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ABSTRACT: The reliability of general circulation models (GCMs) is commonly associated with their ability to reproduce

relevant aspects of observed climate, and thus the evaluation of GCM performance has become a standard practice for

climate change studies. As such, there is an ever-growing literature that focuses on developing and evaluating metrics to

assess GCM performance. In this paper it is shown that some commonly applied metrics provide little information for

discriminatingGCMs based on their performance, once uncertainty is included.A newmethodology is proposed that differs

from common approaches in that it focuses on evaluating GCMs’ abilities to reproduce the observed response of surface

temperature to changes in external radiative forcing (RF), while controlling for observed and simulated variability. It uses

formal statistical tests to evaluate two aspects of the warming trend that are central for climate change studies: 1) if the

response to RF produced by a particular GCM is compatible with observations and 2) if themagnitudes of the observed and

simulated rates of warming are statistically similar. We illustrate the proposed methodology by evaluating the ability of 21

GCMs to reproduce the observedwarming trend at the global scale and for eight subcontinental land domains. Results show

that most of the GCMs provide an adequate representation of the observed warming trend for the global scale and for

domains located in the Southern Hemisphere. However, GCMs tend to overestimate the warming rate for domains in the

Northern Hemisphere, particularly since the mid-1990s.

1. Introduction

Most of the scientific basis supporting the attribution of

climate change to anthropogenic causes (IPCC 2007, 2013b) is

based on atmosphere–ocean general circulation models (GCMs).

GCMs are deterministic numerical computational programs,

with physical bases that simulate the response of Earth’s cli-

mate system (Jun et al. 2008) driven by different forcings

(natural, anthropogenic, or combined) on time scales from

decades to centuries, without explicitly including meteorolog-

ical observations. These models are able to closely reproduce

many of the physical aspects of the current climate including

features of forced and unforced variability (Randall et al. 2007;

Gleckler et al. 2008). The Coupled Model Intercomparison

Project (CMIP), coordinated by the World Climate Research

Program, is the most important international effort conducted

to advance climate change modeling and to support the IPCC’s

reports. The performance of GCMs that are part of the CMIP5

has improved with respect to those of the CMIP3, increasing

the confidence about climate change detection and attribution

at the regional and global scales (Bindoff et al. 2013). GCM

performance evaluations have been used as an indicator

of their reliability for future projections (Jun et al. 2008;

Baumberger et al. 2017), to assign weights to individual models

in a multimodel ensemble (Tebaldi and Knutti 2007; Knutti

et al. 2010; Christensen et al. 2010; Herger et al. 2018), and to

select a subset of the ‘‘best’’ models (Perkins et al. 2007;

Maxino et al. 2008; Knutti et al. 2010; Sanderson et al. 2015;

Herger et al. 2018), which are then used for conducting climate

change assessments such as impact, vulnerability, and adapta-

tion studies (IPCC 2014). However, it is also recognized that

the usefulness of a GCM cannot be inferred solely from its

degree of agreement with observations (Notz 2015).

In principle, GCMs could be considered independent as they

have been developed by different groups and with somewhat

different modeling strategies and goals. Most studies, including

this one, assume explicitly or implicitly that each GCM is in-

dependent from the others and as a random drawn from a

distribution with the true climate as its mean (Tebaldi and

Knutti 2007; Jun et al. 2008). This implies that the average of an

ensemble of GCMs should converge to the true climate as

more GCMs are included (Jun et al. 2008). In practice, GCMs

are hardly independent as some share common genealogy,

numerical schemes for solving equations, parameterizations,

and/or components (Jun et al. 2008; Christensen et al. 2010;

Masson and Knutti 2011; Steinschneider et al. 2015). In con-

sequence, it is not completely justified to assume GCMs as

independent in ensembles of opportunity (Masson and Knutti

2011; Knutti et al. 2013). However, the relationship between

models and families of models is not clear and the authors

believe that there is no objective and convincing way yet to

address this problem.

It is generally accepted that the skill of a GCM to simulate

the climate for which there are observational instrumental

records is a measure of its performance (Jun et al. 2008; Notz
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2015; Baumberger et al. 2017). However, simple comparison

between simulated and observed climate to assess model skill

may not be adequate. The twentieth-century simulations in-

cluded in the CMIP5 experiment were designed to reproduce

the response to observed changes in natural and anthropogenic

radiative forcing (i.e., the climate signal), but were not con-

strained using climate records to replicate relevant aspects of

observed variability such as the time of occurrence and phase

of natural oscillations. In particular, it is known that low-

frequency natural variability can significantly distort the re-

sponse to radiative forcing (RF), masking it or exaggerating it,

depending on the phase of the oscillation (Tsonis et al. 2009;

Wu et al. 2011; Estrada et al. 2013b). Initial conditions in

GCMs have a much larger effect than previously thought and

can significantly distort the warming trend over the observed

period and even in future projections (Wallace et al. 2015;

Deser et al. 2014). Differences between observed and simu-

lated internal variability are confounding factors that can

affect common approaches for evaluating GCM performance

(Maraun et al. 2010).

There are a large number of metrics that could be selected to

evaluate a wide variety of aspects (Christensen et al. 2010), and

new metrics are commonly proposed for particular purposes

(Knutti et al. 2010; Herger et al. 2018). However, there is no

objective approach for choosing metrics to evaluate GCMs

performance and there is little consensus on which metrics

are useful to discriminate ‘‘good’’ from ‘‘bad’’ GCMs (Knutti

et al. 2010). An a priori subjective selection of a limited set

of metrics with largely unknown interdependencies is difficult

to avoid (Christensen et al. 2010). Furthermore, objective

methods to evaluate GCM performance could be useful to

maximize the value of climate change projections (Knutti et al.

2010). However, empirical evidence supporting this statement

is, at best, weak and GCMs with good historical performance

could underperform when projecting future climate (Weigel

et al. 2010; Notz 2015).

The objective of this paper is to present a new methodology

to evaluate GCMs’ ability to reproduce the response of the

observed mean surface temperature anomaly (MST) to changes

in RF at the global and regional scales. Linear least squares

regression and formal statistical tests are combined to develop

an objective, systematic, and robust method for evaluating

GCM performance for climate change applications. The pro-

posed methodology focuses on the central problem of GCM

evaluation in the context of climate change: determining the

skill of GCMs to simulate the climate system response to

changes in external radiative forcings. This objective is achieved

using time series models similar to those that have applied for

the study of different aspects of climate variability (Tol 1996;

Taylor and Buizza 2004), downscaling methods (Estrada et al.

