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1. INTRODUCTION 4. HOLOCENE TRENDS

The SHAPE project aims to reconstruct and understand past changes in e We now use the CSIRO MK3L simulations to examine the linear trends
the atmospheric and oceanic circulation of the Southern Hemisphere. in a number of climatic variables during the Holocene (Fig. 3).

Within this context, climate modelling plays a critical role in testing the e Surface air temperature decreases over Antarctica and the Southern
interpretation of the proxy data and exploring the underlying dynam- Ocean, but generally increases at lower latitudes. There is a deepen-
ical mechanisms. ing and poleward contraction of the circumpolar trough, accompanied
by a strengthening and poleward contraction of the westerly winds.
These changes are associated with increasing sea ice cover.

Here, we analyse a suite of simulations of the Holocene climate. These
are generated using state-of-the-art climate system models, and in-
clude simulations conducted by Phase Three of the Paleoclimate Mod- e The simulated cooling trend over the Southern Ocean is consistent
elling Intercomparison Project (PMIP3). with reconstructions, but is not generally captured by other mod-
els driven with similar forcings (Bakker et al., 2014). Otherwise, the
trends are comparable with previous multi-model analyses of transient
Holocene simulations (Varma et al., 2012; Bakker et al., 2014).

2. MODEL SIMULATIONS

We analyse four transient simulations of the period from 8kaBP to
present (Table 1). Different combinations of forcings are applied; some 1‘
of the models also accelerate the rate of change of the external forcings

a. Surface air temperature (°C ky 1) b. Mean sea level pressure (hPa ky 1)
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Model Atmospheric resolution Forcings Accel-

Horizontal Levels G | IS | eration

CCSM3 3.75° x 3.75° 26 - - 10x Varma et al. (2012)

CSIRO Mk3L 5.625° x 3.18° 18 Y 3 10x Phipps et al. (2013)

FAMOUS 7.5 x 5° 11 Y - Bakker et al. (2013)
TraCE (CCSM3) 3.75° x 3.75° 26 Y Y - Liu et al. (2009)

Reference

Table 1. The simulations presented here: the model, the resolution of the atmosphere, the forcings ap-
plied (O = orbital, G = greenhouse gases, IS = ice sheets), the rate of acceleration, and the reference. 08
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3. WESTERLY WINDS
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. e str ength/ POSitiOn Figure 3. The linear trends in various annual-mean variables over the period 8-0Oka BP, according to
\ o and width of the CSIRO MK3L. Only values that are significant at the 5% probability level are shown.
Southern Hemi-
sphere (SH) westerly 5 SEASONALITY
' wind belt.

e Within the CSIRO MK3L simulations, the trends in the westerly winds
can exhibit considerable seasonality (Fig. 4). This is particularly appar-
ent in the Pacific sector: over New Zealand and southern Australia, for
example, even the sign of the trend depends upon the season.

e The present-day po-
sition of the west-
erly winds is simu-

lated well by each

model, although FA- e Seasonality should therefore be considered when using proxies to re-
MOUS exhibits ex- construct changes in the SH westerly winds over the Holocene.
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weak wvariability in the
strength of the westerly
winds  throughout the
Holocene (Fig. 2a).
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