temporaria, and Rana 
pyrenaica at 7.68 Mya, based on Ehl et al. (2019). These calibration 
points were applied as follows: first node, normal distribution, mean: 

5.18 Mya, standard deviation: 1.42 Mya; second node, normal dis-
tribution, mean: 7.68 Mya, standard deviation: 1.68 Mya. Analyses 
were run under a lognormal relaxed clock (uncorrelated) model, be-
cause primary runs using an uncorrelated lognormal clock revealed 
ucld. stdev (δ > 0.1) for all genes. The Yule process was used as a prior 
for the speciation process. The analysis was run for 3 × 107 genera-
tions, sampling trees and parameters every 103 generations. Tracer 
v.1.5 was used to assess convergence and effective sample sizes 
(ESS) of parameter estimates.

2.5  |  Genetic structure and demographic analysis

An analysis of molecular variance (AMOVA) was conducted based on 
standardized estimates of genetic differentiation (Fst) with 10,000 
permutations to assess genetic structure in R. pseudodalmatina using 
Arlequin v.3.5 (Excoffier & Lischer, 2010). Molecular diversity indi-
ces, including the number of haplotypes (H), haplotype diversity (h), 
and nucleotide diversity (π), were assessed for both markers sepa-
rately using the same program.

The historical demography of the two regional patterns (see re-
sults) in R.  pseudodalmatina was investigated with neutrality anal-
yses, calculating Tajima's D and Fu's Fs indices with Arlequin v.3.5. 
Additionally, mismatch distributions (MMD) were reconstructed 
using the same software, comparing the frequency distribution of 
pairwise nucleotide differences in cytb sequences in each regional 
pattern, with that expected under sudden demographic expansion.

As a complementary approach, we reconstructed the Bayesian 
skyline plots (BSP; Drummond et al., 2005) to investigate the vari-
ations in effective population size (henceforth Ne) through time, in 
each regional pattern, using cytb sequences. The analysis was con-
ducted with BEAST v1.7.2 under a strict molecular clock model with 
a fixed rate of 1.8 × 10−2 substitutions per site per Mya (estimated 
for the related brown frog R. arvalis, Babik et al., 2004). The analysis 
was run for 5 × 106 generations with parameters sampled every 100 
iterations. The parsimony haplotype network was constructed using 
TCS v.1.21 (Clement et al., 2000) for the cytb sequences under the 
95% limit of parsimony.

2.6  |  Biogeographic analysis

Based on the results of phylogenetic analyses (see section 3), the 
distribution of R. pseudodalmatina can be divided into two areas, cor-
responding to the western (W) and eastern (E) sections of the spe-
cies range. The statistical dispersal-vicariance analysis (S-DIVA) and 
Bayesian binary MCMC (BBM) analysis were used to reconstruct 
the possible ancestral range for R.  pseudodalmatina. The analysis 
was implemented using RASP v.2.1 beta (Yu et al., 2015) using cytb 
sequences. Because this analysis requires a fully resolved topology, 
we used a reduced tree including only haplotypes (see Appendix 1) 
as input for the analysis. The haplotype tree was used as input for 
the analysis. To consider phylogenetic uncertainty, 20,000 of the 

http://www.ncbi.nlm.nih.gov
https://mafft.cbrc.jp/
https://mafft.cbrc.jp/
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posterior trees sampled during the BI analyses were used as the 
input file for S-DIVA. The BBM analysis was run for 5 × 106 genera-
tions under 10 MCMC, and the sampling frequency was every 100 
generations. The fixed Jukes-Cantor model with equal among-site 
rate variation was used for the BBM analysis.

2.7  |  Potential distribution analysis (past–present–
future)

2.7.1  |  Species record, climate data, and 
variable selection

We compiled information on georeferenced localities of R.  pseu-
dodalmatina from our own fieldwork and literature sources (Appendix 
1). When no coordinates were provided in literature sources, we 
georeferenced the observations using the Biogeomancer Software 
(http://bg.berke​ley.edu/lates​t/). In total, 41 unique records were 
available for model building covering the whole known geographic 
range of the species, which were mapped in ArcGIS v.10.8 to spot 
potential errors.