2013a; Estrada and Guerrero 2014), impact assessment (Burke

et al. 2015; Hsiang 2016), and climatic change detection and

attribution (Tol and de Vos 1993; Harvey and Mills 2002; Qu

2011; Estrada et al. 2013b,c; Estrada and Perron 2014). The

proposed methodology underlines the similarities and differ-

ences between the evaluation of GCMs and attribution studies,

as it is based on evaluating the capacity of models to reproduce

observed warming trends.

Section 2 describes the databases of observed and simulated

MST used in this study. In section 3 the proposed methodology

is presented, and the limitations of classical metrics to deter-

mine GCMs performance are discussed. Section 4 shows the

results of the proposedmethodology applied to the global scale

and eight subcontinental land domains distributed across the

globe. Conclusions and a summary are given in section 5.

2. Data

a. Observational data and spatial domains

We considered observational data of ocean and land monthly

average surface temperature (in K) from two gridded obser-

vational datasets: 1) the Hadley Centre Climate Research Unit

temperature anomalies (HadCRUT4, version 4.6.0.0) on a 58 3
58 global grid, available for the period 1850–2018 (Morice

et al. 2012) and 2) the GISS surface temperature analysis

(GISTEMP v4) on a 28 3 28 global grid, available for the period
1850–2005 (GISTEMPTeam 2021; Hansen et al. 2010; Lenssen

et al. 2019). Temperature over land is measured at stations,

whereas temperature over the ocean is derived from sea sur-

face temperature and marine air temperature measurements

taken by ships and buoys (Jun et al. 2008). Each of these re-

search centers conduct independent analyses of data quality,

inhomogeneities, and corrections of instrumental biases at the

grid cell level.

To illustrate the proposedmethodology, our analysis focuses

on the global scale and on eight subcontinental land regions

(Fig. 1) that are characterized by different climatic regimes and

for which GCM performance has been evaluated in previous

research (IPCC 2013a; Qian and Zhang 2015; Chan and Wu

2015). The selected regions are the United States (USA),

western Europe (EuW), northern Europe (EuN), Mexico

(Mex), and China (Chi) in the NorthernHemisphere (NH) and

the Amazon (Ama), southern Africa (SAf), and Australia

(Aus) in the Southern Hemisphere (SH). Ocean regions were

not included because data tend to be sparser.

The period 1910–2005 was chosen for this study since these

are the years for which the HadCRUT4 and GISTEMP data-

sets have no missing data in more than 70% of the grid points

over most of the selected domains. Data completeness is sim-

ilar for both HadCRUT4 and GISTEMP datasets for the do-

mains located in the NH, with the exception of China. Data

gaps are larger in the SH and this is more evident for

GISTEMP over regions located in the Amazon and southern

Africa than for HadCRUT4 due to differences in data pro-

cessing mentioned above. The spatial average and time series

anomalies of annual MST were calculated with respect to the

reference period 1961–90 (Fig. 2).

The observed global and regional MST are influenced by

atmospheric and oceanic natural climate variability that can

distort the underlying response of the MST to changes in RF.

To account for their confounding effects, natural variability

modes are considered in our analysis. Modes like the Atlantic

multidecadal oscillation (AMO), the Pacific decadal oscillation

(PDO), the Southern Oscillation index (SOI), the northern

annular mode (NAM), and the North Atlantic Oscillation
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(NAO) have a stronger influence in the NH regions (Hu et al.

2003; Englehart and Douglas 2004; Brönnimann et al. 2007;

Riaz et al. 2017; Brunetti and Kutiel 2011; de Beurs et al. 2018;

Dong et al. 2019). The dipole mode index or Indian Ocean

dipole (IOD), southern annular mode (SAM), North Pacific

index (NPI), AMO, and SOI influence SH regions (Mason and

Jury 1997; Power et al. 1999; Tyson and Preston-Whyte 2000;

Hendon et al. 2007; Fogt et al. 2011; Ashcroft et al. 2014;

Lakhraj-Govender and Grab 2018). Annual time series of

these natural variability indices were obtained from the

FIG. 1. Data availability for the subcontinental land regions considered in the analysis. The

color bar shows the percentage of observed monthly MST data available at each grid point in

subcontinental land domains during the 1910–2005 period for (top) HadCRUT4 and (bottom)

GISTEMP. Abbreviations are as follows: Ama: the Amazon, Aus: Australia, Chi: China, EuN:

northern Europe, EuW: western Europe,Mex:Mexico, SAf: southernAfrica, USA: theUnited

States.
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following sources: AMO (NOAA; Enfield et al. 2001), PDO

(JISAO; Mantua et al. 1997), SOI (CRU; Ropelewski and

Jones 1987), NAO (CRU; Jones et al. 1997), NAM (NCAR

2019), NPI (Hurrell et al. 2019), IOD (NOAA; Saji and

Yamagata 2003), and SAM (MESNZ 2017).

Observed radiative forcing time series were obtained from

GISS-NASA (Hansen et al. 2011), commonly used in the lit-

erature in the estimation of the transient climate response

(Gregory and Forster 2008; Schwartz 2012) and attribution

studies (Kaufmann et al. 2011; Estrada et al. 2013b; Pasini et al.

2017; Estrada and Perron 2019). The radiative forcing from

well-mixed greenhouse gases, land use change, ozone, strato-

spheric H2O, aerosols, black carbon, solar irradiance, and

snow albedo are aggregated into total radiative forcing (TRF),

which summarizes all variables that have a trending behavior

(Estrada et al. 2013b). The radiative forcing from stratospheric

aerosols (VOLC) is also considered to account for the effects

of volcanic eruptions.

b. GCM output

We use 107 realizations of 2-m surface temperature from 21

GCMs included in the CMIP5 historical experiment. We se-

lected GCMs that had at least two realizations (Table 1; Taylor

et al. 2012). The multimodel mean, the 21 ensemble means

from each GCM, and the 107 individual model runs were in-

cluded in the analysis. The sample was chosen to match that of

the observations (1910–2005). All simulations are available in

standard NetCDF format at https://esgf-node.llnl.gov/search/

cmip5/ and at https://cera-www.dkrz.de/WDCC/ui/cerasearch/.

