An efficient and portable climate system model for studying past, present and future climate

Steven J. Phipps
University of Tasmania

21 February 2006

Acknowledgements

- Nathan Bindoff, University of Tasmania/CMAR
- Bill Budd, University of Tasmania
- Scott Power, BMRC
- Jason Roberts, University of Tasmania
- Tas van Ommen, Australian Antarctic Division
- CSIRO Marine and Atmospheric Research
- APAC, iVEC
- ARC Network for Earth Systems Science

Overview

- 1. The CSIRO Mk3L climate system model
- 2. Present climate
- 3. Future climate
- 4. Past climate
- 5. Future work

The CSIRO Mk3L climate system model

• Low-resolution version of the CSIRO climate system model

- Low-resolution version of the CSIRO climate system model
- Coupled atmosphere-sea ice-ocean general circulation model

- Low-resolution version of the CSIRO climate system model
- Coupled atmosphere-sea ice-ocean general circulation model
- Designed to enable millennial-scale simulations of climate variability and change

- Low-resolution version of the CSIRO climate system model
- Coupled atmosphere-sea ice-ocean general circulation model
- Designed to enable millennial-scale simulations of climate variability and change
 - palaeoclimate reconstructions
 - projections of future climate
 - detection/attribution

- Low-resolution version of the CSIRO climate system model
- Coupled atmosphere-sea ice-ocean general circulation model
- Designed to enable millennial-scale simulations of climate variability and change
 - palaeoclimate reconstructions
 - projections of future climate
 - detection/attribution
- Is it an EMIC?

Atmosphere model

- Based on the CSIRO Mk3 atmosphere model
- Spectral general circulation model
- Reduced horizontal resolution of R21 ($\Delta \lambda \approx 5.6^{\circ}, \Delta \phi \approx 3.2^{\circ}$)
- 18 vertical levels
- Orbital parameter code
- Dynamic-thermodynamic sea ice model
- Land surface model (static vegetation)

Ocean model

- Based on the CSIRO Mk2 ocean model
- z-coordinate general circulation model
- Same horizontal grid as atmosphere model
- 21 vertical levels
- Gent-McWilliams eddy diffusion

Coupled model

- Surface fields exchanged every one hour (3 atmosphere model timesteps for each ocean model timestep)
- Coupling rigorously conserves heat and freshwater
- Flux adjustments applied

Model source code

- Designed for maximum portability across computer architectures
- Should compile on any UNIX/Linux platform
- Shared-memory parallelism achieved using OpenMP
- Dependence on external libraries restricted to netCDF and FFTW
- Loop structure optimised for serial architectures

Benchmarks on APAC Facilities

Facility	Processor	Number of	Speed
	type	processors	(years/day)
AlphaServer SC	1GHz EV68	1	4.0
		2	7.2
		4	11.7
Linux Cluster	2.66GHz Pentium 4	1	4.6

- Control run conducted for pre-industrial conditions
- Follows PMIP2 experimental design
- CO₂ concentration: 280ppm
- Solar constant: 1365 Wm⁻²
- "Modern" orbital parameters (AD 1950)
- Ocean model initialised using Levitus 1998
- Atmosphere and ocean models spun up independently
- Coupled model initialised from final states of spin-up runs
- Integrated for 2000+ years

Annual-mean surface air temperature (°C)

Annual precipitation (mm)

Global meridional overturning streamfunction (Sv)

Global-mean surface air temperature

An efficient and portable model for studying past, present and future climate EMIC workshop, Melbourne, Australia, 20-21 February 2006

Standard deviation in sea surface temperature (°C)

EOF1 of sea surface temperature ($^{\circ}$ C) - 22.3%

Nino 3.4 SST anomaly and the Southern Oscillation Index

Correlation between SST and the Southern Oscillation Index

El Niño statistics

	Mk3L	Observed
Standard deviation of	0.48	0.71
Niño 3.4 SST anomaly (°C)		
Average period (years)	7.8 ± 0.5	~3–6
Average duration (months)	17.2 ± 0.6	~12
Average magnitude (°C)	0.86 ± 0.02	~ 1.3

Observed values from Trenberth (1997)

- 3xCO₂ stabilisation scenario
- Initialised from year 100 of control run
- Atmospheric CO₂ concentration increased at 1% p.a.
- Reaches 840ppm in year 211, and held constant thereafter
- Integrated for 2000+ years

An efficient and portable model for studying past, present and future climate EMIC workshop, Melbourne, Australia, 20-21 February 2006

An efficient and portable model for studying past, present and future climate EMIC workshop, Melbourne, Australia, 20-21 February 2006

Change in annual-mean SAT (°C) - years 211-260

Change in annual-mean SAT (°C) - years 1951-2000

An efficient and portable model for studying past, present and future climate EMIC workshop, Melbourne, Australia, 20-21 February 2006

Change in mean sea level

- Equilibrium simulation conducted for the mid-Holocene (6ka BP)
- PMIP2 experiment
- Initialised from year 100 of control run
- Orbital parameters for 6ka BP
- Atmospheric CO₂ concentration reduced from 280ppm to 277ppm
 - equivalent to a reduction in the CH₄ concentration from 760ppb to 650ppb
- Integrated for 1200+ years

Change in insolation (W/m^2)

Difference in August surface air temperature (°C)

Difference in February surface air temperature (°C)

Difference in annual precipitation (mm)

Difference in annual precipitation (%)

An efficient and portable model for studying past, present and future climate EMIC workshop, Melbourne, Australia, 20-21 February 2006

An efficient and portable model for studying past, present and future climate EMIC workshop, Melbourne, Australia, 20-21 February 2006

El Niño statistics

	Control	6ka BP
Standard deviation of	0.48	0.42
Niño 3.4 SST anomaly (°C)		
Period (years)	7.8 ± 0.5	8.8 ± 0.9
Duration (months)	17.2 ± 0.6	16.6 ± 1.0
Magnitude (°C)	0.86 ± 0.02	0.78 ± 0.02

Future work

• Make Mk3L available to other researchers

- Make Mk3L available to other researchers
- Further analysis of simulations

- Make Mk3L available to other researchers
- Further analysis of simulations
- Comparison with palaeoclimate data

- Make Mk3L available to other researchers
- Further analysis of simulations
- Comparison with palaeoclimate data
- Conduct further simulations

- Make Mk3L available to other researchers
- Further analysis of simulations
- Comparison with palaeoclimate data
- Conduct further simulations
- Any other ideas?