Climatic information characterizing current climatic conditions 
was obtained from WorldClim.org v.2.0 in terms of 19 bioclimatic 
predictors with a spatial resolution of 2.5 arc.min (Fick & Hijmans, 
2017). To reduce the multi-collinearity of predictors, we used the 
SDMtune package for Cran R (Vignali et al., 2020) to identify a set 
of variables that have low collinearity and at the same time a high 
predictive ability for the study species. The final set of variables 
were as follows: BIO7 = Temperature Annual Range; BIO8 = Mean 
Temperature of Wettest Quarter; BIO9  =  Mean Temperature of 
Driest Quarter; BIO13 = Precipitation of Wettest Month.

To estimate past and future range dynamics, we followed two dif-
ferent approaches: (a) We used downscaled global circulation model 

outputs for the time slices Mid-Holocene (6 ky BP) and at the Last 
Glacial Maximum (LGM; 21 ky BP) as unweighted ensembles based 
on palaeoclimate simulations following the r1i1p1 ensemble from 
the PMIP3 project (Paleoclimate Modeling Intercomparison Project 
Phase III, https://pmip3.lsce.ipsl.fr/; (Braconnot et al., 2012). A total 
of 11 scenarios were available as estimates of Mid-Holocene climate 
(MRICGCM3, MPI-ESM-P, MIROC-ESM, IPSL-CM5A-LR, GISS-
E2-R, FGOALS-g2, CSIRO-Mk3l-1-2, CSIRO-Mk3-0, CNRM-CM5, 
CCSM4, and BCC-CSM1-1) and seven scenarios were available for 
the LGM (MRI-CGCM3, MPI-ESM-P, MIROC-ESM, IPSL-CM5A-LR, 
FGOALS-g2, CNRM-CM5, and CCSM4). To evaluate the potential 
future distribution in 2070, we used averages of four IPCC 5 sto-
rylines RCP 2.6, RCP 4.5, RCP 6, and RCP 8.5 as suggested by 10 
GCMs (NorESM1-M, MRI-CGCM3, MIROC5, MIROC-ESM, MIROC-
ESM-CHEM, IPSL-CM5A-LR, HadGEM2-ES, HadGEM2-AO, GISS-
E2-R, CCSM4, and BCC-CSM1-1). The downscaling procedure to 2.5 
arc.min is described in Krehenwinkel et al. (2016). (b) As the second 
climate data set we used Oscillayers provided by Gamisch (2019). 
This dataset comprises 256-time slices in steps of 10 ky character-
izing climatic oscillations within the Pleistocene. For each time slice, 
19 bioclimatic variables with a spatial resolution of 2.5 arc.min are 
available which are conceptually equivalent to those available from 
WorldClim.

2.7.2  |  Species distribution modeling

For SDM development, we used MaxEnt v.3.4.4 (Phillips et al., 2006, 
2017), which is a presence-pseudoabsence method and allows an 
estimation of potentially suitable habitats (Elith et al., 2011). To iden-
tify the most suitable settings, we used the relevant functions of the 
SDMtune package (Vignali et al., 2020), which suggested a regulation 
parameter of 0.5 and linear, quadratic, and product features. The 

F I G U R E  1  Geographical distribution 
of the Hyrcanian wood frog, Rana 
pseudodalmatina in the Hyrcanian 
forests. The green circles represent the 
western regional pattern, and the blue 
circles represent the eastern regional 
pattern

http://bg.berkeley.edu/latest/
https://pmip3.lsce.ipsl.fr/
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F I G U R E  2  A calibration evolutionary time tree based on two mtDNA (cytb and 16S) genes for Ranidae including the genus Rana. Blue 
bars show 95% highest posterior density intervals of the estimated node ages; values indicated on branches are mean node ages (Mya) 
(photograph by Omid Mozaffari)

Gene N H h π Tajima's D Fu's Fs

Rana pseudodalmatina cytb 39 12 0.78 0.005 −0.52 −2.07

16S 48 13 0.69 0.002 −2.15* −9.28*

E cytb 17 4 0.50 0.0008 −1.04 −1.47*

16S 19 6 0.46 0.001 −2.04* −3.86*

W cytb 22 8 0.60 0.001 −2.07* −4.42*

16S 29 7 0.37 0.001 −2.28* −4.68*

*p < 0.05.