The spatial resolution of model output varies across GCMs

and thus simulations were regridded to two common grids

that correspond to those of the HadCRUT4 and GISTEMP

FIG. 2. Annual MST time series for observed (HadCRUT4 and GISTEMP), GCM realizations (light color lines), and GCM ensemble

(bold color lines) for nine domains in the 1910–2005 period. Abbreviations are as in Fig. 1.
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datasets using bilinear interpolation (Jun et al. 2008). Annual

MST anomalies with respect to 1961–90 were obtained using

monthly frequency data and the spatial average was calculated

for each GCM and region (Fig. 2).

Binary masks of monthly missing/available grid points ob-

tained from each observational dataset (HadCRUT4 and

GISTEMP) were applied to GCMs output in order to mimic

observed and simulated data. This allows the assessment of

GCMs simulations where and when observations are available

and thus reduces biases introduced by observational coverage

as much as possible (Hegerl et al. 2007; Knutson et al. 2013;

Cowtan et al. 2015).

All GCMs included in the CMIP5 produce numerical ex-

periments that are dependent on a set of initial conditions

and external forcing scenarios to simulate, for example, past,

present, and future climates. The ensemble mean was cal-

culated for each GCM to 1) produce a clearer climate signal

since averaging over realizations dampens variability and

provides a better representation of the model’s response to

changes in radiative forcing (Jun et al. 2008; Knutti et al.

2010; Annan and Hargreaves 2011), and 2) reduce the vari-

ability in simulations that would otherwise contribute to the

error component in any statistical model (Jun et al. 2008;

Deser et al. 2014). For calculating the ensemble mean each

realization is equally weighted, which can be considered a

more transparent strategy to combine GCM outputs (Weigel

et al. 2010; Herger et al. 2018), since the only difference be-

tween simulations from the same GCM using the same ex-

ternal forcing and physics configuration is the sets of initial

conditions. These initial conditions are, for any practical

reason, to be considered random (Maraun et al. 2010) and as

such there is no reason to assign lower or higher weights to

any particular run.

3. Methodology

This section is composed of two parts. First, we analyze some

of the metrics that are commonly used to evaluate GCM per-

formance, and we show that such metrics are not helpful to

discriminate GCMs based on their skill to reproduce observed

climate and that they may not be informative for climate

change applications. The results motivate the need to develop

new metrics that are more robust and adequate for climate

change applications. The second part of this section proposes a

new methodology to evaluate GCM performance that tackles

weaknesses identified in classical metrics and that focuses on

the ability of GCMs to reproduce the observed response to

changes in external radiative forcing.

a. Assessment of classical metrics for evaluating GCM
performance

The process of developing, evaluating, and combining GCM

performance metrics is not straightforward. Rather, there is a

considerable amount of subjectivity in the selection of metrics

and in their interpretation (Christensen et al. 2010). Some of

the metrics that have been proposed to evaluate GCMs per-

formance include the magnitude of model biases during the

observed period, comparison of trend slope sign and magni-

tudes, or composites of a large number of model performance

diagnostics (Weigel et al. 2010).

To illustrate some of the limitations of these commonly

applied metrics, we evaluate the performance of GCMs in

reproducing the observed annual MST time series from

HadCRUT4 and GISTEMP for the global and USA domains.

The metrics chosen for this illustration are the Pearson linear

correlation coefficient and the root-mean-square error (RMSE).

These metrics were calculated for the annual meanMST series

TABLE 1. GCMs included in the CMIP5 historical experiments that had at least two realizations. Resolutions are provided at https://

portal.enes.org/data/enes-model-data/cmip5/resolution.

GCM Country Atmospheric resolution (lat 3 lon) Realizations

Access1.0 Australia 1.258 3 1.8758 3

Access1.3 Australia 1.258 3 1.8758 3

CanESM2 Canada 2.79068 3 2.81258 5

CCSM4 United States 0.942 4068 3 1.258 6

CNRM-CM5 France 1.40088 3 1.40 6258 10

CSIRO-Mk3.6.0 Australia 1.86538 3 1.8758 10

CSIRO-Mk3L-1 Australia 3.18578 3 5.6258 3

EC-EARTH European consortium 1.12158 3 1.1258 7

FGOALS China 2.79068 3 2.81258 3

GFDL CM3 United States 2.08 3 2.58 5

GISS-E2-H United States 2.08 3 2.58 6

GISS-E2-R United States 2.08 3 2.58 6

HadCM3 United Kingdom 2.58 3 3.758 10

HadGEM2-ES United Kingdom 1.258 3 1.8758 4

IPSL-CM5A-LR France 1.894 7378 3 3.758 6

IPSL-CM5A-MR France 1.267 6068 3 2.58 3

MIROC5 Japan 1.40088 3 1.406 258 5

MIROC-ESM Japan 2.79068 3 2.81258 3

MPI-ESM-LR Germany 1.86538 3 1.8758 3

MPI-ESM-MR Germany 1.86538 3 1.8758 3

NorESM1-M Norway 1.89478 3 2.58 3
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from 107 individual realizations of 21 GCMs and for the en-

semble mean (rE) of each GCM. As is common in the evalu-

ation of climate models for climate change applications, the

trend was not removed because it is the main component of

interest and the association between observed and simulated

variations around the trend is expected to be close to zero

because of the CMIP5 twentieth-century experiment charac-

teristics, which focus on reproducing the response of the cli-

mate system to changes in observed radiative forcing; these are

‘‘free-running simulations’’ (i.e., with no nudging or data as-

similation) and thus internal model variability and observa-

tions have no reason to be related (Maraun et al. 2010; Estrada

et al. 2012; Deser et al. 2014; Sun et al. 2019).

Figure 3 shows the calculated correlation and RMSE value

for all simulations and ensemble means, in decreasing order

from highest to lowest correlation values. This figure reveals

that 1) these metrics are hardly independent as higher corre-

lation values are associated with lower RMSE values (this is

of importance because the lack of independence between

metrics is seldom accounted for in practice and can generate

reinforcement biases) and 2) ensemble means tend to show

higher correlation values than any individual realization; as

discussed in the following paragraph, confidence intervals for

the correlation coefficient tend to be smaller for models with

higher correlation values (i.e., ensemble means).