TA B L E  1  Molecular diversity 
indices based on cytb and 16S genes 
within Hyrcanian wood frog, Rana 
pseudodalmatina and western (W) and 
eastern (E) regional patterns. Sample size 
(N), number of haplotypes (H), haplotype 
diversity (h), and nucleotide diversity (π)
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total number of species records was 100 times split into 20% used 
for model testing via the area under the receiver operating charac-
teristic curve (AUC; Swets, 1988) and 80% used for model training 
applying a bootstrap procedure. Averages across all replicates were 
projected to current climatic conditions as well as past time slices 
using the cloglog output format. As environmental background for 
model training, we selected an area defined by a circular buffer of 
75 km enclosing all species records. As a presence–absence thresh-
old, we used an omission threshold of 10% acknowledging potential 
georeferencing errors. As projecting SDMs through space and time 
may be subject to extrapolation errors in areas with environmental 
conditions exceeding the training range of the model, we used multi-
variate environmental similarity surfaces (MESS; Elith et al., 2010) to 
quantify areas with increased projection uncertainties. Potential ref-
ugia were identified by overlaying all potential distributions as pro-
jected onto the oscillayer dataset. Stable refugia were classified as 
100% present across all 256-time slices, 99%, 95%, and 90%. Based 
on this stability through time map, potential gene flow among popu-
lations was estimated using Circuitscape v5 (McRae et al., 2008).

3  |  RESULTS

3.1  |  Phylogenetic analysis

Based on the combined datasets (cytb and 16S; 937 bp), the BI con-
sensus and ML bootstrap trees showed R. pseudodalmatina as siter 
group to a clade containing R. macrocnemis, Rana holtzi, and R.  ta-
vasensis (Figure S1). Furthermore, the monophyly of R.  pseudodal-
matina is well supported (BS = 99; SH-aLRT = 100; PP = 1.00), and 
two regional patterns are recognized within the species distribution 
range in the east (E) and west (W) (Figure S1, Figure 1).

Based on the cytb and 16S, uncorrected genetic distances be-
tween E and W groups were low, 0.8% and 0.3%, respectively.

3.2  |  Estimating divergence time

Based on the combined mtDNA genes, the MRCA of Hyrcanian/
Anatolia lineage and other species of the genus Rana in Europe lived 
at 13.6 Mya (95% HPD; 6.23–21.11 Mya). At the intra-species level, 

F I G U R E  3  Demographic history of two populations of the Hyrcanian wood frog, Rana pseudodalmatina based on the cytb gene. (a, 
b) Bayesian Skyline Plots of the western population (a) and the eastern population (b). The central line shows the median values of the 
population size (1000 years), and the blue area represents the 95% highest posterior density. (c, d) Mismatch distributions of expected 
frequencies compared to the observed frequencies under the sudden expansion model of population size for the western population (c) and 
the eastern population (d)
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R.  pseudodalmatina haplotypes shared a MRCA at 1.6  Mya (95% 
HPD; 0.58–2.54 Mya; Figure 2).

3.3  |  Genetic structure and demographic analysis

Molecular diversity indices based on the cytb and 16S genes including 
the number of H, h, and π within R. pseudodalmatina and its regional 
patterns are presented in Table 1. The cytb fragment contained 16 
variable sites (12 transitions and four transversions), of which seven 
were parsimony-informative and nine were singletons. The mean nu-
cleotide composition was A: 22.91%, T: 27.61%, C: 33.76%, and G: 
15.73%. The 16S fragment contained 16 variable sites (14 transitions 
and two transversions), of which one was parsimony-informative and 
15 were singletons. Mean nucleotide composition was A: 29.79%, T: 
25.27%, C: 24.33%, and G: 20.61%.

AMOVA results showed significant genetic differences between 
two regional patterns (E and W) based on mtDNA genes (cytb: 
Fst = 0.44, p < 0.05; 16S: Fst = 0.58, p < 0.05). Most values of Tajima's 
D and Fu's Fs in R. pseudodalmatina and its regional patterns were 
significant and negative (Table 1). The MMD diagrams for the E and 
W displayed a unimodal pattern with right-skewed consistent with 
recent demographic expansion (Figure 3c, d). The BSP based on cytb 
showed no obvious trends in Ne through time in each regional pat-
tern (Figure 3a, b). The haplotype parsimony network for the cytb 
gene showed that the western and eastern groups were separated 
from each other with two-step mutations (Figure 4).

3.4  |  Biogeographic analysis

Ancestral distributions of R.  pseudodalmatina were inferred from 
S-DIVA and BBM analyses (Figure 5). In both reconstructions, the 
most recent common ancestor of the species was distributed in the 
Hyrcanian forests; subsequently, it expanded into the western and 
eastern areas. According to S-DIVA, a vicariance event took place 
in the ancestral node of the two areas, and dispersal occurred in 
the western distribution. BBM reconstruction indicated that vicari-
ance and dispersal events shaped the species’ current distribution 
(Figure 5).

3.5  |  Species distribution modeling (past–present–
future)

The potential distributions as suggested by our models for past (Last 
Glacial Maximum, LGM [21  Kya] and Mid-Holocene [6  Kya]), cur-
rent (1970–2000), and future (2070) climatic conditions are shown 
in Figure 6, and Figure S2, wherein the average performance was 
AUCtest  =  0.828. On average, Temperature Annual Range (BIO7: 
57.3%) had the highest contribution, followed by Precipitation of 
Wettest Month (BIO13: 25.2%), Mean Temperature of Wettest 

Quarter (BIO8: 9.0%), and Mean Temperature of Driest Quarter 
(BIO9: 8.5%).

Based on the SDMs, the central part of the Caspian coast in the 
southern region was identified as most suitable habitats for R. pseu-
dodalmatina during the LGM (Figure 6c). But in the Mid-Holocene, 
the potential distribution range of the species expanded to include 
the eastern, central, and western Hyrcanian forests (Figure 6c). 
Under current climatic conditions, the potential range of the spe-
cies increased, with habitat suitability uniformly expanding in the 
Hyrcanian forests from the Talesh region to the Golestan National 
Park on the southern edge of the Caspian Sea and in the northern 
slopes of the Alborz Mountains (Figure 6a).

According to the RCPs 2.6, 4.5, 6, and 8.5  scenarios of future 
climate projections, the distribution range of R.  pseudodalmatina 
would tend to shift to higher altitudes especially in the western part 
of the range in the northern slope of Alborz Mountain (Figure 6e-h). 

F I G U R E  4  Parsimony haplotype network of Hyrcanian wood 
frog, Rana pseudodalmatina based on cytb gene. The green and blue 
colors show individuals of western and eastern populations (see 
Figure 1). Numbers in circles refer to the haplotype numbers in 
Appendix 1
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Stability through time suggests that the Hyrcanian forests acted as 
historical refugia for this species (Figure 6d). Based on landscape 
analyses, connectivity under current climatic conditions is maximum 
in the central part of the range and decreases in the easternmost and 
westernmost extremes (Figure 7).

4  |  DISCUSSION

We examined the genetic diversity patterns of the Hyrcanian wood 
frog, R.  pseudodalmatina, throughout its geographic range in the 
Hyrcanian forests. Also, we used phylogeography and species distri-
bution modeling approaches to investigate the putative glacial refu-
gia and the effect of climate oscillations on the species.