While the point estimates of these metrics may clearly sug-

gest that someGCMs have better performance than others, the

uncertainty in these estimates needs to be accounted for to

infer how different these values really are. This is not com-

monly done when classical metrics are applied, but it should

be a standard practice, as it is in other fields. We constructed

95% confidence intervals for the estimated correlation coeffi-

cients and the RMSE values by calculating the standard error

using the bootstrap method, which is based on resampling with

replacement to approximate the empirical distribution of sample

estimates (Efron and Tibshirani 1998).

The results show that most of the confidence intervals cal-

culated for the correlation coefficients and RMSE values

overlap. Although we show results for only two domains,

similar results are found for all other domains. This illustrates

FIG. 3. Correlation and RMSE values between observed (HadCRUT or GISTEMP) and GCMmonthly MST series from 1910 to 2005

and 95% confidence intervals for (top) the global domain and (bottom) the USA region. The suffixes r1, . . . , rn denote the nth realization

from the same GCM while rE refers to the ensemble mean from a given GCM. Some of the 129 labels are suppressed to improve the

figure’s clarity.
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that these metrics do not provide strong statistical evidence for

supporting the use of one GCM over another, for ranking

models, or for assigning different weights. Based on these

metrics, GCMs show a similar skill for simulating the observed

MST annual time series. Note that ignoring the confidence

intervals, these metrics could lead to very different conclusions

regarding model ranking and selection of the ‘‘best’’ GCMs

andweights, depending on the particular realization (r1, r2, . . .)

that is chosen for each model. It is important to remember that

realizations from the same model differ only in the initial

conditions, and that those sets of values are chosen randomly.

As such, using these conventional metrics, without accounting

for their uncertainty, could be as effective as randomly

choosing a set of models, ranking them, or assigning weights.

This example illustrates the lack of robustness of conventional

metrics to discern the differences in performance of a set of

GCMs and it shows that results are sensitive not only to the se-

lected metric but to the particular realizations that are chosen.

Furthermore, these commonly used metrics offer no infor-

mation about how well the GCMs can reproduce the climate

system response to changes in external radiative forcing. These

metrics, like many others, are not meaningful to evaluate the

change in climate, as their objective is to compare climato-

logical (static) states, not how they evolve. In addition, most of

the classical metrics do not consider the effects of factors such

as internal variability and differences in initial states. In par-

ticular, low-frequency oscillations can considerably distort

trends in climatic variables, either in observations or in GCM

simulations (Swanson et al. 2009; Wu et al. 2011), and initial

conditions can have similar effects on simulations (Wallace

et al. 2015; Deser et al. 2014). Below, we present a methodol-

ogy based on ordinary least squares regression that focuses on

assessing GCM performance in reproducing the response to

RF embedded in the observations.

b. Performance evaluation based on regression models

A climatic variable yt, observed or simulated, can be rep-

resented as a response to external forcing and natural vari-

ability. If a linear functional form is assumed, this can be

written as

y
t
5 f (F

t
,V

t
)5 c1 j(DF

t
)1V

t
, (1)

where c is a reference climatology related to the preindustrial

level of the external forcing, DFt is the change in external

forcing, and Vt includes high- and low-frequency climatic os-

cillations produced by physical variability modes as well as the

climate system’s persistence. To assess the performance of a

particular GCM, an observed variable yot can be expressed as a

function of GCM output:

yot 5 f (ymt,i)5 f [jm(F
t,i
),hm

t,i]. (2)

Here ymt,i represents i realizations of a particularmGCM while

jm(Ft,i) and hm
t,i are the response to external forcing and model

internal variability, respectively. Equation (2) can be approx-

imated by the following regression:

yot 5 âm
i 1 b̂ymt,i 1 «

t
, (3)

where âm
i is the bias (difference in means) between observa-

tions andGCMrealizations, b̂ is the slope parameter, and «t are

the regression’s residuals. The residuals of regression (3) can

be expressed as

«
t
5m

t
1 y

t
, (4)

where mt is the difference in response to RF between observed

and simulated variables and yt is the difference between ob-

served and modeled internal variability. If the GCM is able

to adequately reproduce the observed response, mt should

be a stationary variable. Note that mt would contain non-

stationarities if either the observed responses to changes in RF,

j(DFt), and the simulated response to RF [i.e., jm(DFt)] had

different features or if the bias âm
i showed structural changes or

changepoints in its value during the sample period. The exis-

tence of differences in the trend function between observed

and simulated variables can be investigated by means of

structural change tests on âm
i and b̂, and by testing whether the

functional form of the regression is linear or not.

Another potential source of nonstationarities is yt, which

contains a variety of oscillations with different frequencies. It

has been shown that low-frequency natural variability can

distort the trend of climatic variables (Swanson et al. 2009; Wu

et al. 2011). Large differences in phase and amplitude of low-

frequency oscillations between observed and simulated vari-

ability can produce nonstationarities in the residuals of the

regression.

To minimize the effects of internal variability, the inde-

pendent variable ymt,i in Eq. (3) can be replaced by the ensemble

mean of the n available realizations of model m:

ymt,i 5 ymt 5
1

n
�
n

i51

ymt,i 5 cm 1 jm(DF
t
)1cm

t . (5)

Assuming that different realizations of the same GCM are

independent from each other, it is expected that as n increases,

cm
t would approach a white-noise process. Furthermore, re-

gression (3) can be extended to include the observed variability

modes that influence the dependent variable, particularly those

related to low-frequency oscillations:

yot 5 âm 1 b̂ymt 1�
k

j51

û
j
X

t,j
1�

p

l51

û
l
yot2l 1 z

t
. (6)

Here,Xt,j refers to the jth natural variability mode j5 1, . . . , k;

also, ûj are the corresponding coefficients, yot2l are lagged

values of the dependent variable used to represent the per-

sistence of the observed climatic variable, and ûl are the as-

sociated parameters. Note that �p

l51ûly
o
t2l also allows us to

correct for autocorrelation in the residuals of the regression

(Wooldridge 2013).

Equation (6) can be expressed as yot 2�k

j51ûjXt,j 5 âm 1
b̂ymt 1�p

l51ûly
o
t2l 1 zt and thus the term �k

j51ûjXt,j can be in-

terpreted as a physically based filter that allows for a clearer

representation of the observed warming trend. Other tech-

niques, such as polynomial regressions, could be used for ac-

counting for the effects of natural variability oscillations.

However, here we favor the use of variability modes that are
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known to affect global and regional temperatures and for

which some physical mechanisms have been proposed in the

literature (see references in section 2a). As described below,

the selection of the natural variability terms Xt,j to be included

in regression (6) is determined by means of an auxiliary re-

gression in which TRFt is used instead of ymt . The lag length p is

such that the residuals show no autocorrelation according to

the Breusch-Godfrey test, as is recommended in the literature

to avoid biases in the estimated coefficients (Wilkins 2018;

Greene 2012; Keele and Kelly 2006). Note that zt would be

stationary if ymt adequately represents the observed response to

RF, if the ensemble average removes all large nonstationarities

produced by internal variability, and if the setXt,j does not omit

relevant variables that contain low-frequency oscillations.

Note that linear regression models relating observational and

simulated variables such as Eq. (6) are used for a wide range of

purposes such as in attribution studies and statistical down-

scaling (Glahn and Lowry 1972; Hegerl and Zwiers 2011;

Bindoff et al. 2013).

The evaluation of the performance of a particular GCM is

determined by analyzing the regression’s coefficients and re-

siduals: an accurate representation of the observed response to

RF requires the coefficients b̂ and âm to be not statistically

different from unity and zero, respectively, and that the noise

component zt behaves as a (second order) stationary process.

Stationarity of the noise component requires that the coeffi-

cients b̂ and âm are stable and that the regression’s functional

form is correct. For evaluating the assumptions of linearity in

the functional form the Ramsey RESET test (Ramsey 1969) is

used and for testing parameter stability we use the Quandt–

Andrews structural change test for a break in the trend func-

tion occurring at an unknown date (Andrews 1993). It should

be noted that even if the assumptions mentioned above

are satisfied, zt could have serial correlation and hetero-

skedasticity, which may affect significance tests in regression

(6).Moreover, bias in the slope coefficients can occur inmodels

with lagged dependent variable terms when autocorrelation is

still present in the error component. Even in such a case, the

bias effect would be small unless the autocorrelation in the

error component is very high (Keele and Kelly 2006).

However, as has been shown in the literature, this problem can

be avoided by ensuring that the error component is free of

autocorrelation and this can be achieved by adding more lag-

ged terms of the dependent variable to avoid the occurrence of

the ‘‘omitted variables’’ problem (Keele and Kelly 2006;

Wilkins 2018). Robust standard errors help to circumvent

heteroskedasticity problems. The reader is referred to Estrada

et al. (2013a) for a discussion on evaluating the statistical ad-

equacy of regression models and the use of statistical tests in

the context of climate change scenario generation.

The proposed regression approach has important advan-

tages over other methods found in the literature. Among these

are 1) the statistical significance of the bias parameter âm and

the ability to evaluate restrictions on the value of the param-

eter b̂ using standard t tests and a Wald test. It also allows

testing joint hypothesis about parameter values and for eval-

uating differences in parameter (metric) values across GCMs.

2) Furthermore, it takes into account the effects of observed

natural variability, as well as the effects of internal variability

in GCMs that could distort the observed and simulated re-

sponse to RF. This allows comparing both responses control-

ling for the effects of low-frequency oscillations contained in

the observed and simulated series. 3) Finally, a variety of sta-

tistical tests for analyzing the regression’s residuals are avail-

able in the literature. These tests can provide empirical

evidence about the existence, types, and sources of non-

stationarities in zt and thus help to better evaluate and compare

the performance of various GCMs.

The proposed methodology is implemented in two steps.

First, an auxiliary regression model based on Eq. (6),

yot 5 âo 1 b̂oTRFt 1�k

j51û
o
j Xt,j 1�p

l51û
o
l y

o
t2l 1mt, is estimated

for observed temperatures using TRFt as a proxy for DFt, and a

set ofXt,j to account for some of the most prominent sources of

high- and low-frequency oscillations in Vt. For each domain,

the best-fit statistically adequate model (i.e., one that satisfies

the statistical assumptions of the linear regression model) is

selected. For selecting the independent variables to be in-

cluded in the model, we followed a general approach for

empirical modeling based on Spanos (2019). The initial speci-

fication of the regression model includes the variables sug-

gested by the literature and then that specification is modified

according to the specification problems that are detected by the

results of a battery of formal misspecification tests (see last row

in Tables A and B and last nine columns in Tables C–T in the

online supplemental material available on the Journals Online

website at https://doi.org/10.1175/JCLI-D-20-0510.s1). The

resulting model contains the independent variables that

produce a statistically adequate model (see Estrada et al.

2013a; Estrada and Guerrero 2014). Once such a model spec-

ification is found, then the model is reexamined to evaluate if a

more parsimonious specification that still satisfies the linear

regression assumptions can be obtained by excluding variables

that are not significant at a given significance level (e.g., 10%

significance level). In the second step, the natural variability

terms selected by the auxiliary regression are used to estimate

regression (6), in which ymt replaces TRFt. The lag length p was

selected based on the Breusch–Godfrey test to ensure that the

error component is free of autocorrelation to avoid potential

biases in the estimated coefficients.

It is important to note that the estimation of coefficients is

independent in these two steps, in contrast to other estimation

approaches such as two-stage least squares in which the coef-

ficients estimated in the first stage are used in the second stage

estimation. Once regression (6) has been estimated, the per-

formance of the GCM is determined by evaluating two things.

The first is the similarity of the trend in observed and simulated

MST time series by testing the stability of parameter b̂ and the

adequacy of the regression’s functional form (linear). If the

conditions of parameter stability and correct functional form

are not satisfied, there is empirical evidence against the ability

of the GCM to adequately reproduce the observed response to

RF. The second is if the parameters are stable and the func-

tional form is correct then the values of the estimated param-

eters are analyzed. If the confidence intervals for b̂ include the

unity (i.e., the estimated parameter value is not different from

unity at a given significance level), then the GCM is able to
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adequately simulate the observed rate of warming; the GCM

overestimates the observed rate of warming if b̂, 1 (i.e., the

estimated parameter value is smaller than unity for a given

significance level); conversely, if b̂. 1 (i.e., the estimated pa-

rameter value is greater than unity for a given significance

level) the GCM underestimates the observed rate of warming.

Asmentioned above, this approach allows to formally evaluate

other metrics using the same regression, such as the existence

of bias. Bias can be formally evaluated by performing a t test on

âm, as well as by testing for a level shift in âm by means of

stability tests. Wald tests (Greene 2012) can be used to eval-

uate the individual or joint significance of parameters such as

âm or b̂ as well as to test if they are statistically equal to a

certain value. The application presented in the next section

centers on evaluating the ability of GCMs to reproduce the

observed response to RF, which we consider the most relevant

feature for evaluating models for climate change applications.