We analyzed two mtDNA genes (cytb and 16S) and found the 
Hyrcanian/Anatolian lineage and other species of the genus Rana in 
Europe had MRCA during the Miocene (13.6 Mya: 95% HPD; 6.23–
21.11 Mya; Figure 2). It is assumed that the uplift of the Turkish–
Iranian plateau and the physical vicariance such as the salt-water 
barrier may have led to the speciation among the Anatolian, the 
Caucasian, and the Iranian brown frogs (Najibzadeh et al., 2017). 
Rana pseudodalmatina displayed a phylogeographic pattern with two 
regional groups across its distribution range in the western and east-
ern Hyrcanian forests (Figure 1, Figure S1). The results of Najibzadeh 
et al. (2018) corroborate our findings that the species forms two dis-
tinct groups in the east and west of the geographic range. However, 
Najibzadeh et al. (2017) estimate of TMRCA of the two groups is 
older compared to our findings. Nevertheless, the authors noted that 
their methodology is prone to misleading results. According to our 
result, the MRCA of two regional patterns lived 1.6 Mya (95% HPD; 
0.58–2.54 Mya), which is much more recent compared to the equiv-
alent estimate of Najibzadeh et al. (2020), which was ca. 4 Mya. This 
difference is possibly due to the different set of markers, the number 
of individual samples, prior settings, and calibration points used in 
the two studies. We used two mtDNA markers (cytb and 16S) for 
divergence time estimations; however, Najibzadeh et al. (2020) only 
used the 16S gene. Our estimated divergence time is comparable to 

the Caspian green lizard (L. strigata) and Fat Dormouse (Gilis gilis) that 
turned into the eastern and western lineages about 0.9 Mya (95% 
HPD: 0.55–1.16  Mya) and 1.19  Mya (95% HDP: 0.55–1.91  Mya), 
respectively, in the Hyrcanian region (Ahmadi et al., 2018; Saberi-
Pirooz et al., 2021).

According to the AMOVA results, the two populations are al-
most isolated from each other because of the Fst value of nearly 
0.5. The MRCA of the two regional groups of R. pseudodalmatina 
was during the Pleistocene (1.6 Mya [95% HPD; 0.58–2.54 Mya]; 
Figure 2), which suggests that this species may have been affected 
by the Quaternary climate fluctuations. It seems that the presence 
of two groups of R. pseudodalmatina in the west and east of the dis-
tribution may indicate the long-term residence within two differ-
ent glacial refugia during the Pleistocene. The existence of cryptic 
refugia and the idea of “refugia-within-refugia” in the Hyrcanian 
forests that is proposed here for R. pseudodalmatina has been pre-
viously discussed for other species that live in this region (Ahmadi 
et al., 2018; Ahmadzadeh, Flecks, et al., 2013; Saberi-Pirooz et al., 
2021). The assessments of demographic history revealed that 
the recent expansion occurred in the populations (Table 1 and 
Figure 3).

Our findings identified a successive vicariance event correspond 
to the divergence of the regional eastern and western groups from 
the ancestral node (Figure 5). We suggested that the increase in the 
Caspian Sea water level during the Pleistocene led to the occur-
rence of vicariance event for the species (Lateef, 1998; Mamedov, 
1997). On the other hand, the results of S-DIVA and the BBM anal-
ysis showed that dispersal events also played an important role in 
creating this disjunct distribution pattern (Figure 5). The parsimony 
haplotype network based on the cytb gene indicated that the more 
derived haplotypes were found in the western region (Figure 4). This 
suggested that the species derived from the west of the Hyrcanian 
forests and then migrated to the east of the distribution area.

In response to climate change, species shifted their distribution 
range to reach more favorable conditions (Guedes et al., 2020). 
Based on SDMs results, R.  pseudodalmatina showed a scenario of 
past range contraction followed by recent expansion (Figure 6 and 

F I G U R E  5  The biogeographic 
analysis of Hyrcanian wood frog, Rana 
pseudodalmatina with BBM (a) and S-DIVA 
(b) analysis based on cytb. For these 
analyses, two areas were considered 
(E: blue nodes) the eastern distribution 
and (W: green nodes) the western 
distribution. The dark blue and dark green 
circles around nodes show dispersal and 
vicariance events, respectively
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Figure S2). We assumed during the LGM, the distribution of the 
R.  pseudodalmatina has been concentrated in two different glacial 
refugia in the east and west of the distribution range (Figure 6c). 
Given the warmer conditions since the Mid-Holocene compared to 
the recent climatic conditions (Akhani et al., 2010), its distribution 
in the more suitable habitat and a longitudinal shift was expanded 
throughout the Hyrcanian forests (Figure 6a,b). The longitudinal 

shift of the distribution range is also shown in the study of Duan 
et al. (2016) on Chinese amphibians.