4. An analysis of GCM performance over global and
regional domains

In this section we present an application of the proposed

methodology for the global domain and eight subcontinental

land regions (Fig. 1). We consider the annual mean surface

temperature time series fromHadCRUT4, GISTEMP, and the

ensembles of simulations produced by 21 GCMs, as well as the

multimodel ensemble (see sections 2a and 2b). The regression

models include two groups of independent variables: 1) those

that approximate the warming trend, namely TRF and the

ensemble mean of each GCM, and 2) the set of variables Xt,j

that include the main natural variability modes (AMO, PDO,

SOI, NAM, NAO, NPI, IOD, and SAM; see section 2a),

stratospheric aerosols (VOLC), and the persistence of MST, yot21.

Following the methodology described in section 3, regres-

sion models were estimated for MST. For each domain, a re-

gression model was estimated using TRF and some physically

relevant natural variability indices for each region (see section

2a). We note that results are robust to using an alternative

radiative forcing dataset (Miller et al. 2014). Explanatory

variables were selected based on the global/regional influence

reported in the literature (see section 2a). Equation (7) illus-

trates the final model obtained for global temperatures from

the HadCRUT4 and GISTEMP datasets:

yot 5 âm 1 b̂
1
TRF

t
1 û

1
AMO

t
1 û

2
AMO

t21
1 û

3
PDO

t21

1 û
4
SOI

t
1 û

5
VOLC

t
1�

2

l51

û
l
yot2l 1 z

t
(7)

where TRF, AMO, PDO, SOI, and VOLC were defined pre-

viously, and t–j refers to the j annual lag of the variable.

Figure 4a shows the specification and parameter estimates for

all domains included in this study, while parameter values are

reported in Tables A and B in the supplemental material.

While the selection of variability modes is based on physical

considerations, lag length is determined empirically. In cases

where the regression model includes lagged dependent terms,

the response to external forcing is calculated as

b̂1/
�
12�p

l51ûl

�
, which represents the long-run climate

response. The total (long run) coefficients of natural variability

modes provided in Fig. 4b help interpreting and comparing the

estimated effects with previous (static) estimates. However,

most of the estimates of the effects of natural variability modes

in the literature have been produced using univariate methods

such as correlation and simple linear regression that do not

consider possible indirect effects between variability modes. In

contrast, the coefficients reported here represent the partial

effects of each variable, which account for the effects of the

other variables included in the regression. Unless independent

variables are uncorrelated, the univariate and multivariate

estimates of the magnitude, the significance, and even the sign

of the effects can be different. The effect that in the univariate

setting may be commonly attributed to a particular natural

variability mode can be better represented by a combination of

other modes in the multivariate setting (this is sometimes re-

ferred to as the omitted variable problem; see Greene 2012).

AMO has a significant influence at the global scale and over

most of the domains located in the Northern Hemisphere

(Bindoff et al. 2013; Steinman et al. 2015; Guan et al. 2015). In

such regions, the positive phase of AMO is associated with

higher temperatures and its influence is largest over Europe

and North America (Fig. 4b). AMO is characterized by a low-

frequency oscillation that has been shown to obscure the

warming trend by masking or exacerbating it depending on its

phase (Swanson et al. 2009; Wu et al. 2011). PDO and NAO

have also been proposed as variability modes that can distort

the global warming trend and, as expected, the regression

models for the global domain include the AMO, PDO, and

SOI, which also have a global effect on temperatures (Guan

et al. 2015; Li et al. 2013b; Cohen and Barlow 2005). Figure 4b

provides empirical evidence of the effect of observed natural

variability modes on MST, the estimated models show that

AMO has a significant influence in most of the domains (7 out

of 9), followed by SOI, NAO, and PDO. The remaining vari-

ability modes have influence over particular regional domains.

As shown in the literature, NAO and NAM show relevant

effects over regions such as Europe and Mexico (Fig. 4b; Li

et al. 2013a; Vihma et al. 2019), while SAM and IOD mainly

influence regions in the Southern Hemisphere (Wang and

Cai 2013).

Following section 3b, GCM performance is evaluated by

replacing TRFt with the simulated response to RF, ymt , in the

regression models. In all cases, ymt refers to the ensemble mean

from each GCM, as well as to the multimodel ensemble. Note

that the CMIP5 is an ‘‘ensemble of opportunity’’ and the

number of ensemble member available varies depending on

the GCM (Taylor et al. 2012). This can affect the results

of statistical analyses that are used to compare or combine

GCMs, such as model performance evaluation and the gener-

ation of probabilistic scenarios (Stephenson et al. 2012; Knutti

et al. 2010; Tebaldi and Knutti 2007). As discussed in Notz

(2015), this is further complicated by the fact that there is only a

single realization of observed climate that not necessarily

represents the mean of the data generating process. The fol-

lowing equation for the global domain illustrates the application

of regression (6) using the HadCRUT4 and GISTEMP dataset

(i.e., both regression models share the same specification):
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yot 5 âm 1 b̂
1
ymt 1 û

1
AMO

t
1 û

2
AMO

t21
1 û

3
PDO

t21

1 û
4
SOI

t
1 û

5
VOLC

t
1�

2

l51

û
l
yot2l 1 z

t
. (8)

The stability of parameter b̂1 and the adequacy of the regres-

sion’s functional form were evaluated using the Quandt–

Andrews and Ramsey REST tests, respectively. These two

tests provide empirical evidence to evaluate if the simulated

and observed warming trends have similar features and mag-

nitudes. Supplementary Tables C–T report the estimated pa-

rameters and results of a battery of other tests for evaluating

the statistical adequacy of the regression models for each re-

gion and temperature datasets. (These results are summarized

in Figs. 5 and 8.)

Figure 5 shows the range of values of the estimated regression

parameters for the nine domains, and for the HadCRUT4 and

GISTEMP datasets. This figure includes the results for the mean

of 21 GCM ensembles, as well as for the multimodel mean. The

right panel of Fig. 5 shows only the parameter values of regres-

sions for which parameter b̂1 is found to be stable and the as-

sumption of linearity was satisfied. Note that with very few

exceptions in the EuN domain, the b̂1 coefficients are positive.