The optimal temperatures for R. pseudodalmatina range between 
11 and 18℃, and species activity decreases widely at tempera-
tures above 23℃ (Pesarakloo et al., 2012). According to our result, 
Temperature Annual Range (BIO7) had the highest contribution in 
the model in the past, recent, and future climate change (57.3%). 

F I G U R E  6  Potential distribution 
range of the Hyrcanian wood frog, Rana 
pseudodalmatina, in the Hyrcanian forests 
under (a) recent, (b) Mid-Holocene (6k), 
and (c) Last Glacial Maximum, LGM (21k), 
(d) Stability through time, and future 
climate projection (2070), (e) RCP 2.6. (f) 
RCP 4.5. (g) RCP 6. (h) RCP 8.5

F I G U R E  7  Connectivity analysis 
performed with Circuitscape of 
the Hyrcanian wood frog, Rana 
pseudodalmatina, in the Hyrcanian 
forests. The light blue shows the highest 
connectivity
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Based on the future climate (2070) projection, the distribution 
range of the R. pseudodalmatina will shift upward to higher altitudes 
in the northern slope of Alborz Mountains where the species cur-
rently occurs (Figure 6). The results of our study confirm the gen-
eral trend that amphibian species migrate to higher altitudes under 
the influence of climate warming. For example, Forero-Medinaet al. 
(2011) investigated 46 amphibian species of tropical mountains and 
showed that under future climate changes, their range of distribu-
tion will shift to higher altitudes. In contrast to these trends and our 
findings, Najibzadeh et al. (2020) showed that the suitable habitat 
for R. pseudodalmatina has remained stable since the LGM and will 
remain the same in the future.

Based on the results of the Circuitscape analysis, the highest 
connectivity was observed between the populations located in 
the central parts (the westernmost part of the eastern regional 
population) to the westward (the easternmost part of the west-
ern regional population) of Mazandaran (Figure 7). These results 
may indicate secondary (postglacial) contact of these popula-
tions (Austin et al., 2004; Zamudio & Savage, 2003), which re-
quires further investigation in future studies. According to the 
results of the stability map through time in this study, Hyrcanian 
forests acted as climate refugia for the R. pseudodalmatina during 
climate change (Figure 6d). Therefore, Hyrcanian forests may 
be buffered to contemporary climate change over time and pro-
vide resistance to valued socio-cultural, ecological, and physical 
resources.
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APPENDIX 1
The dataset of Rana used in this study. The information includes code ID, haplotype number for cytb (HT cytb), locality, origin, geographical 
coordinates and the accession numbers for two mtDNA (cytb and 16S) genes