This figure also shows that, in comparison with Fig. 4b, the pa-

rameter magnitudes and signs associated with natural variability

modes are similar to those found for the auxiliary regression,

which suggests that these results are robust to using TRFt or ymt to

represent the climate response to changes in external RF.

If no structural break is present and the functional form is

correct, then we test for under/overestimation of the observed

warming rate using Wald tests. In the case of regressions that

include a number p of lagged terms of the dependent variable

to correct for autocorrelation, the b̂1 coefficient does not rep-

resent the total (long-run) effect but only the instantaneous

change. The total effect is given by b̂1/
�
12�p

l51ûl

�
and thus

if the simulated and observed rates of warming are the

same then b̂1/
�
12�p

l51ûl

�
should be statistically equal to 1.

The Wald test is formulated as H0: b̂1 5
�
12�p

l51ûl

�
and

HA: b̂1 6¼
�
12�p

l51ûl

�
. In most cases p 5 1, as only the first

lagged term of the dependent variable is needed to account for

autocorrelation in the error component. These tests were ap-

plied to all regions and datasets. The significance level for all

tests was set at 5%.

FIG. 4. Estimated coefficient and total (long run) effects from the auxiliary regression

yot 5 âo 1 b̂oTRFt 1�k

j51û
o
j Xt,j 1�p

l51û
o
l y

o
t2l 1mt , for all domains and observational datasets.

(a) Estimated values; the intercept (bias), the long-run response to changes in external forcing,

and the individual coefficients of the variables included in the regressions for the nine domains.

(b) Estimates of the total (long run) effects of each of the variables included in the regression

models. Letters H and G denote the HadCRUT4 and GISTEMP datasets, respectively.

Abbreviations are as in Fig. 1.
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Figure 6 compares the 21 GCM ensemble means (gray

lines) and the fitted regression models that satisfied the

parameter stability and linearity assumptions (blue lines) as

well as those for which b̂1 5 1 (black lines), for all regions

and CGM ensemble means. Furthermore, the two panels

show model fit for the cases where natural variability modes

are included in the regressions (Fig. 6a) and when these

variables are omitted (Fig. 6b). This figure shows the im-

portance of including this variability modes for improving

model fit and illustrates how these modes can modulate the

warming trend. This is particularly clear for regions such as

the Amazon, Europe, and China for which results suggest

that variability modes had an important contribution to the

warming rate experienced during the first decade of this

century.

Figure 7 illustrates the cases in which 1) regression models

satisfy the parameter stability and linearity assumptions and

b̂1 5 1 (Fig. 7a), 2) the models overestimate the warming trend

(Fig. 7b), 3) the parameter stability assumption is not satisfied

(Fig. 7c), and 4) the linearity assumption is not met (Fig. 7d).

Note that this figure is shown only for illustrative purposes as in

most cases visual inspection would not reveal if assumptions

are not satisfied or if the observed response to changes in ex-

ternal RF is correctly reproduced by GCMs. Formal statistical

tests, such as the ones presented here, provide a much more

objective and reliable way to investigate these features. In

agreement with previous results (Bindoff et al. 2013), this fig-

ure also shows that in all cases natural variability modes are not

able to reproduce the observed warming in these regressions,

particularly during the last 20 years of the sample, and that this

FIG. 5. Estimated total (long run) coefficients from regression (6), yot 5 âm 1 b̂ymt 1�k

j51ûjXt,j 1�p

l51ûly
o
t2l 1 zt ,

for all domains, observational datasets, and GCM ensemble means. (left) For all GCMs, the estimated values, the

intercept (bias), the long run response to changes in external forcing, and the long run coefficients of the variables

included in the regressions for the nine domains. (right) The same coefficient values as the left panel, but only for

those regressions that satisfy the parameter stability and linearity assumptions. Letters H and G denote the

HadCRUT4 and GISTEMP datasets, respectively. Abbreviations are as in Fig. 1.
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FIG. 6. Fitted temperature series (a) with and (b) without including the effects of natural variability modes. Gray lines show GCM

ensemble means, while blue and black lines show the fitted temperature series from regression models that satisfy the parameter stability

and linearity assumptions, and those that satisfy these assumptions and for which b̂5 1, respectively. Abbreviations are as in Fig. 1.
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is only achieved if the response to changes in external RF are

included.

Considering the HadCRUT4 (GISTEMP) dataset, only 12

(8) of the 21 GCMs plus the multimodel ensemble mean,

produce regressions in which parameter b̂1 is stable and are

able to reproduce the observed warming trend in at least 50%

of the selected domains (black and gray entries in Fig. 8).

GCMs that can successfully reproduce the trend of the ob-

served response to RF in both observed MST datasets for

at least half of the domains are CanESM2, EC-EARTH,

FGOALS-g2, GISS-E2-H, HadCM3, MPI-ESM-LR, and the

multimodel mean. The domains for which at least half of the

models can reproduce the warming trend are the global scale

(Gbl) and the regions USA, Mex, Aus, SAf, and Ama. In

contrast, EuN, EuW, and Chi are the domains for whichGCMs

more commonly fail to reproduce the characteristics of the

warming trend, whether this is due to the presence of structural

breaks and/or to incorrect functional form.

It is worth noting that these results depend on the temper-

ature database used, as also happens with traditional metrics.

The differences in results between datasets are more common

in regions where there are more data gaps. Differences in

spatial coverage and temporal continuity, as well as in data and

gap-filling processes, can generate disparities in the warming

trends contained in each dataset. For instance, GISTEMP

tends to show higher warming in most domains during the

second part of the twentieth century when compared to

HadCRUT4 (Fig. 2). These differences are larger in regions

located in the Southern Hemisphere where data coverage is

sparser, and smaller in regions with fewer data gaps such as the

United States and Europe. Differences in data coverage and

quality likely influence results shown in Fig. 8.

The ability of GCM simulations to reproduce the magnitude

of the observed warming also varies between regions and de-

pends on the observational database that is used, the ability of

current GCMs to adequately simulate the spatial distribution

of warming, and factors related to RF. For the majority of

GCMs (.50%) that are not able to reproduce the warming

trend (i.e., parameter stability is not satisfied; see Fig. 8) this

problem occurs in the following domains: EuN and EuW

(GISTEMP) and Ama, Chi, EuN, and EuW (HadCRUT4). In

such domains, GCMs tend to simulate higher rates of warming

than observed.