Taxon

HT cytb Locality/Country Lat (N)/Long (E) Origin

GenBank accession numbers

code ID 16S cytb

Rana pseudodalmatina

ES365 — Iran/Golestan 37.035/55.03 This study MT864022 —

ES347 Hap 2 Iran/Golestan 36.9944/55.0599 This study MT864026 MW017119

ES349 — Iran/Mazandaran 36.533/51.532 This study MT864010 —

ES363 Hap 3 Iran/Mazandaran 36.225/51.366 This study MT864012 MW017121

ES320 Hap 4 Iran/Mazandaran 36.662/51.184 This study MT864028 MW017117

ES341 — Iran/Mazandaran 36.369/51.133 This study MT864009 —

ES344 Hap 6 Iran/Mazandaran 36.458/52.997 This study MT864019 MW017118

ES346 — Iran/Mazandaran 36.365/52.36 This study MT864020 —

ES348 Hap 6 Iran/Mazandaran 36.68/53.53 This study MT864021 MW017120

ES366 Hap 6 Iran/Mazandaran 36.57/52.032 This study MT864023 MW017122

ES795 Hap 2 Iran/Mazandaran 36.082/52.823 This study MT864015 MW017125

ES804 — Iran/Mazandaran 36.523/51.091 This study MT864016 —

ES806 Hap 7 Iran/Mazandaran 36.089/36.089 This study MT864024 MW017126

ES814 — Iran/Mazandaran 36.654/53.598 This study MT864025 —

ES813 — Iran/Mazandaran 36.67/51.188 This study MT864017 —

— Hap 3 Iran/Mazandaran — Veith et al. (2003) — AY147969

ES384 Hap 1 Iran/Gilan 36.992/50.081 This study MT864011 MW017123

ES385 — Iran/Gilan 36.992/50.081 This study MT864013 —

ES816 Hap 3 Iran/Gilan 37.137/49.665 This study MT864018 MW017127

ES429 Hap 5 Iran/Gilan 37.66/48.92 This study MT864014 MW017124

ES430 — Iran/Gilan 37.67/48.91 This study MT864027 —

RUZM.R.R13.1 Hap 6 Iran/Loveh 37.35/55.65 Najibzadeh et al. (2018) MF344713 MF344774

RUZM.R.R13.2 Hap 6 Iran/Loveh 37.35/55.65 Najibzadeh et al. (2018) MF344714 MF344775

RUZM.R.R13.3 Hap 6 Iran/Loveh 37.35/55.65 Najibzadeh et al. (2018) MF344715 MF344776

RUZM.R.R13.4 Hap 6 Iran/Loveh 37.35/55.65 Najibzadeh et al. (2018) MF344712 MF344773

RUZM.R.R13.5 Hap 6 Iran/Behshahr 36.66/53.59 Najibzadeh et al. (2018) MF344716 MF344777

RUZM.R.R13.6 Hap 6 Iran/Behshahr 36.66/53.59 Najibzadeh et al. (2018) MF344717 MF344778

RUZM.R.R13.7 Hap 6 Iran/Behshahr 36.66/53.59 Najibzadeh et al. (2018) MF344718 MF344779

RUZM.R.R13.8 Hap 6 Iran/Behshahr 36.66/53.59 Najibzadeh et al. (2018) MF344719 MF344780

RUZM.R.R13.9 Hap 8 Iran/Rasht 37.15/49.52 Najibzadeh et al. (2018) MF344720 MF344781

RUZM.R.R13.11 Hap 3 Iran/Rasht 37.15/49.52 Najibzadeh et al. (2018) MF344721 MF344782

RUZM.R.R13.12 Hap 3 Iran/Rasht 37.15/49.52 Najibzadeh et al. (2018) MF344722 MF344783

RUZM.R.R13.13 Hap 3 Iran/Rasht 37.15/49.52 Najibzadeh et al. (2018) MF344723 MF344784

RUZM.R.R13.14 Hap 9 Iran/Rasht 37.15/49.52 Najibzadeh et al. (2018) MF344724 MF344785

RUZM.R.R13.15 Hap 3 Iran/Rasht 37.15/49.52 Najibzadeh et al. (2018) MF344725 MF344786

RUZM.R.R13.16 Hap 3 Iran/Salmanshahr 36.64/51.19 Najibzadeh et al. (2018) MF344726 MF344787

RUZM.R.R13.17 Hap 3 Iran/Salmanshahr 36.64/51.19 Najibzadeh et al. (2018) MF344727 MF344788

RUZM.R.R13.18 Hap 10 Iran/Astara 38.34/48.83 Najibzadeh et al. (2018) MF344728 MF344789

RUZM.R.R13.19 Hap 3 Iran/Astara 38.34/48.83 Najibzadeh et al. (2018) MF344729 MF344790

RUZM.R.R13.21 Hap 3 Iran/Astara 38.34/48.83 Najibzadeh et al. (2018) MF344730 MF344791

RUZM.R.R13.22 Hap 3 Iran/Astara 38.34/48.83 Najibzadeh et al. (2018) MF344731 MF344792
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Taxon

HT cytb Locality/Country Lat (N)/Long (E) Origin

GenBank accession numbers

code ID 16S cytb

RUZM.R.R13.23 Hap 11 Iran/Astara 38.34/48.83 Najibzadeh et al. (2018) MF344732 MF344793

RUZM.R.R13.24 Hap 3 Iran/Astara 38.34/48.83 Najibzadeh et al. (2018) MF344733 MF344794

RUZM.R.R13.25 Hap 6 Iran/Sari 36.33/52.60 Najibzadeh et al. (2018) MF344735 MF344796

RUZM.R.R13.26 Hap 7 Iran/Sari 36.33/52.60 Najibzadeh et al. (2018) MF344736 MF344797

RUZM.R.R13.27 Hap 12 Iran/Sari 36.33/52.60 Najibzadeh et al. (2018) MF344734 MF344795

RUZM.R.R13.28 Hap 3 Iran/Langarud 37.17/50.16 Najibzadeh et al. (2018) MF344737 MF344798

RUZM.R.R13.29 Hap 1 Iran/Langarud 37.17/50.16 Najibzadeh et al. (2018) MF344738 MF344799

Rana macrocnemis

ES405 Iran/Azerbijan This study MZ171537 MW017128

ES407 Iran/Azerbijan This study — MW017129

ES416 Iran/Azerbijan This study MZ171538 MW017130

ES419 Iran/Azerbijan This study MZ171539 MW017131

ES420 Iran/Azerbijan This study MZ171540 MW017132

Veith et al. (2003) AY147940 AY147960

Rana arvalis arvalis Veith et al. (2003) AY147938 AY147958

Rana arvalis 
wolterstorffi

Veith et al. (2003) AY147939 AY147959

Rana macrocnemis Veith et al. (2003) AY147940 AF373151

Rana dalmatina Veith et al. (2003) AY147944 AY147962

Rana graeca Veith et al. (2003) AY147945 —

Rana holtzi Veith et al. (2003) AY147946 AY147964

Rana iberica Veith et al. (2003) AY147947 AY147965

Rana pyrenaica Peso-Fernández et al. 
(2016)

KU720300 KU720300

Rana temporaria 
temporaria

Veith et al. (2003) AY147956 AY147977

Rana temporaria 
parvipalmata

Veith et al. (2003) AY147955 AY147976

Rana temporaria 
canigonensis

Veith et al. (2003) AY147952 AY147973

Rana temporaria 
honnorati

Veith et al. (2003) AY147954 AY147975

Rana italica Veith et al. (2003) AY147948 —

Rana italica Canestrelli et al. (2008) — EU595505

Rana latastei Veith et al. (2003) AY147949 AY147967

Rana asiatica Yuan et al. (2016) KX269200 KX269346

Rana dalmatina Canestrelli et al. (2014) — KJ789718

Rana italica Canestrelli et al. (2008) — EU595490

Rana tavasensis Veith et al. (2003) — AY147970

Rana berlandieri Hillis and Wilcox (2005)/
Yuan et al. (2016)

AY779235 KX269301

Rana dunni Hillis and Wilcox (2005)/
Yuan et al. (2016)

AY779222 KX269305

Rana clamitans Hillis and Wilcox (2005)/
Yuan et al. (2016)

AY779204 KX269304

Rana septentrionalis Yuan et al. (2016) KX269179 KX269314
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HT cytb Locality/Country Lat (N)/Long (E) Origin

GenBank accession numbers

code ID 16S cytb

Pelophylax bedriagae Hofman et al. (2016) NC-029200 NC-029200

Pelophylax perezi Vences (1999)/Busack and 
Lawson (2008)

AF215424 DQ902145

Pelophylax saharica Lymberakis et al. (2007) DQ474229 DQ902147

Pelophylax cretensis Hofman et al. (2016) NC-025575 NC-025575
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