The lack of agreement between observed and modeled

warming rates has been discussed in the literature, and three

main hypotheses can be identified: low-frequency natural

variability and feedback processes, unaccounted external

radiative forcing factors or changes in their rate of growth,

FIG. 7. Illustrative cases of satisfactory GCM performance and when the trend or magnitude of the observed

response to external radiative forcing is not correctly reproduced. Three specifications are considered for regression

(6) in these examples: 1) only natural variability modes are included in the estimated regressions (Fitted_VM), 2)

both natural variabilitymodes and the response to changes in external RF are included (Fitted_GCM1VM), and 3)

observed temperature persistence is added to GCM1VM (Fitted_All). The observations are from theHadCRUT4

dataset and the GCM model used is NorESM1-M. SC refers to the estimated date of occurrence of the structural

change. Region abbreviations are as in Fig. 1.
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and deficiencies in temperature datasets (see Estrada and

Perron 2017). However, the observed slowdown was most

likely caused by a combination of multiple factors and can-

not be attributed to any particular one. For some of the

GCMs, the overestimation of the warming trend starts in the

1970s, but this becomes more pronounced from the mid-

1990s onward, as documented by the results of the structural

change test that we applied (Fig. 8). This finding is in

agreement with what is reported by Fyfe et al. (2013), who

conclude that GCMs from CMIP5, with the prescribed

forcings, do not reproduce the slowdown from 1998 to

2012. Moreover, most of these GCMs tend to overestimate

warming trends during recent decades compared with ob-

servations (Kim et al. 2012). This overestimation of the

warming trend could be related to the limited ability of

GCMs to adequately simulate regional feedback processes

such as the Arctic amplification, which became more pro-

nounced since the 1990s, and a variety of local and remote

feedback processes related to it (Gillett et al. 2008; Cohen

et al. 2019). The existence of unaccounted RF factors or

important changes in their rate of growth has also been

proposed as a possible explanation for the observed slow-

down in the warming trend during the late twentieth century

(Estrada et al. 2013b; Steinman et al. 2015).

Eleven out of 22 GCMs are able to reproduce both the trend

of the observed response to RF and the magnitude of the

warming rate for at least 30% of the selected domains. In the

case of the HadCRUT4 dataset, these models are CNRM-

CM5, HadCM3, CSIRO-Mk3.6.0, CSIRO-Mk3L-1, GISS-E2-

H, MIROC5, and the multimodel mean, while for the

GISTEMP dataset these are ACCESS1.0, ACCESS1.3,

NorESM1-M, MIROC-ESM, and multimodel mean. The do-

mains for which at least 40% of the GCMs are able to repro-

duce both the trend of the response toRF and the warming rate

of the observational datasets are Gbl, Aus, SAf, and Ama,

while for the domains in the Northern Hemisphere most of the

FIG. 8. Wald test results for parameters b̂1 in regression (8). The results for the (top) HadCRUT4 and

(bottom) GISTEMP annual MST time series. Entries colored in black and gray indicate that the null hypothesis

b̂1 5
�
12�p

l51ûl

�
is accepted or rejected, respectively. Entries in white indicate either the presence of a structural

break in b̂1 or incorrect functional form. Figures indicate the last two digits of the estimated break date, and the

character X denotes incorrect functional form. One, two, and three asterisks denote statistical significance of pa-

rameter b̂1 at the 10%, 5%, and 1% levels, respectively. Abbreviations are as in Fig. 1.
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GCMs tend to significantly overestimate the warming rate

(b̂1 , 1), due to the factors mentioned above.

5. Conclusions

In this paper we show that GCM evaluation, selection, and

ranking based on classical performance metrics can be mis-

leading and the differences between these metrics can be

random and meaningless. This is clearly shown when com-

paring the metrics’ confidence intervals instead of just point

estimates. Compared to commonly used metrics, the proposed

methodology introduces relevant improvements. It allows us to

formally evaluate two of the most relevant aspects for climate

change projections: 1) if the trend of the response to RF from a

particular GCM is compatible with observations and 2) if the

magnitude of the response to RF is similar to that in observa-

tions. The proposed method allows us to evaluate the perfor-

mance of GCMs in reproducing the observed warming trend

in a multivariate setting in which the effects of natural vari-

ability are accounted for.

The methodology allows us to formally test for these two

characteristics and to evaluate the statistical significance of

differences between observations and GCMs, as well as be-

tween different GCMs. This new approach is based on formal

statistical tests that provide empirical evidence that allows us to

classify GCMs into groups that 1) are able or unable to ade-

quately reproduce the observed warming trend and 2) under/

overestimate or accurately estimate the magnitude of the re-

sponse toRF. These tests can also be applied to jointly evaluate

metrics. Furthermore, confounding factors that may distort the

response to RF, such as natural observed variability and the

internal GCMs variability, are controlled for. These improve-

ments in GCM evaluation can be of particular importance for

applications such as impact, vulnerability, and adaptation as-

sessments and for detecting areas of opportunity to improve

current GCMs.

We apply the proposedmethodology to nine spatial domains

and show that from the GCMs considered (21 models plus the

multimodel mean) in this study, only 40% of them are able to

reproduce the observed warming in the Gbl, Aus, SAf, and

Ama regions, in terms of both its trend and rate of increase.

Less than 40% of them are able to reproduce the trend and

magnitude of warming in Chi, EuN, EuW, Mex, and USA re-

gions, and most GCMs overestimate the warming rate. While

most of the classical performance metrics only provide relative

measures of how well GCMs are able to reproduce the ob-

served climate, the proposed method is based on stricter and

more informative criteria to discriminate models that can and

cannot reproduce two of the most relevant aspects of perfor-

mance for climate change studies. The proposed method in-

dicates which of these criteria GCMs fail to satisfy. Moreover,

the proposed methodology allows us to identify that most of

the GCMs tend to overestimate the warming in regions of the

NorthernHemisphere, and that thesemodels’ simulations tend

to show significant discrepancies with the observed magnitude

of the warming trend, particularly since the mid-1990s. Several

explanations for the reduced warming rate during that period

have been proposed (Estrada et al. 2013b; Guan et al. 2015;

Steinman et al. 2015; Fyfe et al. 2016; Estrada and Perron

2017), and the lack of fit of models during this period has been

discussed in the literature (Dai et al. 2015; Fyfe et al. 2016).
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